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Abstract The a-amylase is a ubiquitous starch hydrolase

catalyzing the cleavage of the a-1,4-glucosidic bonds in an

endo-fashion. Various a-amylases originating from different

taxonomic sources may differ from each other significantly

in their exact substrate preference and product profile.

Moreover, it also seems to be clear that at least two different

amino acid sequences utilizing two different catalytic

machineries have evolved to execute the same a-amylolytic

specificity. The two have been classified in the Cabohydrate-

Active enZyme database, the CAZy, in the glycoside

hydrolase (GH) families GH13 and GH57. While the former

and the larger a-amylase family GH13 evidently forms the

clan GH-H with the families GH70 and GH77, the latter and

the smaller a-amylase family GH57 has only been predicted

to maybe define a future clan with the family GH119.

Sequences and several tens of enzyme specificities found

throughout all three kingdoms in many taxa provide an

interesting material for evolutionarily oriented studies that

have demonstrated remarkable observations. This review

emphasizes just the three of them: (1) a close relatedness

between the plant and archaeal a-amylases from the family

GH13; (2) a common ancestry in the family GH13 of animal

heavy chains of heteromeric amino acid transporter rBAT

and 4F2 with the microbial a-glucosidases; and (3) the

unique sequence features in the primary structures of

amylomaltases from the genus Borrelia from the family

GH77. Although the three examples cannot represent an

exhaustive list of exceptional topicsworth to be interested in,

theymay demonstrate the importance these enzymes possess

in the overall scientific context.
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Abbreviations

CAZy Carbohydrate-Active enZymes

CBM Carbohydrate-binding module

CGTase Cyclodextrin glucanotransferase

CSR Conserved sequence region

DPE Disproportionating enzyme

GH Glycoside hydrolase

hcHATs Heavy chains of the heteromeric amino acid

transporters

Introduction

a-Amylase (EC 3.2.1.1) represents probably the best

known and most deeply studied amylolytic enzyme [1–6].

It catalyzes the hydrolytic cleavage of the a-1,4-glucosidic
linkages in starch and related a-glucans in an endo-fashion

employing the retaining reaction mechanism. Its evolution

started to attract the serious scientific interest approxi-

mately 25 years ago when it became clear that there is a

group of starch hydrolases and related enzymes possessing

closely related functions within the frame of homologous

amino acid sequences [7–9]. It was, for example, the

& Štefan Janeček
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enzyme cyclodextrin glucanotransferase (CGTase; EC

2.4.1.19) sharing with the a-amylase the first step of the

catalyzed reaction, which in the CGTase proceeds not with

the molecule of water like in the a-amylase but with a

molecule of a saccharide to be transferred [10]. For

CGTases, it was thus revealed that, despite obvious dif-

ferences between an a-amylase and a CGTase, they exhibit

interesting sequence similarities with a-amylases [11] that

previously might even complicate the correct assignment

of the a-amylase/CGTase specificity [12–14] as well as the

answer concerning their evolutionary history [15]. The

other closely related enzyme was the so-called malto-

hexaohydrolase (EC 3.2.1.98), i.e., the exo-amylase

producing maltohexaose [16]. The discovery of a com-

pletely novel enzyme, the neopullulanase (EC 3.2.1.135) in

1989 [17], able to perform both hydrolysis and transgly-

cosylation of both the a-1,4- and a-1,6-glucosidic linkages
[18–20], can be considered as a milestone in creating the

overall view of the group of sequentially and functionally

related amylolytic enzymes. Thus, also from the evolu-

tionary point of view, a new enzyme family, named

according to its leading member as the a-amylase family,

has been established [20–24].

Interestingly, from the very beginning the a-amylase

family has offered various surprises or at least the phe-

nomena deserving a special attention. For example, even

the a-amylases originating from various sources (roughly

from Bacteria, Archaea and Eucarya) may differ from each

other quite substantially in their substrate preference and/or

product profile although they are still active towards and

produce various a-glucans [1]. Some of them have been

confirmed to be able to transglycosylate to a small, limited

extent, e.g., the a-amylase from Pseudoalteromonas halo-

planktis [25].

Historically, the establishment of the four conserved

sequence regions (CSRs) among the primary structures of

a-amylases in 1986 [26] has played an unique role, espe-

cially as one of the requirements for an enzyme to become

a member of the family [20]. Soon after the four CSRs

were observed in other enzymes (members) of the devel-

oping a-amylase family [8, 9, 20, 22] and completed by the

three additional CSRs [27–29]. Currently, it has been rec-

ommended to use as many as possible of the seven defined

CSRs [30, 31] to best characterize a protein as a member of

the a-amylase family, mainly if there are any doubts con-

cerning the exact enzyme specificity [1, 32].

Almost simultaneously with the gradual appearance and

final definition of the a-amylase enzyme family in the lit-

erature early in 1990s [7–9, 20–24], a pioneering study was

published [33] delivering the newly developed concept of

classification of glycoside hydrolases (GHs) to sequence-

based families, placing the group of enzymes known

already at that time as the a-amylase family into the family

GH13. After a few published updates [34, 35], the

increasing system of GH families has been incorporated

into the current web-server database CAZy (Carbohydrate-

Active enzymes) [36], the a-amylase enzyme specificity

being potentially found also in families GH57, GH119 and

even GH126 [1, 37]. Nevertheless, the family GH13 rep-

resents the main a-amylase family [1] and with

approximately 31,500 sequences and more than 30 differ-

ent enzyme specificities (Table 1) it belongs—among 129

GH functional families created until now—to the largest

GH families at all [37]. On a higher level of hierarchy, it

forms the clan GH-H together with families GH70 and

GH77 [31, 37, 38]; the former of these two families covers

various glucansucrases with typically circularly permuted

primary structure with respect to that seen in the main

family GH13 [39–41], whereas the latter is the

monospecific family of 4-a-glucanotransferases known

also as amylomaltase and disproportionating enzyme

(DPE) in prokaryotes and eukaryotes, respectively [42–44].

On the lower level of hierarchy, in 2006 the family GH13,

reflecting also the previous efforts [45], was officially

divided into 35 subfamilies by the CAZy curators [46];

currently the number of GH13 subfamilies has reached 41

[37, 47, 48] and it will very probably raise in the future

[49].

As far as the family GH13 is concerned in its entirety, it

has become evident that the same enzyme specificity (e.g.,

the a-amylase or pullulanase) may exist in several sepa-

rated groups or GH13 subfamilies, but on the other hand

some other specificities (e.g., oligo-1,6-glucosidase, a-
glucosidase and dextran glucosidase) may exist altogether

within a single group or GH13 subfamily. The attractive-

ness of the a-amylase clan GH-H for scientists has been

strengthened also by classifying into the family the heavy-

chains of heteromeric amino acid transporters, known as

rBAT protein and 4F2 antigen (i.e., neither amylolytic

enzymes, nor any enzymes at all) that, being typically of

animal origin, are evolutionary related to bacterial a-glu-
cosidases [50]. The present review aims to deliver the

updated view of a few perhaps most remarkable evolu-

tionary relatedness observed within the a-amylase family.

The family GH13 a-amylases from plants
and archaea

While the first amino acid sequences of the a-amylases

from Archaea have become available only at the end of

1990s [51–55], the primary structures of their first plant

counterparts were determined at least 10–15 years earlier

[56–60]. Moreover, the three-dimensional structure of the

high pI isozyme of the barley a-amylase AMY-2 was

solved a few years before [61] the first archaeal a-amylase
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sequence from Pyrococcus furiosus was announced [51,

52]. The barley a-amylase AMY-2 structure [61], solved

later also as a complex with acarbose [62], was at that time

only the fourth known a-amylase tertiary structure [30], in

addition to those from Aspergillus oryzae [63, 64],

Aspergillus niger [65, 66] and pig pancreas [67, 68]. At

present, with regard to plant and archaeal a-amylases,

tertiary structures have been solved and published also for

Table 1 Members of the a-amylase GH families

Enzyme class Enzyme EC no. GH family GH13 subfamily

Hydrolases a-Amylase 3.2.1.1 13, 57, 119, 126 1, 5, 6, 7, 15, 20, 24,

27, 28, 32, 36, 37

Oligo-1,6-glucosidase 3.2.1.10 13 23, 31

a-Glucosidase 3.2.1.20 13 17, 21, 23, 30, 31, 40

a-Galactosidase 3.2.1.22 57

Pullulanase 3.2.1.41 13 12, 13, 14

Amylopullulanase 3.2.1.1/41 13, 57 12, 14, 39

Cyclomaltodextrinase 3.2.1.54 13, 57 20, 36

Maltotetraose-forming amylase 3.2.1.60 13 19

Isoamylase 3.2.1.68 13 11, 14

Isoamylase/4-a-glucanotransferase 3.2.1.68/2.4.1.25 13 11

Dextran glucosidase 3.2.1.70 13 31

Trehalose 6-phosphate hydrolase 3.2.1.93 13 29

Maltohexaose-forming amylase 3.2.1.98 13 5, 19

Maltotriose-forming amylase 3.2.1.116 13 2, 32

Maltogenic amylase 3.2.1.133 13, 57 2, 20

Neopullulanase 3.2.1.135 13 20

Maltooligosyltrehalose threhalohydrolase 3.2.1.141 13 10

Sucrose hydrolase 3.2.1.– 13 4

Maltopentaose-forming amylase 3.2.1.– 13 5

Glycogen degrading enzyme 3.2.1.– 13 12

Cyclic a-maltosyl-1,6-maltose hydrolase 3.2.1.– 13 20

Transferases Amylosucrase 2.4.1.4 13 4

Dextransucrase 2.4.1.5 70

Sucrose phosphorylase 2.4.1.7 13 18

Glucan branching enzyme 2.4.1.18 13, 57 8, 9

Cyclodextrin glucanotransferase 2.4.1.19 13 2

4-a-Glucanotransferase 2.4.1.25 13, 57, 77

Glucan debranching enzyme 2.4.1.25/3.2.1.33 13 11, 20, 25

Alternansucrase 2.4.1.140 70

a-1,3-Glucan synthase 2.4.1.183 13 22

a-1,4-Glucan: phosphate a-maltosyltransferase 2.4.99.16 13 3

Sucrose-6-phosphate phosphorylase 2.4.1.– 13 18

a-Transglucosidase 2.4.1.– 13 23

Isocyclomaltooligosaccharide glucanotransferase 2.4.1.– 13

a-4,6-Glucanotransferase 2.4.1.– 70

Reuteran sucrase 2.4.1.– 70

a-1,6/a-1,2-Branching glucansucrase 2.4.1.– 70

Isomerases Isomaltulose synthase 5.4.99.11 13 31

Maltooligosyltrehalose synthase 5.4.99.15 13 26

Trehalose synthase 5.4.99.16 13 16, 33

HAT proteins hc-rBAT protein – 13 35

4F2hc antigen – 13 34
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the low pI isozyme of the barley a-amylase AMY-1 [69,

70], the a-amylase from rice [71, 72] as well as the a-
amylase from Pyrococcus woesei [73].

From the evolutionary point of view, before the a-
amylases from archaea were known, plant a-amylases

formed a compact cluster neighboring with the liquefying

a-amylases from bacilli [28]. As documented by various

evolutionarily oriented studies [73–78] this has remained

true until now with a significant upgrading of the original

picture [28] illustrating that the cluster of archaeal a-
amylases shares the branch with that of plant counterparts

[53, 79]. According to the CAZy nomenclature [46], the a-
amylases from plants and archaea have been assigned the

subfamily number GH13_6 and GH13_7, respectively; the

bacterial homologues representing mostly liquefying a-
amylases from bacilli being classified within the subfamily

GH13_5. It should be pointed out that all these three sub-

families of a-amylases are mutually very closely related

and the exact branching pattern among them in the evo-

lutionary tree may depend on the aligned segment of their

amino acid sequences (i.e., just CSRs, the catalytic domain

or the entire sequence, etc.) [76].

The pronounced relatedness between the plant and

archaeal a-amylases is remarkable not only due to their long

taxonomical distance (eukaryotic plants and prokaryotic

archaea) but also when differences in their thermostability

(or the temperature optimal for their enzymatic activity) are

considered [1]. The close positions in the evolutionary tree

obviously reflect the similarities throughout their amino

acid sequences, especially within the CSRs (Fig. 1)

described first in detail in 1999 [79]. While the sequence

similarities shared by both plant and archaeal a-amylases

represent something that distinguishes both subfamilies

from remaining GH13 a-amylases, there have to be some

additional sequence features that are unique for each group,

i.e., that discriminate the two subfamilies from each other,

just these unique sequence features should be used in the

efforts aimed at identifying the factors that could be

responsible for the hyperthermostability of archaeal a-
amylases (or, on the other hand, the low thermostability of

the a-amylases from plants). Thus, for example, the two

residues deserving the attention in the a-amylase from

Thermococcus hydrothermalis could be as follows (Fig. 1):

(1) the first position of the CSR-V, i.e., Tyr184Ala

(184_YPDIC in the T. hydrothermalis a-amylase versus

146_APDID in the barley high pI a-amylase isozyme),

because among the archaea it is occupied only by either

phenylalanine or tyrosine (i.e., an aromatic residue); and (2)

the third position of the CSR-IV, i.e., Ala308Asp

(306_FVANHD versus 284_FVDNHD), because there is

invariantly conserved alanine among the archaea in com-

parison with invariant aspartic acid in plants.

Recently, some hypothetical bacterial (i.e., not archaeal)

a-amylases from genome sequencing projects were

assigned to the ‘‘archaeal’’ subfamily GH13_7 [1, 37].

Currently, in the CAZy database, all these belong to the

phylum Flavobacteria [37]. It is, however, worth men-

tioning that even a simple BLAST search [80] using the

flavobacterial GH13_7 a-amylase from Sinomicrobium sp.

5DNS001 [81] as a query retrieves hypothetical bacterial

a-amylases with GH13_7 sequence features, but not

belonging to Flavobacteria. Anyhow, the moderately ther-

mostable Sinomicrobium sp. 5DNS001 a-amylase [81],

clearly homologous to its archaeal hyperther-

mostable counterparts (Fig. 2), may add to our

understanding of the rules that have governed the evolution

of plant, (flavo)-bacterial and archaeal a-amylases and the

factors that are responsible for their thermostability dif-

ferences [76, 79, 81–83]. In analogy with the above-

mentioned features in which the plant and archaeal a-
amylases differ from each other, it makes sense to try to

identify the features in the amino acid sequences of (flavo)-

bacterial a-amylases that are well conserved but simulta-

neously well discriminating them from their archaeal

counterparts (Fig. 1). One example is the second position

of the CSR-VII, i.e., Tyr363Gln (362_GYPTVFYGD in the

Sinomicrobium sp. 5DNS001 a-amylase versus

330_GQPAIFYRD in the T. hydrothermalis a-amylase

isozyme), because both the tyrosine and the glutamine are

invariantly conserved among the respective groups of

bacterial and archaeal a-amylases. Thus, a silico analysis

as detailed as possible focused on comparison of amino

acid sequences is of special importance, especially if, at the

tertiary structure level the individual representatives of

both GH13_6 and GH13_7 subfamilies look very similar

and obviously without any substantial differences (Fig. 2).

It is worth mentioning that, in addition to archaeal a-
amylases from the class Thermococci (namely the two

genera Pyrococcus and Thermococcus) classified within

the subfamily GH13_7, there are several potential a-
amylases produced by halophilic archaea (the class

Halobacteria) deserving the attention that, however,

until now have not been assigned any GH13 subfamily

[37]. Some of them simply may not be true a-amylases,

e.g., those from Natronococcus amylolyticus [84, 85]

and Haloarcula japonica [86] producing mainly mal-

totriose and maltose, respectively. For others, the

ambiguity arises from the fact that the studied

sequences originate from genome projects [87], i.e.,

they are still hypothetical amylolytic enzymes. Inter-

estingly, for the sequence of the halophilic a-amylase

from Haloarcula hispanica [88] the fold recognition

server Phyre-2 [89] revealed the Bacillus stearother-

mophilus a-amylase from the subfamily GH13_5 [90]

as the best structural template.
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Animal transport proteins rBAT and 4F2
versus the microbial GH13 a-glucosidases

A sequence resemblance of heavy-chains of the hetero-

meric amino acid transporters (hcHATs), the rBAT protein

and the 4F2 antigen, to a-glucosidases from the a-amylase

family was originally revealed already in 1992 in two

independent studies [91, 92]. However, for a few subse-

quent years it was, in fact, not seriously taken into account

by researchers engaged in the enzymology of the a-amy-

lase family. The main reason was that the hcHAT proteins

obviously do not obey all the criteria defined for an enzyme

to be a member of the a-amylase family [93, 94]. The

eventual evolutionary relatedness between the hcHATs and

the a-amylase family enzymes was first studied in a detail

in 1997 [95] when the attention was paid mainly to domain

B, protruding typically in the family GH13 out of the

catalytic (b/a)8-barrel (simply called the TIM-barrel [1, 30,

31]) between the strand b3 and the helix a3 [61, 63, 67, 72,

96–104], which in the rBAT protein is present, whereas the

4F2 antigen lacks it (Fig. 3a). Both the rBAT protein and

4F2 antigen belong to the so-called solute carrier families

SLC7 (the light chain) and SLC3 (the heavy chain); the

respective hetero-chains being connected by a disulphide

bridge [105–109]. Both groups have been accepted as

members of the CAZy a-amylase family GH13 members

and received the subfamily numbers GH13_34 and

GH13_35 for the heavy chains of 4F2 antigens and rBAT

proteins, respectively [46]. HAT proteins are responsible

for transport of various types of amino acids across the

plasma membrane in animals, namely in mammals, and

their defects may lead to a failure in amino acids re-ab-

sorption and digestion (e.g., cystinuria, lysinuric protein

intolerance) [107–109]. While the light chain has nothing

to do with the family GH13 (it is a hydrophobic trans-

membrane protein consisting of 12 a-helices), the heavy

subunit consists of the intracellular N-terminus, a trans-

membrane region and a large extracellular C-terminal part

that exhibits the unambiguous sequence-structural simi-

larity with a-glucosidases from the a-amylase family

GH13 [91, 92, 110, 111]. Thus, the transportation activity

is operated by the light subunit, whereas the heavy chain

functions as a chaperone to help to orient the light chain to

a proper position in the plasma membrane [112–114]. Note

that, only the heavy subunit in its C-terminal part exhibits

clear sequence similarities with the members of the a-
amylase family [50, 91, 92, 95, 103, 104].

Interestingly, however, the heavy chains of both the

rBAT protein and the 4F2 antigen display the best simi-

larity to the a-amylase family GH13 enzymes in the parts

of their sequences that are not involved in the catalytic

action (Fig. 3b), i.e., in CSR-VI (the strand b2 of the cat-

alytic TIM-barrel) and CSR-VII (the strand b8) [50]. While

the heavy chain of the 4F2 antigen does not possess the

segment corresponding with the domain B [50, 95, 103],

the heavy subunit of the rBAT protein contains the entire

domain B that is, moreover, very closely related to its

counterpart seen in the members of the so-called oligo-1,6-

glucosidases [45, 48, 95], sharing even the sequence fin-

gerprint QPDLN of the CRS-V [50, 95]. The evidently

closer relationships between the enzymes from the oligo-

1,6-glucosidase subfamily and the heavy-chains of the

rBAT proteins is reflected also in the presence of catalytic

residues in the transport proteins, although in all cases the

entire GH13 catalytic triad is not conserved completely.

This feature could even be traced among the potential

sequences of the heavy subunits of the rBAT proteins

originated from basal metazoa [50]. For the heavy chain of

the 4F2 antigen, no a-glucosidase activity has been

detected [103], which is in agreement with a lack of resi-

dues that would correspond to the catalytic triad of the

members of the a-amylase family [50, 103, 104], i.e., the

aspartic acid as the catalytic nucleophile at the strand b4
(the CSR-II), the glutamic acid as the proton donor at the

strand b5 (the CSR-III) and the aspartic acid as the tran-

sition-state stabilizer at the strand b7 (the CSR-IV) [1, 31].

With regard to sequence-structural resemblance of

heavy chains of both the rBAT protein and 4F2 antigen, it

is worth mentioning that, for example, the human 4F2

heavy chain lacks not only domain B, but also a stretch of

about 40 amino acid residues succeeding the strand b4, i.e.,
it possesses a very short loop 4 connecting the strand b4 to

helix a4 [50], whereas in both the oligo-1,6-glucosidase

and the human rBAT heavy chain (both having also the

entire domain B [93, 102]) the loop connecting the strand

b4 to the helix a4 is longer (Fig. 3c). It is of note that even

the GH13 neopullulanase subfamily members [45, 115],

possessing shorter domain B [95], also lack the longer

excursion of the loop 4 segment, but currently it is still

unknown whether or not the domain B in GH13 oligo-1,6-

glucosidase subfamily (and also in rBATs) operates in

bFig. 1 Comparison of seven CSRs of the family GH13 a-amylases

with focus on the subfamilies GH13_6 and GH13_7. These CSRs

cover mostly individual b-strands of the catalytic TIM-barrel domain

[32]. Each a-amylase in the list is characterized by the GH13

subfamily number [46], the source of origin (the organism) and the

accession number from the UniProt database [221]. The a-amylases

from the subfamilies GH13_6 and GH13_7 were collected from the

actual CAZy database [37], whereas the set of representative a-
amylases from the GH13 remaining subfamilies was prepared

according to previous in silico studies [74–79]. The catalytic triad

is signified by black-and-white inversion. Sequence features charac-

teristic of the GH13_7 archaeal a-amylases are highlighted in yellow.

The features typical specifically for each group of a-amylases within

the two GH13 subfamilies, i.e., (1) archaea and (flavo)-bacteria within

GH13_7; and (2) plants and bacteria within GH13_6, which may

discriminate the individual groups from each other are emphasized by

respective colors
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conjunction with the prolonged loop 4 (the b4 to a4 con-

nection) [50]. It seems, however, that the consecutive loss

of domain B in the heavy subunits of the 4F2 antigens

might be connected with adequate shortening of the loop4,

since this observation can be generalized to all 4F2 heavy-

chains proteins [50]. Noticeably, similar heteromeric

amino acid transporter system known in mammals was

observed in insect [116, 117], nematodes [118] and schis-

tozomes [119]. According to the in silico analysis of

hcHATs and their enzymatic counterparts from the a-
amylase family GH13 [50], a protein that could be close to

the common ancestor of hcHATs and GH13 a-glucosidases
might be represented by the hypothetical GH13-like

protein from the cnidarian starlet sea anemone Ne-

matostella vectensis.

Due to the obviously closer similarity of the heavy

chains of rBAT proteins to the family GH13 a-glucosidases
than that of those of 4F2 antigens, it is not easy to draw an

unambiguous scenario of their evolution [95]. Based on a

detailed in silico analysis [50], two different scenarios

should be considered (Fig. 4). One of the possibilities

means that the division of hcHATs from the enzymes of the

a-amylase family might occur in one single event in basal

Metazoa and subsequent split to rBAT proteins and 4F2

antigens in chordates. The above-mentioned higher simi-

larity of the rBAT proteins to the GH13 enzymes than to

Fig. 2 Evolutionary tree of the family GH13 a-amylases with focus

on the subfamilies GH13_6 and GH13_7. The tree is based on the

alignment of seven conserved sequence regions, shown in Fig. 1. The

tree was calculated using the neighbor-joining clustering [222]

implemented in the Clustal-W2 phylogeny package [223] available

at the European Bioinformatics Institute’s web-site (http://www.ebi.

ac.uk/), and then displayed with the program iTOL [224]. Tertiary

structures of representatives of flavobacterial, archeal and plant

family GH13 a-amylases are shown near their clusters in the tree.

Sources of the a-amylases: Sinomicrobium sp. 5DNS001 [81] (sub-

family GH13_7; flavobacteria); Pyrococcus woesei [72] (subfamily

GH13_7; archaea); Hordeum vulgare—barley high pI isozyme AMY-

2 [61] (subfamily GH13_6; plants). The archaeal and plant a-amy-

lases are experimentally solved crystal structures retrieved from the

Protein Data Bank (PDB) [225] under the PDB codes 1MWO and

1AMY, respectively. The flavobacterial a-amylase is a tertiary

structure model obtained at the fold recognition server Phyre-2 [89]

for its amino acid sequence (UniProt accession number: L7Y1I6;

residues: Gly52-Gly477) based on the P. woesei a-amylase structure

(1MWO) as template. The individual domains are colored as follows:

catalytic (b/a)8-barrel—red, domain B—blue, domain C—green. The

structural models were displayed with the program PyMol [226]
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the 4F2hc antigens could be explained by a selection

pressure acting against change upon rBAT (and not upon

4F2hc), to preserve its eventual enzymatic capabilities,

although until now no evidence has been delivered con-

cerning the enzymatic activity of any rBAT protein [50].

Alternatively, the 4F2hc protein could be experiencing

accelerated evolution toward some new function, accom-

panied by changes in both sequence and structure, while

rBAT has retained its original function, remained mostly

unchanged and thus similar to GH13 enzymes. The other

eventuality assumes two independent branching events:

one of the 4F2 antigens in the basal Metazoa and the other

one of the rBAT proteins directly from enzymes of oligo-

1,6-glucosidase subfamily of the a-amylase family in

chordates. Since chordates obviously do not possess

enzymes of the oligo-1,6-glucosidase subfamily [45, 48,

50], their a-glucosidases counterparts could have been

transformed into the heavy chains of the rBAT proteins

[120]. Both scenarios (Fig. 4) reflect the ancestry of both

rBAT proteins and 4F2 antigens anchored within the GH13

a-amylase family, the difference being only in the way

leading from the GH13 enzymes either to rBAT and 4F2

together or to rBAT and 4F2 separately [50]. At present, it

seems that the hcHATs are found in animals starting from

basal Metazoa, but it is not possible to exclude that in the

future some new sequences of hcHAT-like proteins of non-

metazoan origin become available [121].

The family GH77 amylomaltases from borreliae

The family GH77, together with families GH13 and GH70,

is a member of the a-amylase clan GH-H [31, 37]. As

already mentioned above, it is, in contrast to the main a-
amylase family GH13, a monospecific family, i.e., it con-

tains only one enzyme specificity of 4-a-glucanotransferase
(EC 2.4.1.25) [122]. The trivial name of the 4-a-glucan-
otransferase within the family GH77 has been distinguished

with regard to taxonomy—while in prokaryotes (both

Bacteria and Archaea) the name amylomaltase has been

used, the name disproportionating enzyme (DPE) has been

established in eukaryotes (mainly in plants and green algae)

[42–44, 123–135]. In general, the 4-a-glucanotransferase
catalyzes, employing the retaining reaction mechanism, the

intermolecular transglycosylation of a-1,4-glucans, i.e., it
transfers a glucan chain from one a-glucan to another one or
within a single linear glucan molecule to produce a cyclic a-
1,4-glucan [42–44, 136–138]. Currently, the family counts

almost 3000 sequenced members with absolute domination

of Bacteria accompanied approximately equally by a few

dozens each from Archaea and Eucarya [37].

From the structural point of view, since the family

GH77 is a member of the a-amylase clan GH-H, the GH77

bFig. 3 a Comparison of tertiary structures of the family GH13

hcHAT proteins from animals and a-glucosidase from bacteria.

Sources of the proteins: Homo sapiens 4F2hc antigen [103]

(subfamily GH13_34; left); Homo sapiens rBAT protein [111]

(subfamily GH13_35; middle); Bacillus cereus oligo-1,6-glucosidase

[96] (subfamily GH13_31; right). b Amino acid sequence alignment

of the same three proteins: human 4F2hc antigen [103] (UniProt

accession No.: P08195-1); human rBAT protein [111] (Q07837);

Bacillus cereus oligo-1,6-glucosidase (OGLU) [96] (P21332). Color

code for the selected residues: W, yellow; F, Y—blue; V, L, I—green;

D, E—red; R, K—cyan; H—brown; C—magenta; G, P—black. The

seven characteristic CSRs are boxed and marked above the alignment.

The colored lane above the alignment blocks means the three

domains shown in a. The catalytic triad is signified by asterisks under

the alignment. c Structural overlay emphasizing the longer loop 4

connecting the strand b4 to the helix a4 in the oligo-1,6-glucosidase

(green) and rBAT protein (blue) in comparison to a very short version

present in the 4F2hc antigen (red). The structures were superimposed

using the MultiProt web-server [227] (http://bioinfo3d.cs.tau.ac.il/

MultiProt/); the overlap being characterized by 280 corresponding

Ca-atoms and the RMSD value of 0.96 Å. The human 4F2hc antigen

and bacterial oligo-1,6-glucosidase are experimentally solved crystal

structures retrieved from the PDB [225] under the PDB codes 2DH3

and 1UOK, respectively. The human rBAT protein is a tertiary

structure model obtained at the fold recognition server Phyre-2 [89]

for its amino acid sequence (UniProt accession number: Q07837;

residues: Asp116-Glu649) based on the B. cereus oligo-1,6-glucosi-

dase structure (1UOK) as template. The individual domains are

colored as follows: catalytic (b/a)8-barrel—red, domain B—blue,

domain C—green. The structures were visualized with the program

PyMol [226]

Fig. 4 Evolutionary scenarios of hcHAT proteins with respect to the

a-amylase family GH13. The left eventuality considers a single-event

division of both rBAT proteins and 4F2hc antigens from the enzymes

of the a-amylase family in basal Metazoa with a subsequent split to

rBAT proteins and 4F2 antigens in higher animals like chordates. The

right possibility counts with two independent evolutionary events

leading first to separation of the 4F2hc antigens from the a-amylase

family enzymes in the basal Metazoa and second to recruitment of the

rBAT proteins from enzymatic members of the oligo-1,6-glucosidase

subfamily in higher animals
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4-a-glucanotransferase possesses a typical catalytic (b/a)8-
barrel (TIM-barrel). It contains just more insertions in

comparison with the family GH13 TIM-barrel having, in

fact, only domain B protruding out of the barrel in the place

of the loop 3 connecting the strand b3 to the helix a3
(Fig. 2). The family GH77 4-a-glucanotransferase TIM-

barrel has thus three subdomains called B1, B2 and B3

(Fig. 5), of which B1 and B3 correspond with domains B

and C in the family GH13, while the subdomain B2 is

unique for the family GH77 [44, 139–143]. It is, however,

worth mentioning that although the subdomain B3 may

play the role of the C-terminal family GH13 domain C

succeeding the catalytic TIM-barrel, it is not an antiparallel

b-sandwich (a Greek key motif) seen typically in the GH13

(see Figs. 2, 5).

Within the family GH77, the amylomaltases from the

genus Borrelia obviously play a special (evolutionary) role

[122]. Originally, based on the complete genome sequence

of the Lyme disease spirochaete Borrelia burgdorferi

[144], an in silico analysis published in 2003 [145] deliv-

ered a remarkable observation of mutations in several

conserved and functionally important positions in the B.

burgdorferi hypothetical amylomaltase encoded by the

gene malQ. The importance of the eventual mutations in

the hypothetical GH77 amylomaltase was strengthened by

the fact that, one of the residues was the otherwise

throughout the entire clan GH-H invariantly conserved

arginine in the position i-2 with respect to catalytic

nucleophile (aspartic acid) located at the strand b4 of the

catalytic TIM-barrel, i.e., in the CSR-II [145]. The possible

implications of remarkable in silico observations thus

evoked a serious interest for experimental confirmation.

The gene malQ from B. burgdorferi was cloned and

expressed in Escherichia coli and the recombinant amy-

lomaltase was shown to exhibit not only all the unique

sequence features seen in the hypothetical MalQ but also

the amylomaltase activity [129].

According to the most recent study focused on analysis

of all available amylomaltase sequences from borreliae

within the context of the entire family GH77 [122], 32 such

sequences can be, in fact, divided into a few groups.

Basically, there are only two major groups with respect to

the presence/absence of the above-mentioned functional

arginine, which—if naturally substituted—only lysine has

been observed to replace it (Fig. 5c). It is the position of

the Arg291 in the amylomaltase from Thermus aquaticus

[43] mutated to Lys306 in the B. burgdorferi counterpart

[129]. It should be pointed out that with regard to domain

composition and length, all 32 amylomaltases from bor-

reliae resemble typical bacterial GH77 amylomaltases

represented by the enzyme from T. aquaticus. Neverthe-

less, some of those with the arginine to lysine mutation

contain additional substitutions in several other well-con-

served positions. On the other hand, some of those,

possessing the original arginine, keep also those well-

conserved positions (Fig. 6) characteristic for typical

prokaryotic amylomaltases of non-borrelian origin [145].

Besides there are also some that exhibit an intermediary

character. This phenomenon as a whole makes the amy-

lomaltases from borreliae a unique evolutionary lineage in

Fig. 5 Tertiary structures of the family GH77 amylomaltases from

bacteria and their comparison. Sources of the amylomaltases:

a Thermus aquaticus [139]; b Borrelia burgdorferi [129]. c Structural
overlay focusing on the active-site residues with complexed acarbose

in the Thermus amylomaltase (red) compared with the naturally

mutated corresponding residues in the Borrelia amylomaltase (blue).

The structures were superimposed using the MultiProt web-server

[227] (http://bioinfo3d.cs.tau.ac.il/MultiProt/); the overlap being

characterized by 488 corresponding Ca-atoms and the RMSD value of

0.18 Å. The Thermus amylomaltase is experimentally solved crystal

structure retrieved from the PDB [225] under the PDB code 1ESW,

whereas the Borrelia amylomaltase is a tertiary structure model

obtained at the homology modeling server SwissModel [228] for its

amino acid sequence (UniProt accession number: A6YM39; residues:

Asn12-Ala507) based on the T. aquaticus amylomaltase structure

(1CWY [44]) as template. The individual domains are colored as

follows: catalytic (b/a)8-barrel—red, subdomain B1—cyan, subdo-

main B2—magenta, subdomain B3—green. The exact positions of

displayed active-site residues in the amino acid sequence can be

identified in the alignment shown in Fig. 6. Based on the accepted

nomenclature [229] the acarbose occupies the subsites from -3 to

?1. The structures were visualized with the program PyMol [226]
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the family GH77 [122]. However, it should also be taken

into account that until now of the 32 available GH77

amylomaltase sequences from borreliae, the MalQ from B.

burgdorferi is the only one that has already been bio-

chemically characterized and found enzymatically active

[129, 146].

The family GH77 offers also other examples that are of

interest from the evolutionary point of view, e.g., the DPE2

version of a typical plant DPE1 [42, 134, 135] possessing

an insert of *140 residues between catalytic nucleophile

and proton donor [147–152] that have been found also

among some bacteria [122], or a large group of additional

bacterial amylomaltases represented by the enzyme from

Escherichia coli [125] including also the well-character-

ized amylomaltase from Clostridium glutamicum [131,

153–155] that have at the N-terminus a separate carbohy-

drate-binding module-(CBM)-like domain [122, 142]. In

any case it is evident that with regard to the family GH77 a

gradual evolutionary transition has occurred among bor-

reliae that can be characterized from the version of a

typical bacterial Thermus-like amylomaltase to the version

with progressively mutated functionally important con-

served residues [122].

Other examples of interest

The main goal of this review article was to demonstrate

some selected examples of remarkable evolutionary phe-

nomena within the a-amylase clan GH-H. There are many

other cases that would deserve to be mentioned, including

also those seen in the second and smaller a-amylase family

GH57. To mention at least a few, the non-exhaustive list

could be as follows: (1) close similarity and relatedness

between the family GH13 a-amylases from animals and

actinomycetes [28, 74, 79] constituting a well-known group

of chloride-dependent a-amylases [156, 157]; (2) existence

of an intermediary group of a-amylases, classified in the

subfamily GH13_36 [48], with a mixed enzyme specificity

exhibiting simultaneous relatedness to various a-glucosi-
dases and debranching enzymes [158–163] from the so-

called subfamilies of oligo-1,6-glucosidase and neopullu-

lanase [45, 46]; (3) presence of the so-called a-amylase-

like homologues in the family GH57 [164–166] strikingly

similar to a-amylases, but having incomplete GH57 cat-

alytic machinery—the real a-amylases being more frequent

among Archaea, whereas the a-amylase-like homologues

are being found rather among Bacteria [164]; (4) the pro-

nounced similarity between the a-amylase families GH57

and GH119 revealed by an in silico study suggesting that

the members of the family GH119 share with those of the

GH57 catalytic machinery, CSRs and fold of the catalytic

domain [167]; (5) observation of a totally novel lineage or

subfamily of glucansucrases within the circularly-permuted

family GH70 [39–41, 168–170], exhibiting a close

homology to the rest of the family but without any circular

permutation of the catalytic TIM-barrel [171, 172]; (6)

existence of various and evolutionarily independent starch/

glycogen-binding domains classified as different CBM

families [173–185] in, e.g., not typical amylolytic enzymes

and proteins, such as glucan phosphatases—animal laforin

and plant SEX-4 [186–197], AMP-activated protein kinase

[198–201], genethonin-1 [202, 203], and starch synthases

[204–206], glucan water dikinases [207–211] and lytic

polysaccharide monooxygenases [212–214]; and (7) the so-

called carbohydrate surface binding sites different from the

distinct CBMs mentioned above and present in various

carbohydrate-active enzymes, well represented just in the

a-amylase family GH13 [69, 72, 215–219]—in the par-

ticular case of the barley a-amylase low pI isozyme AMY1

named as ‘‘a pair of sugar tongs’’ and a starch granule

binding site, respectively [69, 218]. All these particular

details make the a-amylases and the remaining enzyme

specificities an attractive subject not only for evolutionary

studies but also from the practical point of view for the

approaches focused on their protein design. Even if known

that some living organisms can survive without any sugars

[220].

Conclusions

Due to a huge amount of accumulated sequence data, the

questions concerning the structure, function and evolution

of amylolytic enzymes have really become complicated,

bFig. 6 Amino acid sequence comparison of family GH77 amyloma-

ltases from borreliae and Thermus aquaticus. The four amylomaltases

from borrelian origin represent different subgroups within the genus

Borrelia [122] exhibiting unique mutations in several important

active-site positions with respect to a typical bacterial amylomaltase

represented by the one from Thermus [129, 145]. The sequences were

retrieved from the UniProt database [221] according to their accession

numbers succeeding the name of the organism. The alignment was

done using the program Clustal-Omega [230] available at the

European Bioinformatics Institute’s web-site (http://www.ebi.ac.uk/

). The unique borreliae-like positions (Asn228, Lys306 and Gly407)

and the catalytic triad (Asp308, Glu355 and Asp408; B. burgdorferi

amylomaltase numbering) are signified by yellow/red and blue

highlighting, respectively. The positions in amylomaltases from

borreliae identical to that from Thermus are shown as dots. The black

highlighting in the T. aquaticus amylomaltase means that all four

borrelian counterparts have the same residue in those positions. The

positions that are signified by black highlighting in amylomaltases

from borreliae are identical among them but different from those in

the enzyme from Thermus. The seven CSRs known for the entire a-
amylase clan GH-H are boxed and marked as CSR-I to CSR-VII with

indicated well-accepted secondary structure elements [32]. The

individual domains are indicated as a colored lane above the align-

ment blocks as follows: catalytic (b/a)8-barrel—red, subdomain B1—

cyan, subdomain B2—magenta, subdomain B3—green
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123

http://www.ebi.ac.uk/


especially when they are ambitiously treated in an effort to

reach answers to complex questions. This obvious trend

can simply be illustrated by a few dozens of the a-amylase

family GH13 members when it was created in 1991 versus

more than 30 thousand sequences classified in the family

nowadays. There is, however, not only the prevalent

number of sequences available complicating the situation,

i.e., our knowledge, but there is also the necessity to accept

the changes in minds of scientists reflecting the continu-

ously widening scope of the a-amylase family. Thus, for

example, this family was originally established as a family

of starch hydrolases and related enzymes active towards

the a-1,4- and a-1,6-glucosidic linkages catalyzing either

the hydrolysis (EC 3) or transglycosylation (EC 2). Cur-

rently, also other bonds are attacked, e.g., those in trehalose

(a-1,1-) and sucrose (a-1,2-), the enzymatic repertoire of

the family members has been expanded including the iso-

merases (EC 5). What might originally be unbelievable,

even the non-enzymatic transport proteins (rBAT and

4F2hc), lacking in most cases the GH13 catalytic

machinery, have been classified constituting their respec-

tive GH13 subfamilies. One of the ways that could lead to a

consolidation of the knowledge may be to continue in

looking for and revealing the features in amino acid

sequences and structures that would reflect the exclusivity

of smaller family groups (i.e., subfamilies) of either par-

ticular substrate specificity or from the point of view of

taxonomy, or both, and confirming their roles

experimentally.
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2722 Š. Janeček, M. Gabriško
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123

http://dx.doi.org/10.1007/s00018-016-2247-5
http://dx.doi.org/10.1007/s00018-016-2247-5
http://dx.doi.org/10.1007/s00018-016-2244-8
http://dx.doi.org/10.1007/s00018-016-2244-8
http://dx.doi.org/10.1007/s00018-016-2245-7
http://dx.doi.org/10.1007/s00018-016-2242-x
http://dx.doi.org/10.1007/s00018-016-2250-x


phosphatase activity of starch excess4. Proc Natl Acad Sci USA

107:15379–15384

197. Emanuelle S, Brewer MK, Meekins DA, Gentry MS (2016)

Unique carbohydrate binding platforms employed by the glucan

phosphatases. CellMol Life Sci. doi:10.1007/s00018-016-2249-3

198. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green

KA, Baba O, Terashima T, Hardie DG (2003) A novel domain

in AMP-activated protein kinase causes glycogen storage bodies

similar to those seen in hereditary cardiac arrhythmias. Curr Biol

13:861–866

199. Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S,

Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW,

Kemp BE, Stapleton D (2003) AMPK b subunit targets meta-

bolic stress sensing to glycogen. Curr Biol 13:867–871

200. Polekhina G, Gupta A, van Denderen BJ, Feil SC, Kemp BE,

Stapleton D, Parker MW (2005) Structural basis for glycogen

recognition by AMP-activated protein kinase. Structure 13:

1453–1462

201. Emanuelle S, Hossain MI, Moller IE, Pedersen HL, van de

Meene AM, Doblin MS, Koay A, Oakhill JS, Scott JW, Willats

WG, Kemp BE, Bacic A, Gooley PR, Stapleton DI (2015)

SnRK1 from Arabidopsis thaliana is an atypical AMPK. Plant J

82:183–192

202. Janecek S (2002) A motif of a microbial starch-binding domain

found in human genethonin. Bioinformatics 18:1534–1537

203. Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia JM, DePaoli-

Roach AA, Wells CD, Skurat AV, Roach PJ (2010) Starch binding

domain-containing protein 1/genethonin 1 is a novel participant in

glycogen metabolism. J Biol Chem 285:34960–34971

204. Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde

R, Parisi G (2006) Starch-synthase III family encodes a tandem

of three starch-binding domains. Proteins 65:27–31

205. Gomez-Casati DF, Martı́n M, Busi MV (2013) Polysaccharide-

synthesizing glycosyltransferases and carbohydrate binding mod-

ules: the case of starch synthase III. Protein Pept Lett 20:856–863

206. Barchiesi J, Hedin N, Gomez-Casati DF, Ballicora MA, Busi

MV (2015) Functional demonstrations of starch binding

domains present in Ostreococcus tauri starch synthases isoforms.

BMC Res Notes 8:613

207. Mikkelsen R, Suszkiewicz K, Blennow A (2006) A novel type

carbohydrate-binding module identified in a-glucan, water dik-
inases is specific for regulated plastidial starch metabolism.

Biochemistry 45:4674–4682

208. Glaring MA, Baumann MJ, Abou Hachem M, Nakai H, Nakai N,

Santelia D, Sigurskjold BW, Zeeman SC, BlennowA, SvenssonB

(2011) Starch-binding domains in the CBM45 family—low-

affinity domains from glucan, water dikinase and a-amylase

involved in plastidial starch metabolism. FEBS J 278:1175–1185

209. Hejazi M, Steup M, Fettke J (2012) The plastidial glucan, water

dikinase (GWD) catalyses multiple phosphotransfer reactions.

FEBS J 279:1953–1966

210. Orzechowski S, Grabowska A, Sitnicka D, Siminska J, Felus M,

Dudkiewicz M, Fudali S, Sobczak M (2013) Analysis of the

expression, subcellular and tissue localisation of phosphoglucan,

water dikinase (PWD/GWD3) in Solanum tuberosum L.: a

bioinformatics approach for the comparative analysis of two a-
glucan, water dikinases (GWDs) from Solanum tuberosum L.

Acta Physiol Plant 35:483–500

211. Mahlow S, Orzechowski S, Fettke J (2016) Starch phosphory-

lation: insights and perspectives. Cell Mol Life Sci. doi:10.1007/

s00018-016-2248-4

212. Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA

(2014) A family of starch-active polysaccharide monooxyge-

nases. Proc Natl Acad Sci USA 111:13822–13827

213. Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hems-

worth GR, Stringer MA, von Freiesleben P, Tovborg M,

Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P,

Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH

(2015) Structure and boosting activity of a starch-degrading

lytic polysaccharide monooxygenase. Nat Commun 6:5961

214. Vu VV, Marletta MA (2016) Starch-degrading polysaccharide

monooxygenases. Cell Mol Life Sci. doi:10.1007/s00018-016-

2251-9

215. Cuyvers S, Dornez E, Delcour JA, Courtin CM (2012) Occur-

rence and functional significance of secondary carbohydrate

binding sites in glycoside hydrolases. Crit Rev Biotechnol

32:93–107

216. Cockburn D, Wilkens C, Ruzanski C, Andersen S, Willum Niel-

sen J, Smith AM, Field RA, Willemoës M, Abou Hachem M,
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