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Abstract Most research on nutritional effects on aging
has focussed on the impact of manipulating single dietary
factors such as total calorie intake or each of the
macronutrients individually. More recent studies using a
nutritional geometric approach called the Geometric
Framework have facilitated an understanding of how aging
is influenced across a landscape of diets that vary orthog-
onally in macronutrient and total energy content. Such
studies have been performed using ad libitum feeding
regimes, thus taking into account compensatory feeding
responses that are inevitable in a non-constrained envi-
ronment. Geometric Framework studies on insects and
mice have revealed that diets low in protein and high in
carbohydrates generate longest lifespans in ad libitum-fed
animals while low total energy intake (caloric restriction by
dietary dilution) has minimal effect. These conclusions are
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supported indirectly by observational studies in humans
and a heterogeneous group of other types of interventional
studies in insects and rodents. Due to compensatory feed-
ing for protein dilution, low-protein, high-carbohydrate
diets are often associated with increased food intake and
body fat, a phenomenon called protein leverage. This could
potentially be mitigated by supplementing these diets with
interventions that influence body weight through physical
activity and ambient temperature.
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Introduction

The effect of diet on age-related health and lifespan is
unequivocal; even Hippocrates recognized the link
between overconsumption and early death [1]. In the
1500s, a Venetian nobleman, Luigi Cornaro famously
proposed in his book, Discorsi della vita sobria that
reducing the quantity of food eaten will increase health and
lifespan. He self-experimented by reducing his own intake
to 12 oz of food (and 14 oz wine) per day, and lived
beyond 100 years [1, 2]. The beginning of the modern
scientific study of nutrition and aging is often attributed to
Clive McCay and colleagues who in 1935 reported that
reducing the amount of food provided to rats in order to
delay their growth led to an increased lifespan: “...indi-
viduals of both sexes attained extreme ages beyond those
of either sex that grew normally” [3]. Of note, the diets
McCay used in these early experiments were relatively
high in protein and low in carbohydrates (casein 40 %,
yeast 5 % vs starch 22 %, sucrose 10 %) [3].
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Since that time, a reduction of food intake, known as
caloric restriction, has become an established model for the
study of aging, and is considered to be a robust and repro-
ducible intervention for delaying aging and increasing
lifespan. In most caloric restriction studies, access to food is
reduced by 10-50 % of ad libitum intake and supplemented
with micronutrients to prevent dietary deficiencies. The
increase in maximum and/or median lifespan with caloric
restriction has been reported across taxa ranging from yeast,
worms, flies, mice and rats; with health and/or lifespan ben-
efits reported in primates including humans [4—10]. Research
into caloric restriction in animals has led to major advances in
the understanding of the nutrient-sensing pathways that link
diet and aging, including the sirtuin (SIRT), mechanistic
target of rapamycin (mTOR), 5" adenosine monophosphate-
activated protein kinase (AMPK), insulin/insulin-like growth
factor-1 (IGF-1)/Growth Hormone pathways and possibly
fibroblast growth factor 21 (FGF21) [11, 12]. Remarkably,
genetic and pharmacological manipulations of nutrient-
sensing pathways are associated with delayed or accelerated
aging in animal models [6, 13]. However, diet is a complex
issue, and it has been debated whether the lifespan benefit of
the caloric restriction intervention is secondary to a reduction
in calories; or a reduction of one the macronutrients (protein,
carbohydrates or fat); or the associated periodic deprivation
and hunger that occurs once an animal has eaten its aliquot of
food [14]. In an attempt to resolve these issues there have been
investigations of dietary interventions such as reduced
amounts of each of the macronutrients, and every-other-day
feeding [15].

One of the major confounding factors in dietary studies
of aging is compensatory feeding, where animals titrate
food intake in order to meet endogenous targets for energy,
macronutrients and micronutrients. Overall it has been
found that dietary protein has the strongest impact on food
intake, such that low-protein diets will lead to an increase
in food intake and vice versa—this has been termed ‘pro-
tein leverage’ [16, 17]. Therefore in ad libitum-fed
animals, a low-protein diet will also be a high-calorie diet,
while a high-protein diet will also be a low-calorie diet.
Meticulous evaluation of food intake is an essential first
step in order to tease out the differential effects of calories
versus each of the macronutrients [18]. The alternative
approach, widely used in caloric restriction studies, is to
provide animals with a reduced amount of food (on the
assumption that it is all consumed) but this cannot differ-
entiate between the effects of reduced calories and reduced
macronutrients nor the effects of periodic food deprivation.
Moreover, caloric restriction with reduced access to food
has limited applicability to humans in developed countries
where access to food is essentially unlimited. This makes
research into optimal ad libitum-fed diets for aging and
age-related health a priority.
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One methodological approach that has been used
recently to try to disentangle the effects of calories and
macronutrients on health and aging is the Geometric
Framework [14, 17, 19, 20]. In these studies, animals are
ad libitum-fed one of many diets varying in the ratio of
macronutrients and total energy content. Total energy
content can be varied by dilution with a non-calorific or
non-digestible filler such as cellulose. Each animal has
ad libitum access to food quantity but is restricted to a
single diet. Compensatory feeding occurs via increasing
or decreasing intake of that particular diet, but the ani-
mal cannot regulate its nutrient intake by choosing
between differing diets. Thus these experiments do not
represent ‘dietary restriction’ in the sense of having
reduced access to energy or macronutrients. The
advantage of these experiments is that they permit
evaluation of an outcome such as lifespan across a
dietary landscape of different macronutrient concentra-
tions, macronutrient ratios and calorie content. It is
important to note that diets with different macronutrient
ratios can lead to similar intakes of a macronutrient
because of compensatory feeding, yet be associated with
different phenotypic outcomes. These observations indi-
cate that the ratios and/or interactions between
macronutrients, not just total amounts consumed, can
influence phenotype.

When applied to lifespan, the Geometric Framework
method has shown that ad libitum-fed diets that are lower
in protein and higher in carbohydrate (LPHC) are associ-
ated with longer lifespan, while moderately reduced total
calorie intake either has no effect or is detrimental (Fig. 1)
[21-27]. Many of these studies have conversely found that
diets higher in protein and lower in carbohydrates (LCHP)
are associated with improved reproductive outcomes, and
when given the choice animals tend to prefer diets that
optimise reproduction over lifespan. This provides some
evolutionary ‘face validity’ to the results and is consistent
with many evolutionary theories of aging [28]. To date,
most of Geometric Framework studies of lifespan have
been undertaken in insects especially Drosophila, with a
recent study in mice, while there are some observational
studies in humans that parallel the interventional experi-
ments in animals.

The effects of diets with different ratios of protein
and carbohydrates on lifespan

Insects

Although Clive McCay’s 1935 publication on caloric

restriction in rats is well recognized, less known is the fact
that in 1928 he published a paper showing that life
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A Fruitfly (Lee et al 2008)

C Q-fly (Fanson et al 2009)

D Q-fly (Fanson et al 2012)

E Cricket (Maklakov et al 2008)

v ¥ 1 1 I I

F Cricket (Harrison et al 2014)

G Ant (Dussutour & Simpson 2012)

Fig. 1 Published response surfaces for lifespan versus dietary
macronutrients. In each figure, the x axis represents a measure of
protein (dietary or intake; protein, casein or yeast) and the y axis
represents a measure of carbohydrates (dietary or intake; carbohy-
drate or sucrose). The response surfaces vary from red which is the
longest lifespan to blue which is the shortest lifespan. The red line

expectancy was greatest in ad libitum-fed trout on low-
protein diets [29]. This is possibly the first study on the
effects of LPHC diets on aging. Most recent studies
examining varying ratios of dietary protein and carbohy-
drate on lifespan have been undertaken in insect models
including flies (drosophilid and tephritid fruit flies),
crickets, ants and bees (Table 1). Ten of these studies have
utilized a Geometric Framework methodology where

H Mouse (Solon-

| Rat (Slonaker et al 1931)

Biet et al 2014)

represents the nutritional rail or PC ratio associated with the longest
lifespan while the blue line represents that with the shortest lifespan.
a-h from [21, 23-27, 30, 31] and i is a surface of simulated data
parameterised from the results presented by Slonaker et al. in 1931
[55, 129]

lifespan was measured across a landscape of different
dietary contents of protein, carbohydrate and energy [21-
26, 30-33] (Fig. la—g). This is the most rigorous design for
determining the effect of LPHC diets on lifespan and
overall the studies have shown that the lowest protein to
carbohydrate ratios (e.g. PC ratios ~1:10-1:16) are asso-
ciated with longest lifespans. Many of the other studies,
albeit with less dietary groups, also showed that the diets
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with lowest proportions of protein were linked with longest
lifespans. Taken together such studies support the view that
the dietary PC ratio influences lifespan with LPHC gen-
erating the longest lifespans.

Several studies have shown that the lifespan extension
seen with caloric restriction can be reversed by supple-
mentation with essential amino acids [34-36]. This
suggests that the benefits of caloric restriction might be
mediated by reduced intake of protein and amino acids; an
alternative explanation is that the benefits of caloric
restriction can be reversed by a higher dietary PC ratio. In
one study [34] but not another [37], methionine improved
fecundity without shortening lifespan. The effects of
interventions that delay aging such as caloric restriction
[38] and various phytochemicals and pharmaceutical
agents including resveratrol and rapamycin [36, 39, 40]
also depend upon the underlying ratio of macronutrients.
For example, resveratrol increases lifespan in mice on high
fat diet [41] yet not in mice on standard chow diet [42].

The PC ratio has been observed to influence various
measures of reproductive fitness, such as egg laying [21-26,
34, 35, 43, 44]. Overall, within studies the PC ratios that
optimized lifespan were lower than those that optimized
reproductive fitness. It has been suggested that protein is the
key macronutrient required for reproduction, while carbo-
hydrates are more important for somatic maintenance and
consequently lifespan [24, 25]. Animals will preferentially
choose diets with sufficient calories and protein to optimize
reproduction and hence evolutionary fitness [21]. When
faced with high protein diets that are harmful animals can
simply reduce food intake. When faced with low-protein
diets which are insufficient for reproduction, animals can
increase food intake to achieve their protein target [16]. If
the PC ratio and/or protein are too low to support repro-
duction or survival of offspring, then presumably there is
evolutionary advantage in allocating resources towards
somatic maintenance and survival, until the available diet
improves [24, 25]. A very low PC diet maintained over a
lifetime will be associated with increased lifespan at the
cost of reduced reproductive output.

There are methodological issues which need to be con-
sidered when interpreting dietary interventions in flies [19].
Altering dietary protein and carbohydrates will lead to
compensatory feeding therefore it is critical to accurately
evaluate food intake before making conclusions about the
effects of macronutrient intake on outcomes. Many of the
caloric restriction experiments in flies rely on diluting the
diet with water. It has been reported that the lifespan of flies
with high concentration diets can be increased by providing
supplementary water, perhaps suggesting that concentrated
diets can reduce lifespan through dehydration; the benefits
of caloric restriction observed in flies might simply reflect
adequate water supply [45]. In the studies using the

@ Springer

Geometric Framework to evaluate multiple diets with
dietary dilution, this dehydration effect is unlikely since the
diluted diets were associated with a shorter lifespan and in
many studies, free water was made available separately to
the diet [21-26]. It is also important that multiple diets are
tested so that the entire dietary landscape can be assessed.
This is particularly relevant when considering the effects of
caloric restriction and pharmaceutical agents that have
different effects depending upon the background PC ratio.
Another issue is that many of the studies involve altering the
concentration of yeast as a surrogate for protein, however,
yeast is more than just protein and incorporates carbohy-
drates and a range of other substrates that could influence
lifespan. This is unlikely to explain the effects PC on
longevity and fecundity, because in a study in which yeast
was replaced by a mixture of amino acids, the same patterns
of response as seen with yeast-based diets was observed
[23]. Tt should be acknowledged that laboratory studies of
lifespan and nutrition do not take into account the additional
stresses of a natural environment that might influence
nutritional requirements including the need to respond to
infections, injuries, foraging and cold [46].

Rodents

There has only been one study using the Geometric
Framework to study aging and health outcomes in rodents
[27]. In this study, mice were ad libitum-fed one of 25 diets
varying in protein, carbohydrate and fat, with energy
content varied through the addition of non-digestible fibre.
In mammals, the third macronutrient fat also needs to be
taken into account unlike the experimental insect systems
that have been used where fat is not a major source of
energy. One cohort of mice was sacrificed at 15 months of
age to evaluate health and aging mechanisms, while the
rest were maintained to study lifespan. Mice on the LPHC
diets had the longest lifespans. Calorie intake had a neg-
ligible effect on lifespan and in fact the lowest energy
intakes tended to be associated with shorter lifespans
(Fig. 1h). LPHC diets were also associated with improved
lipids, glucose tolerance and insulin. Further analysis
showed that low protein intakes associated with LPHC
diets were associated with a younger profile of splenic
lymphocytes (CD4, CD8, CD4 memory and naive cells),
similar to benefits seen with standard caloric restriction
[47]. Maximal longevity was achieved on diets containing
a P:C ratio of 1:13 in males and 1:11 for females which
were lower than those which optimized reproductive fitness
(1:1 for testes mass, epididymal sperm counts, uterine mass
and 3:1 for ovarian follicle number) [48]. The relationships
between PC ratio and outcomes seen in mice are similar to
those seen in insects. Dietary fat appeared to have minimal
effect on outcomes in mice. This suggests that the effect of
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Fig. 2 Physical activity and
cold environmental temperature
might reverse the weight gain
associated with LPHC diets and
act synergistically to increase
lifespan. These effects might be
mediated via countering effects
of LPHC diets on mitochondrial
uncoupling

low PC diet

| N cardiometabolichealth

»| {' mTOR activation }

> M lifespan

- \
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physical activity I

| cold temperature

dietary PC on lifespan and reproduction is strongly con-
served even in those species where fat has become a
significant source of energy.

There are also studies that have investigated the effects
of a smaller number of diets varying in protein content on
aging and age-related health but not using the Geometric
Framework methodology (Table 2). In a prescient study
undertaken in 1931, Slonaker performed lifespan experi-
ments in rats restricted to one of five diets varying in
protein, fat and carbohydrate. Rats on the second lowest
PC ratio (1:5) lived the longest and also demonstrated
protein leverage, having increased food intake and body
weights. Simulation modelling of the data and generation
of a response surface revealed a similar pattern to that
seen in more recent Geometric Framework and lifespan
studies (Fig. 1i). The remainder of studies on rodents are
heterogeneous and generally only compared two or three
protein concentrations and often in parallel with standard
caloric restriction interventions. The results of these are
mixed with some early studies in rats finding increased
lifespan on highest protein diets [49-51]. Notably these
were usually strains of rats that become obese as they age
in captivity (i.e. Wistar and Sprague-Dawley rats). Most
of the other studies reported that lower protein diets are
associated with an increase in lifespan compared with
higher protein diets in both mice [27, 52-54] and rats
[55-58] (see Fig. 2).

Nakagawa et al. used a meta-analytic method to evaluate
and compare the role of calories versus proteins on lifespan
in 145 dietary restriction studies across 36 species [59].
They found that the lifespan effects of caloric restriction
were greatest in females and in model laboratory species
(yeast, nematodes, fruit flies and rodents). The proportion
of protein intake, which ranged from O to 90 %, had a
greater impact than caloric intake on life extension. The
relationship between the hazard ratio for survival versus
percentage protein in the diet was J-shaped with maximum
survival occurring at about 30 % protein intake.

@ Springer

There have been some attempts to tease out which
components of a low-protein diet increase lifespan in
rodents. Low-methionine and low-tryptophan diets are
associated with increased lifespan [60—63], while veg-
etable (soy) protein led to a greater lifespan than animal
based (casein) protein [64]. In the Geometric Framework
study of 25 diets, it was concluded that branched chain
amino acids in protein might be important because mice on
the LPHC diets had low circulating branched chain amino
acids which correlated with decreased activation of hepatic
mTOR [27]. Inhibition of mTOR, for example by rapa-
mycin, is associated with increased lifespan [65]. Branched
chain amino acids might also influence aging by increasing
histone acetylation, because leucine catabolism increases
acetic acid, and hence acetyl-CoA [66]. Histone de-acety-
lation, for example by resveratrol and other sirtl agonists
such as SIRT2104, is associated with increased lifespan in
various animal models [67, 68]. Branched chain amino
acids could explain some of the lifespan benefits [69] of
vegetarian versus animal-based diets because animal-based
proteins tend to be higher in branched amino acids.

Some short term studies (over 2-3 months in young
rodents) have been undertaken to examine the effects of
different PC ratios on outcomes, mostly cardio-metabolic,
that might influence aging. In Wistar rats, 53 % dietary
casein was associated with better insulin sensitivity and
lower insulin levels than 14 % casein [70] while con-
versely in C57Bl/6 mice, 18 % dietary protein had better
insulin sensitivity and cardiovascular function than 31 %
dietary protein. ApoE ™'~ mice maintained on a diet con-
taining 45 % protein and 12 % carbohydrates for 12 weeks
developed more severe atherosclerosis than those on a diet
containing 15 % protein and 43 % carbohydrates [71]. In a
recent study ad libitum-fed and caloric restricted C57BI1
mice were maintained on 5, 33 and 60 % protein diets (PC
1:15, 1:1.4, 3:1) for 8 weeks. The 5 % ad libitum diet was
equivalent to the caloric restricted diets in terms of
improvements in insulin, glucose, lipids and insulin
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sensitivity, despite increased food intake [72]. In a similar
study in C57BI1 mice, 3 months of caloric restriction and
protein restriction (20, 16, 14, 12 %, with restricted food
intake, PC 1:3.5, 1:4.6, 1:5.4, 1:6.5) were compared. The
protein restricted mice had more body fat without any
effect of protein on insulin, glucose tolerance or markers of
oxidative stress [73-75]. The reasons for the differences
between these two mouse studies are not clear. Mitchell
et al. [73-75] restricted total energy intake in the LPHC
diets while in our study [27], only the mice on the LPHC
diets with the highest energy intakes achieved health and
lifespan benefits. Mitchell et al. show found that mice
under protein restriction consumed ~ 0.38 g/day of pro-
tein, whereas the mice showing health benefits in our study
consumed less than half of this amount of protein at
~0.13 g/day. In another study of mice maintained on 5
different PC ratios for 12 weeks, LPHC diets were found to
be associated with increased body temperature, increased
white and brown adipose tissue and a reduction of
uncoupling protein-1 (UCP1) and peroxisome proliferative
activated receptor gamma coactivator 1 alpha (PGC-1o)
expression in brown adipose tissue [76]. Deiodinase
iodothyronine type II (DIO2) expression was increased
which might explain the increase in body temperature
given that UCP1 was down-regulated.

Humans

There are numerous trials, observational studies and
reviews examining high and low carbohydrate or protein
diets and their effects on obesity and metabolic outcomes,
with conflicting conclusions. These give limited insights
into the impact on human health of the ratio of dietary
protein to carbohydrates because the effect of only one of
the three macronutrients is usually reported. In a meta-
analysis of 17 cohort studies of dietary carbohydrates, there
was an association between low dietary carbohydrates and
increased mortality [77]. Likewise, a meta-analysis of 19
clinical trials of low carbohydrate diets found no car-
diometabolic or weight loss benefits compared with
balanced diets [78]. A recent study suggested that low-
protein diets might delay aging and cancer via decreased
IGF-1 levels [9, 74]. These studies and reviews of the
single macronutrient literature are consistent with the
conclusion that LPHC diets are healthful in humans. On the
other hand, low-carbohydrate high-protein (LCHP) diets
have been advocated for weight loss and may be effective
in the short term [79]. A systematic review of 13 clinical
trials concluded that LCHP diets are as effective or more
effective as low fat diets in the management of obesity [80]
while another concluded that LCHP diets are effective in
improving glycaemic control in people with diabetes
mellitus [81].

@ Springer

Table 4 Comparison of outcomes of studies in animals of ad libitum
LPHC diets and standard caloric restriction regimens

Low PC diet with
ad libitum access
to food

Caloric restriction
with reduced
amounts of food

Outcome

Food intake
Body weight
Body fat
Temperature
Activity

«—

Insulin
LDLc
HDLc

Mitochondrial number

—><——><—<—I—>—>—>—>
D D e = > e e — —

Mitochondrial free
radicals

PGC-1a

Uncoupling protein

— — —

mTOR phosphorylation
AMPK phosphorylation 21
Reproductive fitness l

Lifespan i "

<——><—I—>

Data on low PC diets are usually limited to only one or two studies
(from [4, 27, 72-76, 110, 127, 128])

There are a number observational studies explicitly eval-
uating the PC ratio and its effect on human lifespan and health
outcomesrelevanttoaging (Table 3). These canbedifficultto
interpret because of the standard problem of residual con-
founding and the limited capacity of observational studies to
establish efficacy of interventions. With regards to PC ratio,
there are particular issues related to the health effects of ani-
mal-versus plant-based proteins, and high versus low
glycaemic index carbohydrates which are likely to influence
health outcomes independent of the PC ratio.

In a meta-analysis primarily focussing particularly on
protein intake and health, Pedersen et al. [82] reviewed the
effects of LCHP diets. They concluded that the data are
suggestive of a relationship between increased all-cause
mortality and longterm LCHP diets. There was also a
relationship between the risk of type 2 diabetes mellitus
and long-term low-carbohydrate high-protein, high fat
diets. A list of some of the cohort studies specifically
investigating PC ratios is shown in Table 3. The majority
of the eight studies grouped carbohydrate and protein
intakes into deciles then generated a score based on adding
the decile ranks so that participants with high ‘low-carbo-
hydrate’ scores (or similar) had low-carbohydrate high-
protein intakes, and vice versa. Four studies showed an
increase in mortality with LCHP diets [69, 83—-85], while
one had no effect [86]. Two studies showed an increase in
type 2 diabetes mellitus [87, 88] and one an increase in
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cardiovascular disease [89]. Where reported, animal based
protein and diets had the worst effects, while vegetable-
based proteins and diets nullified or reversed the trends.
Such data would be amenable for analysis using the Geo-
metric Framework which would tease out the effects of all
the macronutrients, their interactions, and total calories.

Comparison of outcomes between LPHC diets
and caloric restriction diets

Caloric restriction has well established health and aging
benefits [4—7] but is not easily sustainable in humans or in
animals with free access to food, thus diets such as the
LPHC diet which involve ad libitum access to food are
more feasible as a health intervention. Therefore it is rel-
evant and important to compare the outcomes of LPHC
diets with those of caloric restriction. Of importance, the
comparison suggests similarities (mTOR inactivation) and
differences (body fat, mitochondrial biogenesis) between
the cellular mechanisms that influence aging and lifespan.
A summary of some outcomes is shown in Table 4.

One of the key differences is that LPHC diets are
associated with increased food intake and subsequent
increase in body weight and body fat compared to caloric
restriction where these are all decreased. The increase in
body fat with LPHC diets has been seen in both Drosophila
[21, 44] and mice [27, 76] and is an expected consequence
of protein leverage, present in most species including
humans [16, 90]. In a short-term study of mice it was found
that LPHC diets increase both white and brown adipose
tissue [76], which may have opposing effects on metabolic
health. Given the association between obesity and poor
health outcomes, this raises the question as to whether the
increase in body weight and body fat is an undesirable side
effect of LPHC diets, or whether it represents ‘healthy
obesity’ [91]. In a study of the effects of caloric restriction
on 41 recombinant inbred stains of mice it was found that
those mice with the least reduction in body fat were more
likely to have an increased lifespan [92]. In an older study
of Ob/Ob mice, it was found that caloric restriction
increased lifespan despite maintenance of high levels of
body fat [93]. Such studies suggest that body fat is not an
impediment to the life extending properties of nutritional
interventions.

It is also of interest that LPHC diets are associated with
reduced mitochondrial numbers (assessed by citrate syn-
thase activity [27]), increased hydrogen peroxide formation
(assessed by Seahorse method [27]) and reduced expres-
sion of the key regulator of mitochondrial biogenesis,
PGC-1la [76]. Again this is different to what is seen in
caloric restriction where there is an increase in mitochon-
drial number associated with increased PGC-1a expression

and reduced free radical production [94, 95]. Mitochondrial
dysfunction is a major feature of old age and probably has a
mechanistic role in the aging process itself [94-97].
Therefore the paradox that LPHC and caloric restriction
diets both increase lifespan but with opposing effects on
mitochondria requires explanation. The concept of ‘mito-
hormesis’ might provide a mechanism [95, 98] whereby
low levels of oxidative stress are postulated to induce
systemic defence mechanisms that are beneficial for aging,
such as endogenous antioxidant enzymes. Thus LPHC diets
might increase hydrogen peroxide production sufficient to
generate hormetic benefits, but not an excess that will lead
to mitochondrial damage. The effects of LPHC diets on
antioxidant defences are unreported. On the other hand,
caloric restriction reduces harm from excess oxidative
stress by directly improving mitochondrial function and
reducing the production of mitochondrial free radicals. The
difference between the effects of LPHC and caloric
restriction diets on mitochondria are consistent with a
recent finding in fruitflies that lifespan correlates with
mTOR activation but not mitochondrial function or free
radical production [99].

The reduction in mitochondrial number with LPHC diets
is consistent with inactivation of mTOR [100]. Caloric
restriction diets are also associated with inactivation of
mTOR but with increased expression of PGC-1a and mito-
chondrial number. Presumably with caloric restriction the
inactivation of mTOR is overridden by activation of SIRT1
and subsequent increase in PGC-1a [101]. Another expla-
nation could be via activation of AMPK. AMPK is
phosphorylated in caloric restriction which activates mito-
chondrial biogenesis [94]. The effect of LPHC diets on
AMPK has not been reported but it would be expected that
phosphorylation should be reduced secondary to the
increase in food intake. The differences in the numbers of
mitochondria between caloric restriction and LPHC diets are
unlikely to be related to the effect of energy intake on
mitochondrial fission and fusion, because it has been found
that dietary energy excess stimulates fission (an increase in
mitochondrial numbers) while deficiency stimulates fusion
(areduction in mitochondrial numbers)—this is the opposite
to the effects seen with LPHC and caloric restriction [102].

Cellular mechanisms linking LPHC diets
and ageing

Evidence for the mechanisms linking LPHC diets and age-
related health is still limited and has been reviewed else-
where [12]. By comparison, the nutrient sensing pathways
for caloric restriction have been extensively studied and
include four canonical pathways: mTOR, sirtuin, AMPK
and insulin/IGF-1/Growth hormone [6]. In our study of
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mice, we found that LPHC diets were associated with a
small reduction in phosphorylation of hepatic mTOR
which was correlated with lower circulating branched
chain amino acids and higher glucose levels [103]. Insulin
levels were lowest in the mice on the LPHC diets. The
effects of LPHC on other nutrient sensing pathways AMPK
and sirtuins have not yet been reported. Another plausible
candidate mechanism is FGF21 which has been found to be
influenced by dietary protein and has many downstream
effects on metabolism and mitochondrial function that
would be expected to influence aging [12].

Will exercise- and cold-induced weight loss
enhance or detract from the beneficial effect
of LPHC diets?

There is accruing evidence that LPHC diets in ad libitum-
fed animals are associated with increased lifespan. How-
ever there is some evidence for potentially adverse effects
of these diets related to weight gain and mitochondrial
function. On the other hand, these ‘adverse effects’ may
not be adverse at all, but in fact represent ‘healthy obesity’
and ‘mitohormesis’ and thus be beneficial. Or of course,
they may simply be neutral epiphenomena. One way to
evaluate these issues would be to combine LPHC diets with
exercise and/or cold, which are interventions that might
counter the effects of LPHC diets on body fat and
mitochondria.

Physical activity and exercise are both associated with
improved health and reduced body weight. However,
exercise has not been shown to increase lifespan, and in
association with caloric restriction may even detract from
the lifespan gains induced by caloric restriction [104]. This
is perhaps not surprising given that physical activity
requires energy input which is reduced in caloric restric-
tion. Caloric restriction has usually been reported to be
associated with increased physical activity dependent on
Sirtl [105] however recent studies reported that severe
caloric restriction in mice leads to marked physical inac-
tivity [73, 92]. On the other hand, there is the potential for
synergy between exercise and LPHC diets because exercise
might reduce the increased weight associated with LPHC
diets, while the increased food intake that occurs with
LPHC diets will provide the energy input required to sus-
tain physical activity.

Environmental temperature is another variable that
could be synergistic with LPHC diets. Experimentally
lowering body temperature extends lifespan in some but
not all species [106, 107], has been proposed as a method
for weight loss in obesity [108] and does reduce body
weight and body fat in experimental animal models [107].
Caloric restriction reduces body temperature [73] while
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LPHC diets are associated with an increase in body tem-
perature [73, 76]. Intriguingly, rats housed under a low
temperature increase intake of carbohydrates presumably
to provide energy for maintenance of temperature [109].
This led to a reduction in their dietary PC ratio which
might contribute to the longevity effects of low tempera-
ture reported in some studies.

Mechanistically, the effects of LPHC diets, exercise and
cold ambient temperature could interact via effects on
mitochondrial biogenesis, mitochondrial protein leak and
uncoupling protein-1, UCP1. UCP1 is found in brown and
beige fat where it dissipates energy as heat. UCP1
expression is increased by cold, overfeeding, exercise and
sympathomimetics [110] and has been proposed as a
potential therapeutic target for obesity [111]. Increased
lifespan has been generated by genetic overexpression of
UCPI and by chemical uncoupling with 2,4-dinitrophenol
[112-114]. In a short study in mice, UCP1 expression in
brown adipose tissue was reduced despite overfeeding with
LPHC diets, therefore interventions that increase UCP1
could be useful in combatting weight gain with compen-
satory feeding in these diets. Physical activity also
upregulates PGC-la and mitochondrial numbers [115]
which might overcome the reduction of mitochondrial
numbers [27] and down regulation of PGC-1a [76] that we
reported with LPHC diets. Physical activity increases
mitochondrial content and function even in older people
[116].

In summary, it is plausible that physical activity and
cold will enhance the lifespan benefits of LPHC diets by
reducing body weight and increasing mitochondrial num-
bers and uncoupling. If this was not confirmed, then it
would necessitate a rethinking of the current views on
obesity and lifespan, and on the role of mitochondria in

aging.

Conclusions

There is accruing evidence that LPHC diets are associated
with increased lifespan in ad libitum-fed insects and mice,
albeit at the cost of reduced reproductive fitness. This
conclusion is supported by observational data in human
populations. In undertaking this review it became apparent
that there were many diverse terminologies used to
describe diets with varying protein and carbohydrate ratios
and the effects on health and aging. Future research might
be unified by a single unique terminology—we propose the
‘CPC diet’ (correct ratio of proteins to carbohydrates; and
the Charles Perkins Centre where much of the research in
this field has been instigated). The main adverse effect of
CPC diets is increased body weight, which potentially
could be addressed by supplementing CPC diets with
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interventions such as physical activity and reduced ambient
temperature.
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