Skip to main content
. 2015 Nov 30;73(5):961–974. doi: 10.1007/s00018-015-2097-6

Table 1.

Features of signaling filopodia described and characterized in vertebrate species

Species Location and function of filopodia Length and diameter (µm)
Dynamics
Characteristics of dynamic and stable filopodia References
Zebrafish embryo

Epiblast cells in blastula

Function

Delta-notch signaling

Average length 215 µm (range 60–380 µm)

Diameter: 1 µm

Stable filopodia: “intercellular bridges”

Delta-positive filopodia

 Actin positive

 Tubulin only at the bases

 Cargo transport: v = 55 nm/s

[29]
Zebrafish embryo A subset of migrating NCCs

CXCR4-GFP localizes to fscn1a-dependent filopodia

 Actin positive

[50]
Zebrafish embryo Epithelial cells in the presumptive neuroectoderm

Wnt8a-venus positive “puncta” at filopodial tip is released as the filopodium retracts

Formation of Wnt8a/Fzd9b clusters

[37]
Zebrafish embryo

Transfected epiblast cells Function

Neural plate patterning

Average length: 16.6 µm (up to 50 µm)

Diameter max 1.5 µm

Wnt8a-eGFP-positive filopodial tips give rise to extracellular puncta, which are attached to target cells

On stable filopodia formation of “signalosomes”: clusters of Wnt8a and Lrp6-GFP, Dvl-mCherry (or Axin1) on the target cell

[17]
Zebrafish embryo HEK293 cells, fish fibroblasts PAC2, mouse 3T3

Length in PAC2 cells: up to 70 µm

Elongation: average v = 110 nm/s

Max. v = 240 nm/s

Wnt8a-eGFP-positive, stable filopodia

 Actin positive

 Tubulin at the base

 Myosin10 positive

Cdc42 determines the length of Wnt-positive filopodia

[17]
Xenopus

Blastocyst

Function

Connecting blastomeres

Length

Short dynamic filopodia 10 µm

Long blastocoel traversing filopodia up to 250 µm

Diameter: 0.2–0.7 µm

Dynamic filopodia

 PFA stable

Stable filopodia spanning the blastocoel cavity

 Exchange of cytoplasm and membrane

 Caveolar endocytosis at proximal base

 Actin positive

 Tubulin negative (α-tubulin staining)

 Retro- and anterograde vesicle transport (v = 1–3 µm/s)

 PFA stable

[31]
Xenopus fibroblasts

Stable filopodia

 Actin positive

 Tubulin-positive

Fluorophore spots: (v = 763 nm/s) colocalize only with mCherry tagged tubulin

Active Wnt2a-eGFP is transported along microtubules to the plasma membrane, located at the very tips of filopodia and handed over to a Wnt receiving cell where it is rapidly internalized

[18]
Chick embryo

Limb bud, mesenchymal cells

Function

Limb patterning

Average length 34.27 ± 9.6 µm

Max. length 150 µm

Diameter: 0.2–0.8 µm

Elongation v = 150 nm/s

ShhN-eGFP-positive filopodia

Shh-eGFP particles: anterograde movement with a maximal net v = 120 nm/s

 Subpopulation positive for Shh co-receptors Cdo and Boc contact formation between Cdo/Boc- and Shh-positive filopodia

 PFA sensitive

 Cdc42 independent

 Actin positive

 Tubulin (Tau, EB3) only at the proximal base of a subset of mesenchymal filopodia

 myosin10 positive

[19]
Chick embryo

Between dermomyotome and ectoderm, spanning the subectodermal space, penetrate through the basal lamina

Function

Wnt-signaling (?)

Length limited by the overlying ectoderm about 20 µm

Diameter: 0.2–0.5 µm

v (extending) 53.8 nm/s

v (retracting) 68.8 nm/s

Dynamic filopodia

 Actin positive

 Tubulin positive

 PFA stable

Stable filopodia

82 % stable protrusions

 Actin positive

 Tubulin positive

 PFA stable

[20]
Mouse embryo

Between cells of the inner cell mass and the mural trophoectoderm (mTE)

Function

Signal transduction to induce cell proliferation of TE cells

Short filopodia

Length 3 – 8 µm

Diameter: 0.2–1 µm

Long, traversing filopodia

Length up to 34.6 µm

Diameter at narrowest point:

0.2–0.4 µm

Short filopodia

 Actin positive

 Microtubule negative

 PFA stable

TE-derived filopodia: FGFR2 positive/ErbB3 negative

ICM-derived filopodia: FGFR2 negative/ErbB3 negative

Long, traversing filopodia

 Actin positive

 Microtubule negative (as deduced due to their colchicine resistance)

 Retrograde vesicle transport

 PFA stable

TE-derived filopodia: FGFR2 positive/ErbB3 positive

ICM-derived filopodia: FGFR2 negative

Junctional filopodia (see also Fleming et al. [73])

 Actin positive

 Tubulin positive

 PFA stable

[30]
Mouse embryo Between cells of the inner cell mass and the mural trophoectoderm (mTE)

Junctional filopodia

Length: 0.1–3 µm

Junctional filopodia

 Microtubule positive (as visualized electron microscopically)

 PFA stable

[73]
Mouse embryo

Between cells of the late morula stage

Function

Providing tension, stabilizing mechanical force necessary for compaction of preimplantation embryo

Length 10.9 ± 0.8 µm

Dynamic filopodia

 Actin positive

 Microtubule negative

Stable filopodia

 Filopodia to neighboring cells

 Dependent on E-cadherin, a- and b-catenin

 F-actin positive

 myosin10 positive

[74]
Mouse mesenchymal cells C3H/10T1/2

Length <10 µm

Length <20 µm

Long: length >60 µm

Dynamic, short filopodia

Cdc42-induced filopodia

 Actin positive

 Tubulin positive

 Fascin positive

RhoD-induced filopodia

Short filopodia

 Actin positive

 Tubulin negative

 Fascin positive and negative

 PFA stable

Stable filopodia

 Actin positive

 Tubulin negative

 PFA sensitive

 Net retrograde transport of fluorescent nodules and of FGF/FGFRs

 Coexpression of Rab5 (early endosome-like vesicle)

[41]

Human cell lines

A431

HeLa

MCF7

 ErbB1 receptor positive

 Actin positive

 Tubulin negative

 Retrograde transport of EGF/ErbB1 complex (v = 22 nm/s)

 Activation of the receptor tyrosine kinase essential for retrograde transport

 Endocytosis of the EGF/ErbB1 complex at the filopodial base

[42]

Human cell lines

HEK cells

Mammalian stem cells

Lgr4- and Lgr5-induced filopodia

Length 80 µm

Diameter 0.53 µm

Dynamic filopodia

 Actin positive

 myosin10 positive

 PFA stable

Stable filopodia

Mature Lgr5-induced cytonemes

[32]