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Abstract In the study of regulated cell death, the rapidly

expanding field of regulated necrosis, in particular

necroptosis, has been drawing much attention. The sig-

naling of necroptosis represents a sophisticated form of a

death pathway. Anti-caspase mechanisms (e.g., using

inhibitors of caspases, or genetic ablation of caspase-8)

switch cell fate from apoptosis to necroptosis. The initial

extracellular death signals regulate RIP1 and RIP3 kinase

activation. The RIP3-associated death complex assembly is

necessary and sufficient to initiate necroptosis. MLKL was

initially identified as an essential mediator of RIP1/RIP3

kinase-initiated necroptosis. Recent studies on the signal

transduction using chemical tools and biomarkers support

the idea that MLKL is able to make more functional sense

for the core machinery of the necroptosis death complex,

called the necrosome, to connect to the necroptosis exe-

cution. The experimental data available now have pointed

that the activated MLKL forms membrane-disrupting pores

causing membrane leakage, which extends the prototypical

concept of morphological and biochemical events follow-

ing necroptosis happening in vivo. The key role of MLKL

in necroptosis signaling thus sheds light on the logic

underlying this unique ‘‘membrane-explosive’’ cell death

pathway. In this review, we provide the general concepts

and strategies that underlie signal transduction of this form

of cell death, and then focus specifically on the role of

MLKL in necroptosis.
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Introduction

Regulated cell death has long been appreciated as the

built-in brake valve system for organisms to balance with

cell survival during development, maintenance of tissue

homeostasis and elimination of infected cells in patho-

logical conditions. Building on the classic work in C.

elegans and various animal models, the apoptosis path-

way was the first evolutionarily conserved regulated cell

death signaling pathway that was discovered. A large

body of investigation has firmly established a central role

of caspase activation and the following regulated prote-

olysis that leads to apoptosis execution. In contrast to

apoptosis, which manifests with specific morphological

and biochemical markers, necrotic cell death was initially

regarded as a passive form of cell death that results from

acute cellular injury or overwhelming stresses. The

impressive body of knowledge about the molecular

apparatus of apoptosis sets up expectations to getting a

comparable clarity of understanding about the regulated

necrosis signaling, which was observed independent of

caspase activity [1]. Since the late 1980s, researchers have

observed that, under certain conditions, caspase inhibition

does not block cell death induced by members of the

tumor necrosis factor (TNF) family of cytokines, but

rather shifts cell fate to necrotic death [1–6]. These

observations highlight a long-standing ambiguity about

whether necrosis was also a form of regulated cell death

like apoptosis.
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The necrosome machinery closes the gap
between the death signal and membrane
disruption

Necrosome assembly

The complexity of necrosis is revealed by a string of

defined biochemical signals that occur under tight regula-

tion when the necrotic death complex (necrosome) is

assembled. Receptor-interacting kinase 1 (RIP1, also

known as RIPK1) was the first molecule identified as a

necrosome component required for Fas ligand-induced

caspase-independent necrotic cell death [7]. RIP1 plays

pleiotropic roles in multiplying signaling processes, such as

NF-jB activation and apoptosis [8–11]. Its kinase activity

was found to be specifically required in death receptor

activation-induced regulated necrosis, also termed

necroptosis. Upon death ligand ligation, RIP1 binds with

death receptors via their respective death domains (DD).

Once FADD or caspase activity is inhibited by genetic or

chemical methods, RIP1 forms the death complex with

receptor-interacting kinase 3 (RIP3, also known as RIPK3)

through their homotypic interaction motif (RHIM)

domains, and activates their kinase activities [12–14].

Thereafter, the activated RIP kinases respond to and link

the death signals to a downstream substrate, the pseudok-

inase mixed-lineage kinase domain-like protein (MLKL)

[15].

Determinants of necrosome complex assembly

TNF receptor 1 (TNFR1) ligation leads to the recruitment

of TRADD, RIP1, TRAF2 and cIAP1/2, which is known as

complex I. The E3 ubiquitin ligases, cIAP1/2, block RIP1

transition to the necrosome by ubiquitination of RIP1 that

mediates NF-jB activation [16]. Loss of cIAP1/2 function,

caused by treatment with Smac mimetics, promotes RIP1

kinase activation and necrosome complex formation [17].

A20, an inhibitor of NF-jB signaling, was recently

reported to restrict ubiquitination of RIP3 at Lys5 (K5) and

protect from the formation of the necrosome [18].

Death receptor-activated apoptosis and necroptosis

share a common regulatory signal complex (complex IIB),

which includes RIP1, FADD, caspase-8 and cFLIP. Mice

with deletions of any of the complex-IIB genes display

severe embryonic developmental defects that lead to either

embryonic (Casp8-/-; Fadd-/-; cFlip-/-) or postnatal

lethality (Rip1-/-) [19, 20]. RIP3- or MLKL-deficient mice

do not show developmental or homeostasis defects [13, 21–

23]. The lethality caused by deficiency in caspase-8 or

FADD can be rescued by loss of either RIP3 or MLKL [20,

24–27]. In addition, the neonatal lethality of Rip1-/- mice

was rescued by concurrent loss of caspase-8 and RIP3 [28–

30]. Therefore, RIP1 and caspase-8 work synergistically as

regulatory components to prevent both forms of cell death

during development. It is worth noting that kinase-dead

RIP1 (K45A; D138N) knock-in mice develop normally

into adulthood [29, 31–33]. These data implicate that the

kinase activity of RIP1 is dispensable for instruction of

these two death pathways in regulating multiorgan

development.

Necrosome assembly provides a structural basis for RIP3

oligomerization

Necroptosis induced by the TNF family of cytokines (TNF,

CD95/FasL, TRAIL) requires RIP1 for assembling the

necrosome components. However, exceptions have been

found. For instance, RIP3 and MLKL are required in Toll-

like receptor signaling (TLR3/TLR4), but in an RIP1-dis-

pensable way. Instead, another RHIM domain-containing

protein, TRIF, is associated with RIP3 via its RHIM

domain, which is analogous to the RIP1–RIP3 necrosome

complex [30, 34–36]. Likewise, murine cytomegalovirus

(MCMV)-induced necroptosis employs a DAI–RIP3–

MLKL axis. In addition, the virus DNA sensor, DAI, was

shown to be associated with RIP3 also through its RHIM

domain [34, 37, 38]. Additionally, the herpes simplex virus

(HSV)-1 effector protein, ICP6, binds with RIP1/3 through

their virus–host RHIM interactions, which leads to either

pro-necroptotic or anti-necroptotic effects in mice and

humans, respectively [39–42]. Given this shared mode of

necroptosis induction across physiological and disease

processes in varying species, a simple working definition

for necroptosis initiation includes the RHIM domain pro-

tein-mediated activation of RIP3 functionality (Fig. 1).

A complementary study to assess the mutual depen-

dency of RIP1 and RIP3 has been to generate a death

receptor-free environment by building up an artificial

dimerization system for RIP1 and RIP3. Cook et al. found

that necroptosis can be induced either by dimerization of

RIP1 or RIP3 in immortalized mouse embryonic fibroblasts

(MEFs) [43]. Wu et al. expressed combinations of wild-

type and RHIM mutant RIP1 and RIP3 in 293T cells [44].

They emphasized that the necroptotic signal is propagated

from the RIP1–RIP3 amyloid scaffold by recruiting addi-

tional free RIP3 molecules. Orozco et al. added a point that

RIP1 might negatively regulate the spontaneous

oligomerization of RIP3 when RIP3 is maintained at a

relatively low level, although they faintly induced

necroptosis by expressing RIP3 dimer in their system [45].

These discrepant data of dimerized RIP3 were explained by

side effects of the different positions that the protein was

tagged with the dimerization domains.
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Nonetheless, we assemble here a scenario where the

death signal flows from RIP1 to RIP3 through their RHIM

domains, and additional molecules of RIP3 would be

recruited afterward for auto-phosphorylation-driven signal

propagation. Meanwhile, an emerging theme is the highly

conditional influence of these artificial systems, in that

RIP1 is needed under some circumstances but not in others.

Altogether, these data lend further support to the notion

that RIP3 oligomerization is the minimal functional unit

that is required to drive necrosome assembly.

How RIP3 activates MLKL

Mixed-lineage kinase domain-like protein was found to be

specifically required for the RIP3-dependent necroptosis

pathway. It was initially identified as a RIP3-binding pro-

tein via its C-terminal kinase-like domain. A series of

kinase assays combined with proteomics studies revealed

that MLKL is the natural target of RIP3 kinase. Recruit-

ment of MLKL depends on auto-phosphorylation of RIP3

at S227 (S232 for mouse RIP3) [15]. In a following study,

Fig. 1 Necrosome assembly and signal propagation. Ligation of

members of the tumor necrosis factor receptor superfamily (TNFRSF,

including TNFR1, CD95, TRAILR) leads to the recruitment of

receptor-interacting protein kinase 1 (RIP1). RIP1 and RIP3 form a

pro-necrotic death complex via their RHIM domains. RIP3 is then

activated by auto-phosphorylation at Ser227 (Ser232 for mouse

RIP3). The activated RIP3 recruits and phosphorylates its substrate

MLKL at Thr357/Ser358 (Ser345 for mouse MLKL), a step which

defines the formation of the functional necrosome. Besides TNFRSF,

activation of type I interferon receptor (IFNAR1) also triggers the

formation of a RIP1–RIP3–MLKL-containing necrosome. Moreover,

pattern recognition receptors (PRRs) drive necrosis in an RIP1-

independent manner. Toll-like receptor-induced TRIF–RIP3–MLKL

necrosome formation (for TLR3, e.g., by sense dsRNA such as poly

I:C; for TLR4 in response to LPS) also depends on RHIM interaction

between TRIF and RIP3. Likewise, infection with M45 mutant

murine cytomegalovirus (MCMV) leads to RHIM-mediated interac-

tion between DAI and RIP3. Of all necrosome protein complexes

reported to date, MLKL binds to activated RIP3 to propagate the

necrotic death signal, regardless of what RHIM protein RIP3 utilizes

for its self-activation. Activated MLKL binds phosphatidylinositol

phosphates (PIPs), cardiolipin (CL) and phosphatidylglycerol (PG),

which navigate necrosomes to different phospholipid-rich cellular

compartments. Once targeted to membranes, MLKL disrupts mem-

brane integrity and finally causes necroptotic cell death
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Xie et al. presented the co-crystal structure of the mouse

RIP3 kinase domain (residues 1–318) with the MLKL

kinase-like domain (residues 182–464) at 2.5 Å resolution

[46]. The binding interface between RIP3 and MLKL was

depicted aligning in a parallel fashion. The phosphate

group of the phosphorylated Ser232 in RIP3 was clearly

visible, which accepts an H-bond from the hydroxyl group

of Ser404 in MLKL. In addition, other observed phos-

phorylated residues, Ser184 and Thr231, of RIP3 were

found not to be involved in the interface with MLKL, and

had little impact on RIP3–MLKL complex formation. At

the center of their interface, Phe27 of RIP3 and Phe234 of

MLKL stack against each other through p–p interactions,

providing the most prominent bond strength for RIP3 and

MLKL [46]. A cochaperone complex, HSP90–CDC37, was

discovered as RIP3-binding partner [47]. Knocking down

CDC37 or using HSP90 inhibitors efficiently blocks

necroptosis by preventing auto-phosphorylation on RIP3–

Ser227 and RIP3 punctae formation. Besides, one of the

negative regulators of this auto-phosphorylation on RIP3,

protein phosphatase 1B (Ppm1b), was recently found to

suppress necroptosis by dephosphorylation of RIP3 [48].

Taken together, the auto-phosphorylation of RIP3 at S227

(S232 for mouse RIP3) shapes up the interface of RIP3 in

recognizing its substrate MLKL.

Evidence suggests that p-MLKL is the key for necrop-

totic signal transfer. When activated RIP3 binds to MLKL,

it subsequently phosphorylates MLKL at T357/S358 (S345

for mouse MLKL) [15]. A study of doxycycline (DOX)-

inducible MLKL mutants expressed in mlkl-/–MEFs also

confirmed that phosphorylation of Ser345 is critical for

RIP3-mediated necroptosis, while other reported sites

(Ser347 and Thr349) either play minor roles or seem to be

irrelevant [49].

MLKL phosphorylation as a biomarker

of necroptosis activation

Based on the knowledge that MLKL is phosphorylated by

RIP3, a rabbit monoclonal antibody was developed to

specifically recognize phosphorylated MLKL (p-MLKL)

and serve as a marker for necroptosis [50]. This work

advances the field by allowing to detect necroptosis in a

more accurate way. Given the specificity of this phospho-

antibody, an emerging picture of the properties of necrotic

diseases has helped us gain a broader understanding of

under what conditions this form of cell death occurs. For

example, drug-induced liver injury (DILI) was the first

reported clinical disorder that exhibits necrotic damage by

showing strong p-MLKL signals in the diseased compart-

ments [50]. After that, researchers also observed p-MLKL

signals in human non-alcoholic steatohepatitis (NASH)

samples. Recent studies implicated that MLKL-dependent

necroptosis is highly prevalent in isolating and removing

pathogens [39]. In addition, necroptosis is implicated in

regulating chemical-induced cell injuries, such as cerulein-

induced pancreatitis [21]. Furthermore, excessive necrotic

cell death is associated with ischemia reperfusion-induced

damage in the brain as well as in patients with neurode-

generative disorders [51]. In a study of human multiple

sclerosis (MS) pathological specimens, robust p-MLKL

signals were detected [52]. Apart from these clinical con-

ditions, p-MLKL signals also occur in primate ovarian

tissues (human and rhesus monkey), which may contribute

to follicular atresia and luteolysis in females, eventually

leading to menopause [53]. Application of this phospho-

antibody as a biomarker to reflect necroptotic cell death in

patients will provide us sufficient proof-of-principle sup-

port for the development of pharmaceutical agents that

interfere with these necroptotic diseases.

Necrosome inhibitors

A range of chemical screens for necroptosis inhibitors has

significantly increased our understanding of necrotic sig-

naling; however, each has had its drawbacks. The first

well-defined necroptosis inhibitor is necrostatin-1 (Nec-1),

which blocks necroptosis by targeting RIP1 kinase activity

[54, 55]. More in vivo tests of Nec-1 derivatives were

explored in animal models, such as 7N-1 which blocks

demyelination induced by cuprizone and encephalomyelitis

EAE [34, 52]. However, since RIP1 also contributes to

other processes beyond necroptosis, such as the regulation

of inflammatory cytokine release and apoptosis, an inde-

pendent focus has also been placed on RIP3 and MLKL

inhibitors. But, the challenge for RIP3 inhibitors resides in

the potential gain of function of triggering apoptosis. A

collection of RIP3 inhibitors induced apoptosis while

simultaneously blocking necroptosis, which could be

explained by the discovery that overexpression of kinase-

dead RIP3 (K51A), causes the cells to die from apoptosis

[56]. In line with this, recently, RIP3 kinase-dead knock-in

mice (D161N) were found to be embryonic lethal due to

vast apoptosis [31]. A larger pool of RIP3 inhibitors is in

the process of being further characterized for their apop-

totic toxicity.

All of these data above exemplify the urgent need for

finding less-toxic necroptosis inhibitors. So far, the MLKL

inhibitor, NSA, shows the least amount of toxicity to cells

[15]. NSA blocks necroptosis by targeting Cys86 on

MLKL, thus interfering with MLKL oligomerization. In

the studies of necroptosis signaling, NSA was proven to be

a unique tool for dissecting the downstream process of

necroptosis without disturbing necrosome death complex

assembly. However, because NSA has an exclusive

recognition of human MLKL, this limits its application in
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mouse models. In 2014, another mouse MLKL inhibitor,

referred to as compound 1 by Hildebrand et al., was

identified to inhibit the necroptosis pathway by delaying

MLKL translocation to the membrane, but its toxicity and

multiple targets on the other components of necrosome

preclude the application of this MLKL inhibitor [57]. New

necroptosis inhibitors that target mouse MLKL will expand

our knowledge for the in vivo significance of MLKL-de-

pendent necroptosis. In addition, a series of chemical tools

also anchor our interpretation of the underlying logic of

MLKL activation.

Emerging concepts in the study of necroptosis
execution

Membrane pore-forming machinery by MLKL

Phosphorylation drives MLKL oligomerization

and membrane translocation

Within the past few years, it has become clear that the

phosphorylation of MLKL builds on the most formidable

engine of necrosome machinery, which ignite and propel

the death signal toward membranes. As we review here,

there is now much clearer understanding of the crucial role

of MLKL in necroptosis execution.

Downstream necroptosis signals work through MLKL.

Accordingly, phosphorylated MLKL would be expected to

transduce death signals. Both in vivo and in vitro bio-

chemical analyses characterized the oligomerization nature

of MLKL. Necroptosis induction causes a molecular

weight shift of MLKL, which appears on non-reducing

PAGE gels. Wang et al. demonstrated that phosphorylation

of MLKL turns on its oligomerization [50]. However,

researchers have not reached a consensus on the minimal

units of the MLKL oligomer [50, 58–60]. Interpretations of

these data, using crosslinkers or gel filtration, should be

regarded with caution, given the present technical limita-

tions. Only alternative approaches with higher resolution,

such as NMR and crystallography technology, could pro-

vide a conclusive physical picture of MLKL

oligomerization.

Biochemical fractionation revealed that MLKL translo-

cates to the plasma membrane after necroptosis is induced.

By following the phospho-MLKL signals, it was found that

this translocation was not limited to the plasma membrane;

organelle membranes were also targeted by p-MLKL. This

targeting to membranes is facilitated by the N-terminal

coil–coil domain of MLKL, which possesses a patch of

positively charged amino acid that enables MLKL to

interact with phospholipids. Pleckstrin homology (PH)

domains are well known for their binding to

phosphatidylinositol lipids (PIPs)-containing lipids within

biological membranes. Different PH domains possess

specificities for different lipids [61–64]. It is noteworthy

that MLKL has a broader affinity for PIPs than PH

domains. Both Wang and Dondelinger found that the

N-terminal MLKL directly binds with phosphatidylinositol

phosphates (PIPs) [50, 65]. In addition, Wang et al. found

that cardiolipin (CL) could also bind to MLKL.

Different PIPs may direct MLKL to different cellular

compartments. The lipid composition of these membranes

varies from organelle to organelle even though these distinct

membrane systems are in communication through intra-

cellular trafficking by vesicles. Most membranes are rich in

phosphatidylcholine (PC), phosphatidylethanolamine (PE),

and phosphatidylinositol (PI). PC and PI are enriched in the

ER; phosphatidylglycerol (PG) and CL are synthesized in

and confined to mitochondria [66, 67]. For instance, plasma

membranes have the most abundant PI(4)P and PI(4,5)P2.

This could explain the vast damage on cell membranes after

necroptosis induction. Cardiolipin (CL) is mostly dis-

tributed in the mitochondrial inner membrane. During

necroptosis, interference with mitochondrial fusion has

been described. This was well timed for CL cytosolic

exposure, and the CL-enriched microdomain provides a

signaling platform for MLKL-mediated death signals on

mitochondria [68–70], which would strengthen the intrinsic

amplification of death signals. In the same spirit, other PIPs

have their distinctive organelle distribution, which would

give MLKL the proper guidance to the designated mem-

brane compartments.

Evidence that MLKL punches membranes

Membrane rupture and organelle swelling have remained

cornerstone features of necrosis. Investigators have gener-

ally regarded membrane damage as a basic morphological

criterion for necrosis. The released cellular content of

necrotic cells will trigger an immune response. Thus, the

exposure of DAMPs (damage-associated molecular pat-

tern) [71] has been considered as a signature indicator for

necrosis.

Using the classic liposome leakage assay, MLKL was

found to translocate to PIPs- or CL-containing membranes

and to disrupt the membrane integrity in a dose-dependent

manner [50] (Fig. 2a, adapted from [72]). NSA can block

these membrane disruptions. Since NSA is targeted to the

N-terminus of MLKL, this discovery is consistent with the

finding that the N-terminal domain mediates liposome

damage and cell death. Moreover, when the intracellular

levels of MLKL-binding PIPs were downregulated by

interfering with their production processes, MLKL-depen-

dent necroptosis was largely attenuated [65]. These

experiments extensively characterized the pore-forming
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property of MLKL on membrane structures. It puts forth

the possibility that MLKL is the executioner of necroptosis

by punching holes in cellular membranes. It has become

increasingly clear that the pore-forming properties of

MLKL are further influenced by the interplay between the

N-terminus of MLKL and phospholipids.

The structure of the MLKL N-terminal region has been

determined by nuclear magnetic resonance spectroscopy,

which reveals that the four-helix bundle (4HBD) with an

additional helix at the top is likely to be the key for MLKL

function. Further, fluorescence spectroscopy measurements

indicate that much of the 4HBD inserts into membranes,

but not the intermediate helix [72]. Moreover, 4HBD is

sufficient to induce liposome leakage, while the C-terminal

helix inhibits this activity [50, 72]. It has also been reported

that expressing truncated forms of MLKL lacking the

pseudokinase domain can lead to constitutive cell death in

both Mlkl-/- and WT MEF cells or HEK293T cells [57,

65], indicating an essential role of the MLKL N-terminal

domain in necroptosis signaling and implicating the

C-terminal pseudokinase domain as a suppressor to restrain

the N-terminal 4HBD function. A recent work by Quarato

et al. has further confirmed that the interaction between the

brace and N-terminal 4HBD exerts the ‘‘inhibitory plug’’

regulation. Moreover, they also showed once MLKL inte-

grates with the membrane, its N-terminal helix bundle

A

B

C

Fig. 2 Overview of the membrane-punching mechanisms of pore-

forming proteins. a Oligomerized MLKL punches membranes. The

MLKL monomer is sequestered in an inactivated state by its

C-terminal kinase-like domain (KLD). Phosphorylation of MLKL

releases the auto-inhibition on the amino-terminal MLKL and enables

MLKL to bind with PIPs or CL. NSA blocks MLKL from

oligomerization and membrane translocation. b A representative a-
PFT protein, cytolysin A (ClyA, also known as HlyE), forms a pore

on a target membrane. The b-tongue, consisting of two b-strands
between the third and fourth helices, locks ClyA in a compacted

soluble state. Once ClyA binds to the membrane, the C-terminal helix

is released from the bundle, touches the membrane and further

recruits other molecules. After assembled into oligomers, the

aggregated C-terminal helices insert into the membrane to form

pores. c Structural transitions of CDC pore-forming proteins. Beta-

PFTs are assembled into oligomeric pre-pores and bind to the

membrane. The tandem transmembrane helical (TMH) units that are

initially buried in the core of the pre-pore intermediate will be

exposed and inserted into the membrane as a b-barrel. Perforin and

the complement share similar primary structures of both monomer

and oligomer, whether there is a transition station remains unclear
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utilizes a ‘‘rolling over’’ mechanism to expose additional

high-affinity PIP-binding sites, which added another layer

of distinct PIP-binding sites responsible for robust associ-

ation to the membrane [73].

Apart from the aforementioned MLKL activation path-

ways, artificial systems can also lead to the activation of

MLKL and to execution of necroptosis. Taking advantage

of the HBD*-4-OHT dimerization system, Chen and col-

leagues demonstrated that activation of MLKL by forcing

the protein or its N-terminus together (tetramerization here)

directly triggers necroptosis, which can bypass RIP3 sig-

nals [58]. In accordance with the artificial system, they also

observed MLKL tetramers in TNF-induced necroptosis.

Using the FKBPv-AP20187 dimerization system, Wang

and colleagues reported that polymerization of phospho-

mimic-MLKL leads to more necroptosis than WT-MLKL

in RIP3-deficient cells [50].

Controversies: channel theories

A range of experimental criteria has been employed to

monitor ion disturbances, which potentially contribute to

necroptosis. In a cell-based experiment, Cai et al. found

that TRPM7-mediated Ca2? influx is required for necrop-

tosis execution [59]. This finding suggested an activation

process of non-voltage-sensitive Ca2? channels down-

stream of MLKL. Adding to this, Chen et al. provided an

experimental indication of a potential Na? channel down-

stream of MLKL, suggesting that the membrane

translocation of MLKL is truly associated with membrane

disruption [58]. These perspectives, however, conflict with

the phenomenon that Ca2?/Na? depletion blocks necrop-

tosis, which largely depends on the experimental settings

and the specific backgrounds of cell lines. Nevertheless,

more exploration is required on how such channels mesh

with membrane rupture happening, which involves many

biological processes. The main doubt about these data

hinges on the presumption that either Ca2?/Na? influx is

the cause or one of the consequences that the osmotic

pressure posed by the MLKL perforator elicits.

Other pore-forming proteins

Apart from MLKL, Mother Nature makes judicious use of

finite pore-forming mechanisms to control cell death, of

which there are a certain number of pore-forming toxins

(PFTs) produced typically by bacteria, complement proteins

or perforins released by cytotoxic T lymphocytes or natural

killer cells. All these proteins share the ability to form pores

in the plasma membrane. According to the secondary struc-

ture involved in pore formation, PFTs can be classified into

a-PFTs and b-PFTs [74, 75]. a-PFTs form pores using

helices (Fig. 2b, adapted from [76]) while b-PFTs, such as

cholesterol-dependent cytolysins (CDCs), insert into mem-

branes by their b-sheet structure [77–79]. Their membrane-

damaging processes can be divided into three steps:

oligomerization, membrane insertion, and pore formation.

The membrane attack complex (MAC) of complement is a

part of the mammalian innate immune system, which is

formed by sequential assembly of C5b with C6, C7 and C8,

and polymerization of C9, resulting in transmembrane pore

formation and loss of membrane integrity [80, 81]. Recent

findings provided some insights into the similarities between

PFTs and MAC in the process of pore formation [82, 83].

Aside from the humoral cytotoxicity that is caused by the

complement system, the lesion caused by cytotoxic T lym-

phocytes (CTLs) is also formed by polymerization of a pore-

forming protein, called perforin, to form cylindrical pores on

the target-cell membrane. The pores formed by perforin are

similar to those observed in complement-mediated lysis,

which mechanistically form pores in a CDC-like manner

[84–87] (Fig. 2c adapted from [88]).

The pore-forming proteins mentioned above share gen-

eral characteristic principles. Thus, the impact of the pore-

forming mechanism spans many fields of study, such as the

conversion from water-soluble monomers to intramem-

branous oligomers, membrane insertion by specific

secondary structure motifs, selective recognition of mem-

brane lipids, and induction of cell lysis. The finding that

MLKL does not fit into any of these known pore-forming

protein categories also, in turn, sheds light on new para-

digms for defining pore-forming proteins.

In addition, gasdermin D (GSDMD) was recently iden-

tified as a critical component in pyroptosis, another kind of

necrosis driven by inflammatory caspases, for which the

membrane-damaging mechanism has remained a mystery

for years. GSDMD can be functionally divided into gas-

dermin-N and gasdermin-C domains. Once inflammatory

caspases (caspase-1, -4, -5 and -11) are activated, they

specifically cleave GSDMD behind D257 (D276 in mouse)

and enable the gasdermin-N domains to sufficiently drive

pyroptosis [89, 90]. However, the biophysical properties by

which the N-terminal fragment elicits pyroptotic cell death

remains unknown, and it remains to be explored whether it

shares a similar membrane-damaging mechanism with the

known pore-forming proteins or whether it has a require-

ment for a receptor on the target membrane.

Concluding remarks and perspectives

Necroptosis can be triggered by various death signals. We

have deliberately focused on mechanisms that convey the

signal from RIP kinases to MLKL. We believe that wide

variations in the RIP1/RIP3 kinases interplay/hierarchy
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reflect the differences in experimental settings, which will

ultimately be traced to variations in the potential modula-

tory factors for these death kinases. Recent progress on

necroptosis signaling advances our knowledge on the core

machinery, most importantly on MLKL activation and its

highly ordered organization on liposome structures leading

to membrane disruption. More biophysical analysis about

the membrane-binding characteristics of MLKL is needed,

which will further our understanding of the executioner

role of MLKL during necroptosis.

Apart from the notion that MLKL receives death signals

from RIP3 kinase by direct phosphorylation, it was not at

all obvious how MLKL transduces signals to its down-

stream effectors. The phenomenon of MLKL nuclear

translocation before cell death was found by immunofluo-

rescence and biochemical fractionation [91]. Although the

functional relevance of this population of p-MLKL for

necroptosis execution is still unclear, the consequences of

different subcellular translocations of p-MLKL remain to

be systemetically clarified. We do not claim that this

summary provides a complete explanation of how necrotic

damage appears on membranes. Even if the pore forming

of MLKL is not the whole story of membrane rupture, it

will be fruitful to pursue the regulators of RIP1/RIP3, and

the potential co-factors of MLKL. Though many aspects of

necrosome signaling are still shrouded in mystery, it is

clear that new techniques such as a combination of cellular

analysis and biophysical investigation can illuminate the

unique complexity of the necrosome machinery.
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