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MicroRNA regulation of macrophages in human pathologies
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Abstract Macrophages play a crucial role in the innate

immune system and contribute to a broad spectrum of

pathologies, like in the defence against infectious agents, in

inflammation resolution, and wound repair. In the past several

years, microRNAs (miRNAs) have been demonstrated to play

important roles in immune diseases by regulatingmacrophage

functions. In this review, we will summarize the role of miR-

NAs in the differentiation of monocytes into macrophages, in

the classical and alternative activation of macrophages, and in

the regulation of phagocytosis and apoptosis. Notably, miR-

NAs preferentially target genes related to the cellular

cholesterol metabolism, which is of key importance for the

inflammatory activation and phagocytic activity of macro-

phages. miRNAs functionally link various mechanisms

involved in macrophage activation and contribute to initiation

and resolution of inflammation. miRNAs represent promising

diagnostic and therapeutic targets in different conditions, such

as infectious diseases, atherosclerosis, and cancer.
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Abbreviations

M-CSF Macrophage colony stimulating factor

GM-CSF Granulocyte-macrophage colony-stimulating

factor

CSF1R Macrophage colony stimulating factor

receptor

PU.1 Purine-rich PU-box-binding protein 1

SREBP Sterol regulatory element binding protein

PRRs Pattern-recognition receptors

TLRs Toll-like receptors

IFN-c Interferon gamma

IL Interleukin

TNF Tumor necrosis factor

ROS Reactive oxygen species

NF-jB Nuclear factor-jB
LPS Lipopolysaccharide

PPARc Peroxisome proliferator-activated receptor

gamma

JAK Janus kinases

STAT1 Signal transducers and activators of

transcription 1

PI3K Phosphatidylinositol 3-kinase

Akt Thymoma viral proto-oncogene

HIF-1 Hypoxia-inducible factor-1

OXPHOS Oxidative phosphorylation

miRNAs MicroRNAs

UTR Untranslated region

C/EBP-a CCAAT/enhancer binding protein alpha

ACVR1B Activin A receptor type IB

Ets E26 Avian leukemia oncogene

Bmpr2 Bone morphogenetic protein receptor type-2

OxLDL Oxidized low-density lipoprotein

SOCS1 Suppressor of cytokine signaling 1

Bcl6 B cell leukemia/lymphoma 6

FADD Fas-associated death domain-containing

protein

Ccl2 Chemokine (C–C motif) ligand 2

Erk Mitogen-activated protein kinase 1

APOE Apolipoprotein E
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TRAF6 TNF receptor-associated factor 6

IRAK1 IL-1 receptor-associated kinase 1

IRF5 Interferon regulatory factor 5

TMEM49 Transmembrane protein 19

PDCD4 Programmed cell death 4

PTEN Phosphatase and tensin homolog

Egr2 Early growth response 2

LXR Liver X receptor

ABCA1 ATP binding cassette subfamily A member 1

ABCG1 ATP binding cassette subfamily G member 1

ACAT1 Acetyl-CoA acetyltransferase 1

CE Cholesteryl ester

Introduction

The eponymous function of macrophages is phagocytosis,

for instance, of microorganisms, foreign material, or

apoptotic cells, which plays a major role in the defence

against infectious agents, in development, tissue home-

ostasis, inflammation resolution, and wound repair [1–3].

Tissue-resident macrophages exist in various tissues

throughout the body where they are involved in immune

surveillance (for instance, in the liver, lung, brain, and

epidermis) and in tissue homeostasis through bone

remodelling and regulation of haematopoiesis [4] (Fig. 1).

In mice, most tissue-resident macrophages, including liver

Kupffer cells and alveolar, splenic, and peritoneal macro-

phages, originate from embryonic precursors and self-

renew by proliferation, whereas intestinal macrophages,

which are physiologically exposed to microbial products,

are constantly replaced by circulating monocytes [5–8]. In

addition, inflammation triggers the accumulation of

recruited macrophages derived from circulating mono-

cytes, which are released from reservoirs in blood and bone

marrow [2, 9, 10] (Fig. 1).

The differentiation of monocytes into macrophages is

morphologically characterized by an increase in cell size

and vacuole content, plasma membrane extensions, and an

increased number of mitochondria, and functionally by an

enhanced phagocytosis capacity and inflammatory activa-

tion [11, 12]. Growth factors, like macrophage colony

stimulating factor (M-CSF) and granulocyte–macrophage

colony-stimulating factor (GM-CSF), induce the produc-

tion of monocytes in the bone marrow, the differentiation

of monocytes into macrophages and the proliferation of

resident and recruited macrophages during inflammation

[13–15]. M-CSF alone is sufficient for the differentiation of

monocytes into macrophages and the surface expression of

the M-CSF receptor (CSF1R) driven by the myeloid tran-

scription factor purine-rich PU-box-binding protein 1

(PU.1) increased during the differentiation process [16–

18]. M-CSF-mediated monocyte-to-macrophage differen-

tiation is associated with the differential regulation of 2 %

of the transcripts, including cell cycle genes and genes

related to lipid and arachidonate metabolism [19]. More-

over, increased sterol regulatory element binding protein

(SREBP)-1c-dependent fatty acid synthesis promotes

phagocytosis and the development of cellular organelles,

Fig. 1 Macrophages perform important homeostatic and inflamma-

tory functions. Tissue-resident macrophages exist in various tissues

throughout the body where they maintain tissue homoeostasis, surveil

the local microenvironment, and promote the accumulation of

recruited macrophages in response to injuries or infections.

Circulating monocytes from reservoirs in blood, spleen and bone

marrow differentiate into macrophages at the inflammatory sites

where they remove invading organisms or tissue debris, and promote

inflammation resolution upon polarization into different subtypes of

activated macrophages
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such as lysosomes, the endoplasmic reticulum, and the

Golgi network during macrophage differentiation [20].

To identify pathogens, macrophages express pattern

recognition receptors (PRRs), such as Toll-like receptors

(TLRs), that recognize conserved motifs (so called patho-

gen-associated molecular patterns) on bacteria, fungi, and

viruses [21]. PRRs like C-type lectin receptors and scav-

enger receptors trigger the phagocytosis of microbes,

whereas TLRs, such as TLR2 and TLR4, may identify

specific pathogens in phagosomes, which activate sig-

nalling pathways that promote phagosome maturation and

inflammatory gene expression, and result in enhanced

killing of infectious agents through oxidative and non-ox-

idative mechanisms [22–24]. Phagocytosis and lysosomal

digestion of pathogens can lead to the presentation of

processed antigens by major histocompatibility complex

class II molecules on the surface of macrophages, which

regulates the adaptive immune response by activating

CD4? T cells [25]. Conversely, T cells derived cytokines,

such as interferon gamma (IFN-c) and interleukin (IL)-17,

greatly increase the antimicrobial activity of macrophages,

which thus become a main effector cell type of the adaptive

immune system [25]. In addition to phagocytosis, activated

macrophages promote inflammation by secreting numerous

factors, such as cytokines, proteinases, bioactive lipids,

reactive oxygen and nitrogen intermediates, and comple-

ment components [26, 27] (Fig. 1). However, the effects of

recruited macrophages are tightly controlled to prevent

tissue destruction. Moreover, a phenotypic switch of

inflammatory macrophages into a phenotype that promotes

inflammation resolution is essential for the termination of

the immune response [28].

The heterogeneity of recruited macrophages

The functional phenotypes of recruited macrophages range

between two extremes, the pro-inflammatory and anti-in-

flammatory subtype, which contribute to different stages of

the inflammatory response [29–33]. The initiation phase of

an inflammatory response is characterized by pro-inflam-

matory macrophages, which secrete inflammatory

cytokines, such as IL-12, IL-1b and tumor necrosis factor

(TNF)-a, and exhibit increased microbicidal activity

through production of reactive oxygen species (ROS) and

reactive nitrogen species [33–35]. Anti-inflammatory

macrophages play important roles in inflammation resolu-

tion and tissue repair by secreting anti-inflammatory

cytokines, such as IL-10, which suppresses the activation

of the nuclear factor-jB (NF-jB) signalling pathway [30,

34, 36]. In vitro, IL-4-mediated macrophage polarization

into an anti-inflammatory phenotype (also known as

alternatively activated or M2 macrophages) has only a

limited effect on gene expression, whereas pro-inflamma-

tory macrophage polarization (also known as classically

activated or M1 macrophages) by lipopolysaccharide (LPS)

and IFN-c stimulation alters *5 % of the macrophage

transcriptome [19]. These changes of the gene expression

during macrophage polarization are largely driven by the

activation of transcription factors, such as NF-jB and

peroxisome proliferator-activated receptor gamma

(PPARc) [37, 38]. In M1 macrophages, LPS-induced TLR4

signalling activates the NF-jB pathway and IFN-c triggers

Janus kinases (JAK)-mediated dimerization of signal

transducers and activators of transcription 1 (STAT1),

which results in increased expression of inflammatory

genes and metabolic reprogramming [38, 39]. In addition

to M-CSF-driven signalling via the phosphatidylinositol

3-kinase (PI3K)-thymoma viral proto-oncogene (Akt)

pathway, IL-4 promotes anti-inflammatory gene expression

and M2 polarization by activating STAT6 and PPARc [37].
Notably, Akt1 activation promotes a M2 phenotype,

whereas Akt2 induces a M1 macrophage subtype, indicat-

ing that the effect of Akt on macrophage polarization is

isoform-specific [40, 41]. Moreover, activation of the

transcription factors nuclear receptor subfamily 4 group A

member 1 and Krüppel-like factor 4 promotes a M2 phe-

notype [42–46]. In contrast to anti-inflammatory

macrophages, pro-inflammatory cells promote atheroscle-

rosis and a switch from an anti-inflammatory into a pro-

inflammatory macrophage phenotype in adipose tissue

increases adipocyte dysfunction and drives obesity-induced

insulin resistance, demonstrating that these macrophage

subtypes have opposing roles in chronic inflammatory

diseases [47–51]. In contrast to the effect of GM-CSF,

treatment with M-CSF promotes the differentiation into

macrophages with characteristics of the M2 phenotype,

which may be the default pathway in macrophage differ-

entiation [19].

In addition to the production and secretion of pro-in-

flammatory cytokines, energy metabolism differs

fundamentally between M1 and M2 macrophages [35].

Activation of the transcription factor hypoxia-inducible

factor-1 (HIF-1) by inflammatory activation shifts ATP

synthesis from mitochondrial oxidative phosphorylation

(OXPHOS) to aerobic glycolysis in macrophages and

results in increased production of ROS through the mito-

chondrial electron transport chain by utilizing fatty acids,

which results in increased NF-jB activation and enhanced

bactericidal activity [52–57]. Moreover, nitric oxide pro-

duction in inflammatory macrophages may contribute to

mitochondrial ROS production by inhibiting cytochrome c

oxidase [58–60]. M2 macrophages produce ATP by uti-

lizing long-chain fatty acids in OXPHOS, which promotes

an anti-inflammatory phenotype and improves macrophage

survival [53, 55, 61–63], indicating that differences in
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nutrient utilization control macrophage activation and the

phenotypic switch of macrophages during the progression

of inflammation [35].

Resolution of inflammation requires the removal of tissue

debris and apoptotic leukocytes (mainly neutrophils) by

macrophages [64]. In contrast to infectious pathogens,

apoptotic cells are engulfed through a distinct set of macro-

phage receptors, such as MERTK and CD36, which detect

phosphatidylserine exposed on the surface of apoptotic cells

[64, 65]. Induction of an M2 phenotype increases MERTK

expression and enhances the clearance of apoptotic cells by

macrophages (also known as efferocytosis) [66]. Moreover,

the removal of apoptotic cells promotes anti-inflammatory

gene expression in the efferocyte and thus contributes to

inflammation resolution [67, 68]. Defective efferocytosis

may lead to secondary necrosis of apoptotic leukocytes and

the release of intracellular antigens, such as high-mobility

group protein 1 and DNA, from the dying cells, which trigger

an inflammatory response in macrophages and promote self-

perpetuating chronic inflammation [69]. Thus, impaired

efferocytosis may contribute to chronic inflammatory dis-

eases, such as atherosclerosis and lung inflammation,

systemic lupus erythematosus, and rheumatoid arthritis [70,

71]. Therefore, tight control of the different aspects of

macrophage function is critical for the proper initiation and

resolution of inflammation.

Although the M1 and M2 macrophage polarization

concept helps to describe the immune response in a variety

of diseases, a much broader transcriptional repertoire in

macrophages exists and results in numerous functional

subtypes, including macrophages (termed Mox macro-

phages) with impaired phagocytic and reduced

inflammatory activity that develop in response to oxidized

phospholipids and CXCL4-induced macrophages (termed

M4 macrophages) characterized by reduced phagocytosis

and a pro-inflammatory cytokine profile, [32, 72–76].

In vivo, a huge diversity of conditions activate macrophages

and may result in an infinite spectrum of phenotypes driven

by a highly dynamic network of transcriptional programs

[33, 76–78]. Gene expression processes are intrinsically

noisy and the regulation of transcriptional programs by

transcription factors can result in large phenotypic variation

[79, 80]. The inherently random nature of gene expression

may greatly contribute to the enormous phenotypic

heterogeneity of macrophages [81–83]. Short, non-coding

microRNAs (miRNAs) negatively regulate gene expression

by interacting with the 30-UTR of mRNAs and thereby

participate in negative feedback loops or incoherent feed-

forward motifs that adapt gene expression networks. Thus,

miRNAs confer phenotypic robustness by regulating tran-

scriptional noise and may thereby play a crucial role in

macrophage activation [84–86].

MicroRNA biogenesis and function

miRNAs are processed in a two-step process from RNA

polymerase II-generated primary transcripts (pri-miRNAs)

characterized by a hairpin structure with a double stranded

stem [87]. In the nucleus, the endoribonucleolytic enzyme

Drosha cleaves the pri-miRNAs at the 50 and 30 end into

miRNA precursors (pre-miRNAs) that possess a 2-nt

overhang at the 30 end. After translocation of the pre-

miRNAs into the cytoplasma by GTP-dependent binding to

Exportin 5, the RNase III endonuclease Dicer recognizes

the 2-nt overhang and cleaves the pre-miRNAs near the

terminal loop of the hairpin into 21–25 nt long miRNA

duplexes. Dicer assembles with RNA binding proteins, like

TAR RNA binding protein or protein activator of inter-

feron induced protein kinase EIF2AK2 (also known as

PACT), and Argonaute (AGO) proteins to form a RNA-

induced silencing complexes (RISCs)-loading complex,

which mediates the transfer of miRNA duplexes from

Dicer to AGO proteins in an ATP-dependent manner [88,

89]. In contrast to siRNA duplexes, which are separated by

AGO2-mediated cleavage of one strand of the duplex

(called slicing), the central mismatches in the miRNA

duplexes prevent slicing [90]. Alternatively, the separation

of the miRNA duplexes occurs through a process called

unwinding in which the N-terminal end of the AGO pro-

teins wedges into the miRNA double strand, presumably

due to ATP-independent conformational change of the

AGO protein, and thereby releases one of the strands (the

passenger strand) from the RISC [91]. The mature RISC, a

complex of an AGO protein and a single-stranded miRNA,

is capable of target RNA binding. The first monophosphate

and nucleotide of the 50 end of the miRNA is anchored to

the AGO proteins, which results in the presentation of the

nucleotides 2–5 to recognize complementary RNA

sequences. The canonical target sites interact through

Watson–Crick complementary bases with the nucleotides

2–8 at the 50 end of miRNAs (termed the ‘‘seed’’ sequence)

and are usually located at the beginning or the end of long

30 untranslated region (UTR) in the target mRNA. To

silence the expression of the target mRNA, GW182 family

proteins are recruited to the RISC, and inhibit mRNA

translation or promote mRNA deadenylation and degra-

dation by the exonuclease XRN1 [92]. Due to the short

miRNA recognition sequence, an individual miRNA can

target usually more than one mRNA and, conversely, one

mRNA transcript contains binding sites for multiple miR-

NAs [93]. Therefore, mRNAs or other RNA molecules,

such as long non-coding RNAs, which contain the same

miRNA target site compete with each other for the binding

to the same miRNA and thus one miRNA target can reg-

ulate the expression level of the competing endogenous
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RNAs in trans [94–96]. Of note, in quiescent cells, not all

expressed miRNAs bind to targets and target-free miRNAs

are stored in small AGO2 complexes until cells are acti-

vated [97, 98].

Considering the regulatory function of miRNAs in the

cellular response to environmental fluctuation, miRNAs are

essential regulatory elements for macrophage phenotype

reprogramming in response to various inflammatory stimuli

[99–102]. In this Review, we will discuss how miRNAs

regulate the macrophage phenotype and function during an

inflammatory response.

Role of microRNAs in recruited macrophages

MicroRNAs regulate monocyte-to-macrophage

differentiation

A large number of miRNAs are differentially regulated

during the differentiation of monocytes into macrophages,

for example, miR-24, -30b, -142-3p, and 199a-5p are

down-regulated in this process [103, 104] (Fig. 2).

Although miR-24, -30b and -142-3p have different seed

sequences and are transcribed from different genes, all

three miRNAs impair macrophage differentiation and

activation. Overexpression of miR-24, miR-30b, or miR-

142-3p in macrophages inhibits phagocytosis, reduces the

expression of the mannose receptor (CD206) and inflam-

matory cytokines, such as IL-12 and TNF-a, and limits

activation of PKC and NF-jB [103, 105, 106]. Similarly,

PU.1-mediated down-regulation of miR-199a-5p promotes

macrophage differentiation and proliferation by

derepressing the type I serine/threonine kinase receptor of

the transforming growth factor beta family activin A

receptor type IB (ACVR1B) (also known as ALK4) and the

CCAAT/enhancer binding protein alpha (C/EBP-a)
expression [104, 107]. ACVR1B mediates signalling of the

activin/inhibin/nodal pathway by heterodimerization with

the type II receptors ACTRIIA/B and phosphorylation of

SMAD2/3 proteins [107], and promotes activin A-induced

pro-inflammatory macrophage polarization [108].

Although these miRNAs regulate monocyte differentiation

in vitro, there is a lack of studies to demonstrate their roles

in vivo.

Expression and secretion of microRNAs

in macrophage polarization

miRNAs are essential regulatory elements of macrophage

polarization. Depletion of miRNAs by deletion of the Dicer

gene leads to a marked reduction in the expression of pro-

inflammatory genes, such as IL-6, TNF-a and IL-12, in

macrophages stimulated with various TLR agonists [109].

Moreover, miRNA transcription is differentially regulated

in M1 and M2 macrophages. MiR-155 and miR-147 are

selectively up-regulated in M1 macrophages stimulated by

LPS and IFN-c [110–112], whereas the expression of

miRNAs, like miR-125b-5p and miR-99a-5p, is increased

in IL-4-treated macrophages [76]. Interestingly, IL-4

treatment also induces exosomal secretion of those miR-

NAs for which the number of mRNA targets decreased

owing to transcription changes during alternative macro-

phage activation. For example, down-regulation of the

miR-218-5p target Lyz2 in IL-4-stimulated macrophages

Fig. 2 Role of miRNAs in monocyte-to-macrophage differentiation

and macrophage polarization. Differentiation of monocytes to

macrophages is inhibited by miR-199a-5p, miR-24, miR-30b and

miR-142-3p. M1 macrophage polarization requires miR-155 and let-

7a/f, but is inhibited by miR-146, miR-223 and let-7c/e. Although

miR-21 has been reported to play both pro- and anti-inflammatory

roles, the latter role is more prominent. In addition, miR-142-5p and

let-7c promote M2 macrophage polarization. In contrast to let-7a,

miR-155 and miR-142-3p inhibit macrophage proliferation. miR-155

has both pro- and anti-apoptotic roles, whereas miR-21 and let-7e

negatively regulate macrophage apoptosis
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causes enrichment of miR-218-5p in exosomes, whereas

miR-16-5p, which does not target Lyz2, is not enriched in

exosomes [113]. Thus, the exosomal secretion of miRNAs

may represent a mechanism by which macrophages rapidly

adapt their miRNA pool to changes of the transcriptome.

Moreover, exosomal miRNAs secreted from macrophages

may be transferred to other types of cells, like endothelial

cells, and suppress mRNA targets in the recipient cell

[113]. Conversely, anti-inflammatory miRNAs, such as

miR-10a, are transferred from endothelial cells to mono-

cytes through endothelial cell-derived extracellular

vesicles, thereby repressing monocyte inflammatory acti-

vation [114]. Although secretion and uptake of miRNAs

via microvesicles may contribute to macrophage polariza-

tion, their roles in the development of macrophage

subtypes in vivo are currently incompletely understood.

The pro-inflammatory M1 microRNA: miR-155

A high miR-155 expression level is characteristic for M1

macrophages [110–112] (Fig. 3). LPS and mildly oxidized

low-density lipoprotein (moxLDL) bind to TLR4 and

increase miR-155 expression by activating the transcription

factors E26 avian leukemia oncogene 2 (Ets2) and NF-jB,
which bind to the promoter of miR-155 host gene BIC

[115–118]. Moreover, IFN-c up-regulates miR-155 by

activating the JAK/STAT1 pathway in epithelial cells and

tumour cells [119–121]. The different members of the Akt

family have opposing effects on miR-155 expression. The

M2-kinase Akt1 and the M1-kinase Akt2 down-regulates

and up-regulates the expression of miR-155 in macro-

phages, respectively [40, 122]. Notably, miR-342-5p is a

positive regulator of miR-155 expression level by

suppressing the expression of Akt1 in M1 macrophages

[102]. By contrast, the endogenous competitive RNA bone

morphogenetic protein receptor type-2 (Bmpr2) prevents

targeting of Akt1 by miR-342-5p in unstimulated macro-

phages. The transcriptional suppression of Bmpr2 during

M1 polarization increases the availability of miR-342-5p

and thereby leads to increased targeting of Akt1. Therefore,

the competition between Bmpr2 and Akt1 for the binding

to miR-342-5p regulates the expression of miR-155

(Fig. 3). Additionally, the YY1/histone deacetylase2/4

complex and the anti-inflammatory transcription factor

Kruppel-like factor 2 transcriptionally repress miR-155 in

oxLDL-treated macrophages [117, 123].

In vitro, Mir155 knockout and inhibition of miR-155

reduce the expression level of pro-inflammatory mediators,

such as TNF-a, chemokine (C–C motif) ligand 2 (Ccl2)

and IL-6 in macrophages treated with LPS or moxLDL and

IFN-c [110, 118, 122, 124]. Overexpression of miR-155

increases lipid uptake and ROS production in macrophages

treated with oxLDL [117]. In addition, pro- and anti-

apoptotic effects of miR-155 have been described. miR-

155 inhibits oxLDL- and DNA damage-induced apoptosis

of macrophage [125, 126]. By contrast, miR-155 is

required for ESAT-6-induced apoptosis of macrophages

[127]. However, miR-155 has no effect on the apoptosis of

lesional macrophages in atherosclerosis and basal macro-

phage apoptosis [110]. These controversial effects of miR-

155 on macrophage apoptosis might be related to distinct

roles of miR-155 targets in the different apoptosis sig-

nalling pathways studied.

Several targets of miR-155 have been identified in

macrophages, including suppressor of cytokine signaling 1

(SOCS1) and B cell leukemia/lymphoma 6 (Bcl6), which

Fig. 3 miR-155 and miR-342-5p form a functional pair to regulate

macrophage activation. Bone morphogenetic protein receptor type-2

(Bmpr2) and thymoma viral proto-oncogene 1 (Akt1) compete for

binding to miR-342-5p in resting macrophages. Transcriptional down-

regulation of Bmpr2 in activated macrophages promotes the targeting

of Akt1 by miR-342-5p and thereby up-regulates miR-155. Whereas

basal miR-155 expression reduces macrophage proliferation through

targeting of Csf1r, increased miR-155 levels in activated macro-

phages promote inflammatory gene expression and inhibit

efferocytosis by targeting Bcl6
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mediate the pro-inflammatory effects of miR-155 [110,

124]. Notably, disrupting the interaction between miR-155

and SOCS1 by mutating the miR-155 target site in the 30-
UTR of SOCS1 in mice impairs the immunological func-

tions of T cells in vivo, suggesting a critical role of this

single miRNA-mRNA interaction [128]. Additionally,

miR-155 represses efferocytosis via targeting Bcl6, an

inhibitor of the efferocytosis suppressor ras homolog gene

family, member A [99] (Fig. 3). Several targets, including

Fas-associated death domain-containing protein (FADD)

and Trp53inp1 may mediate the anti-apoptotic role of miR-

155, whereas SOCS1 mediates the pro-apoptotic role of

miR-155 [125–127]. Targeting HMG-box transcription

factor 1 contributes to the effect of miR-155 on foam cell

formation after oxLDL treatment [117]. Furthermore, miR-

155 inhibits macrophage proliferation by targeting Csf1r

[99, 129].

miR-155 expression is increased in both murine and

human lesions during the development of atherosclerosis,

probably due to the existence of IFN-c and modified LDL

in the lesions which could activate the lesional macro-

phages [99, 110, 118]. miR-155 promotes CCL2 level by

down-regulating Bcl6 in lesional macrophages, thereby

enhancing the progression of atherosclerosis [110, 118]. By

contrast, hematopoietic miR-155 inhibits the development

of early atherosclerosis [130]. These controversial findings

may be due to a stage-dependent effect of miR-155 during

the progression of atherosclerosis, because increased miR-

155 levels in macrophages from advanced lesions is asso-

ciated with enhanced inflammation [99], suggesting a

phenotypic switch from M2- to M1-like macrophages. In

addition, miR-155 represses Csf1r expression, reduces

lesional macrophage content and proliferation and

decreases lesion size at the early stage of atherosclerosis

[99]. However, in advanced lesions, the role of miR-155-

regulated Csf1r expression in lesional macrophage accu-

mulation is limited owing to the down-regulation of

M-CSF. On the other hand, targeting of Bcl6 by miR-155

fosters atherosclerosis due to impaired macrophage effe-

rocytosis and necrotic core formation at the late stage [99].

The stage-dependent role of miR-155 suggests that block-

ing the interaction between miR-155 and Bcl6 might be a

potential therapeutic strategy for atherosclerosis.

The anti-inflammatory M2 microRNA: miR-223-3p

miR-223-3p is evolutionary conserved among various

species and primarily expressed in hematopoietic cells

[131]. Although its expression is down-regulated during

monocyte-to-macrophage differentiation [132], miR-223-

3p is still one of the most abundant miRNAs in macro-

phages [112, 133]. Moreover, miR-223-3p is highly

enriched in microvesicles released from GM-CSF-treated

human monocytes and vesicle-mediated transfer of miR-

223-3p to recipient myeloid cells increases macrophage

differentiation and survival [134]. In contrast to macro-

phage differentiation, miR-223-3p expression increases

continuously during granulopoiesis and plays an essential

role in the regulation of granulocyte differentiation and

function by modestly suppressing hundreds of targets [135,

136]. Knockout of the Mir223 gene in mice increases the

number of immature and hyperactive neutrophils in the

circulation, while the proportion of monocytes in the

peripheral blood and spleen is not altered [137]. Myeloid-

specific transcription factors, such as PU.1 and C/EBP-a,
induce the expression of miR-223-3p [133]. Accordingly,

IL-4 stimulation induces miR-223-3p expression in murine

macrophages in a PPARc-dependent manner [137, 138],

whereas LPS treatment down-regulates the expression level

of miR-223-3p [137, 139].

The functional effects of miR-223-3p in macrophages

are characterized by reduced expression of inflammatory

cytokine, e.g. IL-1b, and of PPARc in IL-4-treated mac-

rophages [137]. In addition to the effect on Il1b mRNA

expression, miR-223-3p limits IL-1b protein expression by

targeting the inflammasome component Nlrp3 in macro-

phages [140, 141]. Overexpression of miR-223-3p can also

reduce the expression of IL-6 and IL-1b in LPS-treated

murine macrophages [137, 139]. Several targets of miR-

223-3p have been identified in macrophages, including the

Pbx/knotted 1 homeobox (Pknox1, also known as Prep-1),

RAS p21 protein activator (GTPase activating protein) 1

(RASA1), nuclear factor of activated T cells 5 (NFAT5),

STAT3, and IKKa, which might mediate the anti-inflam-

matory effects of miR-223-3p [132, 137, 139]. In murine

macrophages, miR-223-3p-mediated targeting of NFAT5

and RASA1 results in reduced LPS-induced M1 polariza-

tion and enhanced IL-4-mediated M2 polarization [138],

and targeting of STAT3 has been implicated in the regu-

lation of IL-6 and IL-1b by miR-223-3p [139]. Pknox1

mediates the up-regulation of the anti-inflammatory cyto-

kine IL-10 in macrophages that engulf apoptotic cells [68];

however, Pknox1 also increases the expression of IL-1b in

LPS-treated (but not IL-4-treated) macrophages [137].

Thus, targeting of Pknox1 may explain the effects of miR-

223-3p on IL-1b production in inflammatory macrophages.

In contrast to the Pknox1 and RASA1 binding sites, the

validated murine Nfat5 and Stat3 binding sites for miR-

223-3p are not conserved in human [139].

The anti-inflammatory effects of miR-223-3p on mac-

rophages may play a role in the pathogenesis of

tuberculosis, because monocytes and monocyte-derived

macrophages from patients with tuberculosis express

higher levels of miR-223-3p and are less inflammatory than

those from healthy subjects [142]. In mice, knockout of the

Mir223 gene in bone marrow cells increases adipose tissue
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inflammation and insulin resistance, presumably owing to

the shift of the adipose tissue macrophage phenotype

towards an inflammatory M1 subtype [137]. Moreover,

activation of the Csf1r/mitogen-activated protein kinase 1

(Erk)/Ets signaling pathway increases the expression of

miR-223-3p in oncogenic M2-type tumor-infiltrating

myeloid cells (TIMs) [143]. Conditional knockout of Dicer

in myeloid cells, which leads to down-regulation of miR-

223-3p in TIMs, reduces metastatic tumor burden, sug-

gesting that the anti-inflammatory effects of miR-223-3p

on macrophages may promote cancer [143].

The anti-inflammatory M1 microRNA: miR-146

The miR-146 family includes two members, miR-146a and

miR-146b, which are encoded by genes located on different

chromosomes. Although the sequences differ by two

nucleotides, the seed sequences of miR-146a and miR-

146b are identical, indicating that these two miRNAs target

the same genes. LPS-induced TLR activation and stimu-

lation with pro-inflammatory cytokines, like IL-1b and

TNF-a, up-regulate the expression of miR-146a via pro-

inflammatory NF-jB signaling, whereas Akt2 represses

miR-146a expression in macrophages [111, 144, 145].

Moreover, apolipoprotein E (APOE) promotes miR-146a

expression by up-regulating the transcription factor PU.1

[146]; however, the mechanism by which APOE induces

PU.1 expression is unclear. In a negative feedback loop, the

up-regulation of miR-146a results in endotoxin tolerance

and limits IL-1b-induced inflammatory activation by

repressing TNF receptor-associated factor 6 (TRAF6) and

IL-1 receptor-associated kinase 1 (IRAK1) [144, 147].

Moreover, the pro-inflammatory effect of AKT2 is medi-

ated by the downregulation of miR-146a and consequently

the derepression of TRAF6 and interferon regulatory factor

5 (IRF5) [145]. In addition, miR-146a-mediated suppres-

sion of NOTCH1 decreases IL-6 production in

macrophages by inhibiting LPS-induced NOTCH sig-

nalling [148–150]. These studies indicate that miR-146a

plays an anti-inflammatory role by regulating a negative

feedback loop comprising the TLR4-NF-jB pathway

in vitro (Fig. 2).

In mice, knockout of the Mir146a gene results in hyper-

responsivity to LPS owing to increased production of TNF-

a, IL-6 and IL-1b in bone marrow-derived macrophages

[151]. Moreover, the effect of miR-146 treatment has been

studied in several mouse models of inflammatory diseases.

In hyperlipidemic mice, treatment with miR-146a mimics

reduces Ly-6Chigh monocytosis, the lesional macrophage

number, the macrophage inflammatory response, and

atherosclerosis [146]. Systemic delivery of miR-146a

encapsulated in polyethylenimine nanoparticles inhibits

renal fibrosis and macrophage infiltration in the kidney by

inhibiting pro-fibrotic and inflammatory signaling path-

ways following unilateral ureteral obstruction [152]. The

administration of miR-146a and miR-146b mimics pre-

vents liver graft injury probably by reducing NF-jB-
mediated inflammation through targeting TRAF6 and

IRAK1 in Kupffer cells [153]. Taken together, delivery of

miR-146 mimics may be a therapeutic approach to limit

inflammation by negatively regulating TLR4-NF-jB sig-

naling in macrophages.

The anti-apoptotic and anti-inflammatory

M1- and M2 microRNA: miR-21

The human pri-miR-21 is located immediately downstream

of the vacuole membrane protein-1 gene [also known as

transmembrane protein 19 (TMEM49)] and transcription-

ally regulated by its own promoter in the 10th intron of the

TMEM49 gene [154]. Processing of the pre-miR-21 results

in two mature miRNA, miR-21-5p (miR-21) and miR-21-

3p (miR-21*). While the human miR-21 sequence is evo-

lutionary highly conserved between species, miR-21* is

mainly expressed in humans and rodents. In contrast to

most miRNAs, miR-21-5p is overexpressed in several

cancer cell types [155, 156] and promotes cancer devel-

opment mainly by inhibiting apoptosis but also by

increasing proliferation [157–160]. LPS treatment induces

miR-21 expression in murine macrophages mediated by the

TLR adaptor protein MyD88 and downstream activation of

NF-jB signalling [161]. In M2-macrophages, stimulation

with IL-10 and CSF1R-induced PI3K and ERK1/2 sig-

nalling up-regulate miR-21 expression [112, 162].

Moreover, engulfment of apoptotic cells increases miR-21

expression in macrophages [163].

Overexpression of miR-21 promotes IL-10 and represses

IL-1b expression in macrophages [161–163], indicating an

anti-inflammatory role of miR-21. In line with its anti-

apoptotic effects, miR-21 inhibits glucose-induced macro-

phage apoptosis by blocking caspase3 activation [164]. The

anti-apoptotic and anti-inflammatory effects of miR-21

(Fig. 2) are mediated by suppression of programmed cell

death 4 (PDCD4) or phosphatase and tensin homolog

(PTEN) [161, 162, 164–168]. Whereas PDCD4 promotes

apoptosis via inhibiting p53 transcription or the translation

of anti-apoptotic proteins, PTEN induces apoptosis by

blocking the pro-survival PI3K/Akt pathway [169, 170]. In

addition, PDCD4 is required for LPS-induced NF-jB
activation and IL-6 production, whereas PTEN can pro-

mote both pro- and anti-inflammatory macrophage

activation maybe due to the diverse contribution of the Akt

isoforms to macrophage polarization [40, 161, 162, 171,

172]. Although both miR-21 and miR-21* are up-regulated

in human atherosclerotic plaques [173, 174] and the cir-

culating miR-21 levels are reduced in patients with
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unstable plaques [173], the role of the differential regula-

tion of miR-21 in macrophages is currently incompletely

understood in vivo.

The chameleon-like let-7 microRNA family:

c and e versus a and f

In humans, the let-7 miRNA family contains 13 members

(let-7a-1/-2/-3, let-7b, let-7c, let-7d, let-7e, let-7f-1/-2, let-

7g, let-7i, and miR-98) that share the same seed sequence.

The let-7 miRNAs are expressed from nine different

chromosomes and individual let-7 family members, such as

let-7a and let-7f, are encoded in multiple genomic loci

[175]. Human let-7a is expressed from three paralogs into

the precursor miRNAs let-7a-1–let-7d (which includes let-

7a-1, let-7f-1, and let-7d), let-7a-2, and let-7a-3/let-7b

[176, 177]. Let-7 miRNAs are abundantly expressed in

various cell types, including macrophages. LPS stimulation

regulates the expression of the various let-7 miRNAs dif-

ferently. In murine macrophages, LPS treatment down-

regulates the expression of let-7a and let-7c (through

polycomb repressor complex 2-mediated histone

trimethylation), and up-regulates let-7e expression by

activating Akt1 [122, 178–180]. By contrast, in human

macrophages, LPS increases the expression of let-7a and

decreases the expression of let-7f [181, 182]. Moreover,

infection of macrophages with Salmonella typhimurium

and Mycobacterium tuberculosis down-regulates the

expression of several let-7 family members, such as let-7a

and let-7f, presumably mediated by LPS and mycobac-

terium-derived ESAT-6, respectively [179, 183]. These

in vitro results demonstrate that the regulation of the

individual let-7 family members varies in macrophages and

also differs between humans and mice.

The effect of let-7 family members on the macrophage

activation is not uniform. Interestingly, the 30-UTRs of the
pro-inflammatory IL-6 and the anti-inflammatory IL-10,

which both contain only few conserved miRNA binding

sites, are both targeted by let-7a and let-7d [179].

Accordingly, Salmonella infection post-transcriptionally

increases the expression of these cytokines in macrophages

presumably by down-regulating let-7 family members. In

LPS-treated murine macrophages, the up-regulation of let-

7e suppresses not only the expression of IL-6, but also the

expression of several other pro-inflammatory cytokines,

such as TNF-a, CCL2, and CCL3, clearly demonstrating an

anti-inflammatory role of let-7e [122]. This more general

anti-inflammatory effect of let-7e may be mediated by the

suppression of TLR4 through interaction of let-7e with a

non-canonical binding site in the murine TLR4 30-UTR
containing three G:U wobbles in the seed match [122].

Although let-7i can also target human TLR4 through a

canonical binding site that is not conserved in mice, it is

unclear whether the interaction of let-7i with TLR4 plays a

role in the inflammatory activation of macrophages [184].

Notably, let-7e can also target caspase 3 and may thus

increase the survival of inflammatory macrophages [185].

The anti-inflammatory effect of let-7 family members like

let-7c may be mediated by the targeting of the transcription

factor C/EBP-d, which contains a highly conserved binding

site in its 30-UTR sequence [178]. NF-jB activation in

LPS-treated macrophages up-regulates C/EBP-d transcrip-

tion, which in turn amplifies NF-jB-induced IL-6 and

TLR4 expression [186, 187]. Moreover, compared to other

let-7 family members, let-7c greatly suppresses the

expression of the p21-activated kinase 1, a serine/threonine

kinase that is essential for LPS-induced NF-jB activation

[180]. Accordingly, down-regulation of let-7c in LPS-

treated macrophages mediates the increased expression of

several inflammatory cytokines, such as TNF-a, IL-6, IL-
1b, IL-12, and of iNOs [178, 180]. Conversely, high

expression levels of let-7c in M2-type macrophages pro-

mote the IL-4-induced up-regulation of M2 markers and

contribute to the high efferocytosis capability of M2

macrophages by increasing the expression of CD36, indi-

cating that let-7c plays an important role in alternative

macrophage polarization [178].

In contrast to the anti-inflammatory role of some let-7

family members, let-7f induces the expression of inflam-

matory cytokines, such as IL-1b, TNF-a, chemokine (C-X-

C motif) ligand 1, and CCL2, and of iNOs in macrophages

infected with M. tuberculosis [183]. Thus, suppression of

let-7f expression in infected macrophages enhances the

survival ofM. tuberculosis and may promote mycobacterial

disease [183]. Let-7f increases the inflammatory activation

of macrophages by increased NF-jB activation owing to the

targeting of tumor necrosis factor alpha-induced protein 3

(also known as A20), which negatively regulates TLR sig-

naling by deubiquitinylation of TRAF6 [183, 188]. In

addition, another negative regulator of NF-jB activation,

NFKB inhibitor interacting Ras-like protein 2 (NKIRAS2,

also known as jB-Ras2), contains a highly conserved

binding site for let-7 miRNAs in its 30-UTR. Let-7a can

target NKIRAS2 in human macrophages and may thus

generate a positive feed-forward loop in which NF-jB-
mediated up-regulation of let-7a promotes NF-jB activa-

tion by suppressing NKIRAS2 [182, 189]. Additionally, let-

7a enhances the proliferation of macrophages stimulated

with LPS/IFN-c by inducing S phase entry, which is

mediated by increased expression of cell cycle activator

E2F transcription factor 2 (E2F2) and reduced expression of

cell cycle inhibitor E2F5 [189]. Taken together, although

let-7 family members harbor the same seed sequence, they

have specific individual function in macrophages (Fig. 2),

indicating that non-seed sequences may be crucial for

specific target recognition of miRNA family members.
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miR-142-3p and miR-142-5p: a miRNA pair

in macrophages

Like miR-155-5p and miR-223-3p, miR-142-3p expression

driven by the transcription factor PU.1 is highly specific for

hematopoietic cells [190, 191]. However, miR-155-5p can

suppress miR-142-3p by targeting PU.1 [190]. In mice, the

Mir142 gene is embedded in the first intron of a long non-

coding RNA with unknown function [192]. Mir142

knockout mice are viable and do not show any gross

abnormalities except an enlarged spleen due to an increase

in B cells and myeloid cells, and a combined immunode-

ficiency [193]. In macrophages, miR-142-3p targets the

transcription factor early growth response 2 (Egr2), which

shifts the effect of PU.1 during myelopoiesis towards the

macrophage cell fate [194, 195]. Conversely, M-CSF-in-

duced Egr2 promotes macrophage proliferation by

negatively regulating miR-142-3p expression [194].

Moreover, miR-142-3p mediates the anti-proliferative

effect of miR-223-3p on hematopoietic cells, because miR-

223-3p up-regulates miR-142-3p expression through tar-

geting of C/EBP-b and LIM domain only 2 [196]. In

addition, miR-142-3p limits IL-6 signalling by suppressing

Il6 mRNA and the IL-6 receptor protein IL6st in dendritic

cells and macrophages, respectively [197, 198]. In mice,

the mutual inhibition of miR-142-3p and C/EBP-b isoform

LAP* expression may further amplify IL-6 signalling due

to derepression of IL6st [197]. Whereas miR-142-3p tar-

gets Il6st through a canonical binding site in its 30-UTR,
isoform-specific suppression of C/EBP-b is mediated via a

noncanonical site in the coding sequence of LAP* [197,

199]. Notably, miR-142-3p is up-regulated in tumor infil-

trating macrophages through the CSF1-ETS2 pathway and

overexpression of miR-142-3p in myeloid cells delays

tumor growth following immunotherapy with tumor-

specific T lymphocytes [143, 197]. This antitumor activity

of miR-142-3p has been attributed to reduced IL-6-sig-

naling in tumor macrophages, because increased IL-6

signalling induces the expression of M-CSFR and the IL-4

receptor and may, thus, skew the macrophage phenotype

towards an M2 phenotype [197, 200, 201]. However, miR-

142-3p also suppresses the pro-inflammatory cytokines

TNF-a and IL-12 in inflammatory and alternatively acti-

vated macrophages, indicating a more complex role of

miR-142-3p in macrophage polarization [105]. Moreover,

miR-142-3p limits the phagocytic capability of macro-

phages by suppressing the Wiskott-Aldrich syndrome-like

(Wasl) mRNA encoding for a protein that is a crucial

regulator of Rho GTPases and thereby regulates

cytoskeletal reorganization [106, 193, 202]. Accordingly,

up-regulation of miR-142-3p in macrophages infected with

mycobacteria reduces the phagocytic clearance of M.

tuberculosis, indicating that regulation of this miRNA is a

microbial strategy to prevent phagocytic clearance by

macrophages [106].

In contrast to most miRNA genes, which give rise only

to one mature miRNA strand, the processing of the primary

miR-142 transcript results in the expression of miR-142-5p

in addition to miR-142-3p in macrophages. Similar to the

cooperative function of the two mature miR-126 strands in

endothelial cells, miR-142-5p also plays an essential role in

macrophages [203, 204]. IL-4 and IL-13 treatment induce

miR-142-5p expression in macrophages, which in turn

promotes the expression of M2 markers, such as CCL18,

CCL17, and TGF-b1, and enhances the profibrogenic

activity of macrophages by targeting SOCS1, a negative

regulator of STAT6 phosphorylation [203].

miRNAs control macrophage cholesterol
homeostasis

The cellular cholesterol content plays an essential role in

macrophages by regulating PRRs and phagocytosis, and is

regulated by the opposing actions of the transcription fac-

tors liver X receptor (LXR) and SREBP-2 [205]. LXR is

activated by oxysterols, which are synthesized when cells

accumulate excess cholesterol, in a negative feedback loop

to reduce cellular cholesterol levels (e.g., by increasing

cholesterol efflux), whereas low cholesterol levels activate

SREBP-2 and thereby up-regulate genes that increase

cholesterol uptake (e.g., LDL receptor) and synthesis (e.g.,

HMG-CoA reductase) [206]. Cholesterol efflux through

ATP binding cassette (ABC) subfamily A member 1

(ABCA1) and subfamily G member 1 (ABCG1) plays a

crucial role in the regulation of the cellular cholesterol

content, because macrophages like many other cells cannot

degrade cholesterol. During the phagocytosis of apoptotic

cells, macrophages permanently face the challenge to

tackle an enormous cholesterol load and to have enough

cholesterol available to manage the massive membrane

turnover [207]. Notably, the uptake of apoptotic cells

greatly increases cholesterol efflux to the lipoprotein

ApoA1 by LXR-mediated up-regulation of ABCA1 and

thereby maintains their phagocytosis capacity and prevents

apoptosis [208–211].

Free cholesterol complexed with sphingolipids or

phospholipids is mainly localized in the plasma membrane

and forms highly dynamic membrane microdomains, called

lipid rafts, which provide a platform for the aggregation of

surface receptors and intracellular signalling molecules,

like CD14, TLR4, and Myd88 following LPS stimulation

[212–216]. Moreover, plasma membrane cholesterol pro-

motes pro-inflammatory CD40 signalling and plays an

essential role in the phagocytosis of pathogens [217–219].

Conversely, TLR4-mediated inflammatory activation of
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macrophages increases intracellular cholesterol levels by

reducing cholesterol efflux through ABCA1 and ABCG1,

which may in turn enhance TLR signalling by increasing

the cholesterol content in lipid rafts [220–224]. However,

increased cellular free cholesterol levels in the ER mem-

brane can induce apoptosis through activation of the

unfolded protein response [225]. To tightly adjust the

potentially cytotoxic increased free cholesterol level,

inflammatory macrophages esterify free cholesterol in the

ER membrane via acetyl-CoA acetyltransferase 1

(ACAT1) to cholesteryl esters (CE), which are stored

together with triglycerides in lipid droplets [221, 226, 227].

Excessive storage of CEs in lipid droplet may completely

fill the cytoplasm of macrophages, which leads to the

histologic picture of a foam cell. Foam cell formation

suppresses inflammatory genes, up-regulates LXR target

genes, and down-regulates SREBP2 target genes [228].

However, lipid droplet formation in macrophages can have

pro-inflammatory effects, such as increased IL-1b secretion

by activating the NLRP3 inflammasome [229]. The

essential role of cellular cholesterol homeostasis in mac-

rophage function dictates the handling of oxidatively

modified LDL, which shares binding motifs with some

pathogen-associated molecular patterns and is therefore

recognized by TLR4 and macrophage scavenger receptors,

such as CD36, but no longer by LDL receptors [230].

Oxidation of LDL occurs in the subendothelial space at

arterial bifurcations, where the unrestricted uptake of

oxLDL by macrophages leads to foam cell formation and

atherosclerosis [204]. Taken together, intracellular choles-

terol homeostasis is closely linked to macrophage

functions, such as inflammatory activation and phagocy-

tosis, through ABC transporters [231].

Intriguingly, numerous conserved miRNA binding sites

(e.g., for miR-33-5p, miR-27-3p, miR-145, miR-19-3p, and

miR-144-3p) were confirmed in the 30-UTR of the ABCA1

mRNA (Fig. 4), suggesting that regulation of the choles-

terol efflux by miRNAs has been an evolutionary

advantage [232–236]. The role of miRNAs in cholesterol

metabolism has been recently reviewed [237]. Here, we

will focus on how miRNAs link cellular cholesterol

metabolism with the innate immune response (Fig. 5).

The role of the highly conserved miRNA miR-33 in

macrophage cholesterol metabolism has been extensively

studied. TheMIR33A gene (MIR33-P1) encoding miR-33a-

5p has been acquired in the bilaterian ancestor of proto-

stomes and deuterostomes, and a paralog of this gene

MIR33B (MIR33-P2) occurred in vertebrates encoding

miR-33b-5p, which differs in two nucleotides outside the

seed sequence from miR-33a-5p [238]. However, several

vertebrate species, including mice, have lost the MIR33-P2

gene and retained only MIR33-P1, whereas the MIR33

gene family is completely absent in the zebrafish genome.

The MIR33-P1 gene is located in intron 16 of the human,

mouse, cow and chicken SREBP2 gene, which is a key

transcription factor in cholesterol metabolism by inducing

expression of the LDL receptor and cholesterol biosyn-

thesis genes [239]. The expression of theMIR33-P1 gene is

co-regulated with its host gene by the cellular cholesterol

content in macrophages [239, 240]. miR-33a-5p targets the

30-UTR of several genes involved in cholesterol home-

ostasis including ABCA1 and thereby limits cholesterol

Fig. 4 The ABCA1 mRNA is a preferred miRNA target. Distribution

of highly conserved miRNA binding sites in the 30-UTR of human

ABCA1 (a) and LPL (b) predicted by Targetscan (http://www.

targetscan.org/). The miRNA target sites labeled in red have been

confirmed experimentally in macrophages (see text for details)
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efflux from macrophages to ApoA1 and increases macro-

phage apoptosis induced by free cholesterol loading [235,

240, 241]. Moreover, miR-33 targets PPARc coactivator-

1a in macrophages, which enhances mitochondrial ATP

production required for the ATP-dependent cholesterol

efflux via ABCA1 [242]. Thus, up-regulation of miR-33a-

Fig. 5 miRNAs connect lipid metabolism and macrophage functions.

LDL is taken up by macrophages via LDL receptor (LDLR) and

lipoprotein lipase (LPL) enhances the uptake of LDL. However,

modified LDL (e.g., oxidized LDL) cannot be recognized by LDLR,

but by scavenger receptors (CD36, SR-A1 and LOX1). Lipoproteins

engulfed by macrophages are transported to endosomes and then to

lysosomes, where they are hydrolysed to generate free cholesterol

(FC). In addition, 9- and 13-hydroxyoctadecadienoic acid (HODE)

are formed upon peroxidation of the most abundant fatty acid in LDL,

linoleic acid. 9- and 13-HODE activate PPARc, which upregulates the
expression of CD36. Free cholesterol is trafficked to the endoplasmic

reticulum (ER) where excess cholesterol is re-esterificated to

cholesteryl fatty acid esters (CE) by acyl-CoA acyltransferase-1

(ACAT1) and stored in cytoplasmic lipid droplet (LD). CEs in the

lipid droplet can be transported back to lysosomes either via lipolysis

or an autophagic process termed ‘lipophagy’. Incorporation of FC into

lipid rafts in the plasma membrane increases the activation of toll-like

receptor 4 (TLR4) following stimulation with LPS or mildly modified

LDL (mmLDL). In addition to the uptake of apoptotic cells, excess

cholesterol metabolized into oxysterols (OS) activate LXR and thus

induce the transcription of ABCA1 and ABCG1, which enhances the

efflux of cholesterol efflux via apolipoprotein A1 (APOA1) and HDL

particles. Moreover, cholesterol loading inhibits the uptake and

synthesis of cholesterol by inhibiting SREBP2 activation. Excessive

cholesterol uptake by scavenger receptors may lead to the formation

of cholesterol crystals that activate the NLRP3 inflammasome and

promote IL-1b production. The roles of miRNAs in cellular lipid

homeostasis and macrophage functions are described in the text
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5p and SREBP-2 by cholesterol depletion act synergisti-

cally to increase the macrophage cholesterol content [235,

240].

The MIR33-P2 gene is located in the intron of the

SREBP1 gene and both genes are up-regulated through

activation of LXR [243]. The SREBP1 gene expression can

give rise to two transcription factors SREBP1a and

SREBP1c, which primarily promote fatty acid synthesis.

Unsaturated fatty acids inhibit LXR activation and thereby

reduce SREBP1c expression and fatty acid synthesis [244,

245]. miR-33b is co-expressed with its host gene, but

suppresses SREBP1 mRNA by targeting its 30-UTR and

thereby counter-regulates the effect of SREBP1c on fatty

acid metabolism [246]. Knockin of theMIR33-P2 gene into

the murine SRBF1 locus decreased the expression of

ABCA1 and ABCG1 (only a target of miR-33 in mice) in

macrophages and the cholesterol efflux to ApoA1 and

HDL, indicating that expression of the MIR33 paralog

enhances the effect of miR-33a on cholesterol efflux in

humans [243].

miR-33 is up-regulated by LPS stimulation in M1

macrophages and promotes a pro-inflammatory phenotype

[247, 248]; however, this effect of miR-33 is independent

of ABCA1, but mediated through targeting of the protein

kinase, AMP-activated, alpha 1 catalytic subunit (AMPK),

which codes for a kinase that promotes ATP production via

fatty acid oxidation [248]. In addition, AMPK mediates the

effect of miR-33 on the expression of aldehyde dehydro-

genase family 1, subfamily A2 (Aldh1a2) in macrophages

by regulating the energy metabolism. Aldh1a2 is up-reg-

ulated in M2 macrophages and produces athero-protective

retinoic acid. The expression of miR-33 in M1 macro-

phages has been linked to decreased secretion of retinoic

acid, which promotes the generation of regulatory T cells

[248]. Although these data would indicate that miR-33

expression in macrophages reduces atherosclerosis, the

current evidence for this conclusion is contradictory. Sev-

eral studies in animal models of atherosclerosis have

demonstrated that systemic inhibition of miR-33 reduces

lesion formation. However, it is difficult to attribute these

effects clearly to the role of miR-33 in macrophages,

because miR-33 affects many other tissues, such as liver

and pancreas. For instance, Mir33 knockout mice develop

steatohepatitis, insulin resistance, and an increased body

weight on a high fat diet [246]. Deletion of the miR-33

gene only in hematopoietic cells, however, does not sub-

stantially decrease atherosclerosis [241].

By contrast, feeding mice with a high fat diet down-

regulates miR-33 in peritoneal macrophages and de-re-

presses receptor-interacting protein-140 (RIP140), a

coactivator of NF-jB, which increases inflammatory

cytokine expression and may thereby contribute to the

increased survival rate of mice fed a high fat diet in a sepsis

model [249]. An anti-inflammatory role of miR-33 has also

been reported in aged macrophages. Aging increases the

expression of miR-33 in murine macrophages, which

results in senescence-associated suppression of ABCA1

expression and cholesterol efflux [250]. Thus, macrophages

from aged mice contain more cholesterol and accumulate

more lipid droplets than those from younger mice [250].

Surprisingly, the aging-induced disturbance in cellular

cholesterol homeostasis is associated with an anti-inflam-

matory M2 phenotype, characterized by increased IL-10

production. This M2 phenotype of aged macrophages also

promotes endothelial cell proliferation and contributes to

pathological angiogenesis related to age-related macular

degeneration [250]. Moreover, inhibition of miR-33 up-

regulated the expression of inflammatory genes like TNF-a
and IL-1b in peritoneal macrophages from young and aged

mice, indicating an anti-inflammatory role of this miRNA

[250].

In addition to miR-33, miRNAs from the miR-19-3p

member are predicted by Targetscan to bind the 30-UTR of

the ABCA1 mRNA via a highly conserved binding site

(Fig. 4). The miR-19-3p family consists of three members

transcribed from two different genetic loci. miR-19a-3p

and miR-19b-3p, which differ in one nucleotide at position

11 of the miRNA, are embedded in the polycistronic pri-

mary pri-miR-17*92 transcript that contains six mature

miRNAs [251]. The miR-19b hairpin is also transcribed

within the pri-miR-106*363 cluster. Lv et al. confirmed

the binding site for miR-19-3p in the ABCA1 30-UTR
using miR-19b-3p mimics and demonstrated that miR-19b-

3p decreases cholesterol efflux in human macrophages and

reverse cholesterol transport pathway in mice [236].

Moreover, miR-19-3p family members target several

genes, such as A20 and its cofactor ring finger protein 11,

and lysine-specific demethylase 2A (also known as

FBXL11), which negatively regulate NF-jB activation and

thereby inhibit inflammatory macrophage activation [109].

Although both miR-19a-3p and miR-19b-3p promote NF-

jB activation, miR-19a-3p is more effective than its sister

strand miR-19b-3p [109]. As expected from the effect of

miR-19-3p on cholesterol efflux and NF-jB activation,

systemic inhibition of miR-19b-3p reduced, whereas

treatment with miR-19b-3p mimics enhanced atheroscle-

rosis in mice, indicating that the effect of miR-19-3p on

macrophages is pro-atherogenic [236]. However, HIF-1a
up-regulates miR-19a-3p in atherosclerotic endothelial

cells, which increases endothelial inflammation and

atherosclerosis [252]. Therefore, further studies are needed

to determine the role of the macrophage miR-19-3p family

members in disease.

Another miRNA family that plays a central role in

macrophage cholesterol metabolism is miR-27-3p. miR-

27a-3p is transcribed together with miR-23 and miR-24
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from the miR-23*27*24 gene cluster and miR-27b-3p

(which differs from miR-27a-3p in one nucleotide at

position 18) is included in a gene cluster with miR-23b.

The ABCA1 30-UTR contains two highly conserved bind-

ing sites for miR-27 family members (Fig. 4); however,

only one binding site is targeted by miR-27a-3p and miR-

27b-3p [232]. Akin to miR-33, miR-27a/b-3p decreases

ABCA1 expression and cholesterol efflux in human mac-

rophage cell line [232]. However, miR-27a/b-3p also limits

the uptake of cholesterol via oxLDL partly by targeting

lipoprotein lipase (LPL), which enhances the lipid uptake

through a nonenzymatic bridging mechanism [232]. In

contrast to the ABCA1 30-UTR, only two conserved

binding sites are predicted in the 1950-nt long LPL 30-UTR
by Targetscan including miR-27-3p and miR-29-3p

(Fig. 4), indicating a less redundant control of the LPL

expression by miRNAs. In addition, miR-27a/b-3p targets

PPARc in macrophages, which may contribute to the

reduced oxLDL uptake by down-regulating CD36 expres-

sion [232, 253]. Moreover, miR-27a/b-3p targets human

ACAT1 mRNA through a non-canonical seed match

including a G:U wobble at position 1 of the miRNA, which

results in reduced formation of cholesteryl ester [232]. In

summary, different from miR-33, miR-27a/b-3p promotes

a general inhibition of cellular cholesterol metabolism and

a shift from cholesteryl esters to free cholesterol (by sup-

pressing multiple targets) rather than a total increase of the

cellular cholesterol content [232] (Fig. 5). Up- and down-

regulation of miR-27a/b-3p expression by LPS treatment

has been reported in human macrophages [111, 253],

whereas IL-4 increases and LPS reduces miR-27-3p

expression in mouse macrophages [171, 254, 255]. In

addition to the targeting of PPARc, miR-27a-3p may

enhance inflammatory cytokine expression in LPS-treated

macrophages by targeting the 30-UTR of IL-10, which

inhibits the inflammatory activation in an autocrine man-

ner, and of interferon regulatory factor 4, a negative

regulator of TLR signalling [254, 255]. In addition, miR-

27b-3p may increase inflammatory macrophage activation

by targeting the RNA-binding protein ZFP36 (also known

as tristetraprolin), which limits the expression of various

inflammatory genes by mediating their rapid decay through

binding to AU-rich element motifs in their 30-UTR [171,

256]. Thus, miR-27-3p may limit M2 polarization and

decrease tumor growth promoted by the M2 phenotype of

tumor-associated macrophages [255].

Activation of LXR in macrophages up-regulates the

expression of ABCA1 and ABCG1 in response to

cholesterol load and increases cholesterol efflux. More-

over, LXR also regulates the expression of miRNAs in

macrophages, which are predicted to target lipid-related

genes [234]. Notably, one of the miRNAs up-regulated by

LXR activation is miR-144-3p, which targets ABCA1 at

least via two highly conserved binding sites and reduces

cholesterol efflux synergistically with miR-33 (Fig. 5),

indicating that LXR activation induces a negative feed-

back regulation of ABCA1 through miR-144-3p [234,

257]. In addition, miR-144-3p increases inflammatory

cytokine secretion in human macrophage foam cells.

Systemic treatment with miR-144-3p increased the for-

mation of atherosclerotic lesions in mice; however, it is

unclear whether this effect is mediated by the role of miR-

144-3p in macrophages, because HDL cholesterol levels

and the reverse cholesterol transport were reduced most

likely owing to the downregulation of ABCA1 in the liver

[257].

Foam cell formation results in the differential regulation

of several miRNAs in murine macrophages, which are

predicted to target ABCA1, such as miR-302a-3p, miR-

106b, and miR-216a [258]. Like miR-106b, cholesterol

loading by oxLDL down-regulates the expression of miR-

302a-3p in macrophages. The miR-302a hairpin is

embedded in a polycistronic primary transcript containing

also the miR-367, the miR-302d, the miR-302c, and the

miR-302b hairpin, which is transcribed from an intron of

its host gene La ribonucleoprotein domain family member

7 as an independent transcriptional unit [259]. All miR-

302-3p family members have the same seed sequence and

differ only in one nucleotide at position 18 or 19 of the

miRNAs. miR-302a targets ABCA1 mRNA and limits

cholesterol efflux to ApoA1 in macrophages. Moreover,

inhibition of miR-302a reduces atherosclerosis and

increases HDL cholesterol levels in mice, probably owing

to increased ABCA1 expression in the liver [258].

Conclusions

miRNAs play crucial roles in many aspects of macro-

phages and thereby affect many pathological conditions,

like infection, tumor growth, atherosclerosis, and macular

degeneration by connecting inflammatory activation,

cholesterol homeostasis, cell survival and proliferation, and

phagocytosis. Targeting miRNAs through the application

of modified oligonucleotides may become an effective

therapeutic strategy for immune diseases [260, 261].

However, the function of miRNAs is highly context and

cell type dependent, and can change during disease pro-

gression, like macrophage miR-155 in atherosclerosis,

owing to changes in miRNA and target mRNA expression

levels. Unfortunately, the miRNA-regulated context-

specific network is still poorly understood, which hampers

the drug development. Moreover, developing carriers to

deliver miRNAs in a cell-type specific manner would

greatly increase potential applications of miRNA-based

therapies.
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