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Abstract The thymus provides a specialized microenvi-

ronment in which a variety of stromal cells of both

hematopoietic and non-hematopoietic origin regulate

development and repertoire selection of T cells. Recent

studies have been unraveling the inter- and intracellular

signals and transcriptional networks for spatiotemporal

regulation of development of thymic stromal cells, mainly

thymic epithelial cells (TECs), and the molecular mecha-

nisms of how different TEC subsets control T cell

development and selection. TECs are classified into two

functionally different subsets: cortical TECs (cTECs) and

medullary TECs (mTECs). cTECs induce positive selec-

tion of diverse and functionally distinct T cells by virtue of

unique antigen-processing systems, while mTECs are

essential for establishing T cell tolerance via ectopic

expression of peripheral tissue-restricted antigens and

cooperation with dendritic cells. In addition to reviewing

the role of the thymic stroma in conventional T cell

development, we will discuss recently discovered novel

functions of TECs in the development of unconventional T

cells, such as natural killer T cells and cdT cells.
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Introduction

T lymphocytes (T cells) are central players in the adaptive

immune system. Specific antigen recognition by T cells is

dependent on their T cell antigen receptors (TCRs), abTCR
and cdTCR. T cells that express an abTCR (abT cells), as

well as a coreceptor CD4 or CD8, are considered ‘con-

ventional’ T cells in human and mouse. They are termed as

such because abTCR recognition of peptide antigens dis-

played by major histocompatibility complex (MHC)

proteins plays a major role in immune responses against

foreign antigens. Therefore, in this article, the terms ‘T

cell’ and ‘TCR’ refer to abT cell and abTCR, respectively,
unless otherwise specified. The specificity of antigen

recognition by TCR is stringently established, such that T

cells are reactive to foreign antigens but are tolerant to self-

antigens [1, 2].

T cell development and TCR repertoire formation occur

primarily in the thymus [3]. The thymus is an organ that

provides a unique microenvironment composed of a variety

of stromal cells, including thymic epithelial cells (TECs),

endothelial cells, fibroblasts, and hematopoietic stromal

cells such as dendritic cells (DCs) [4, 5]. These thymic

stromal cells coordinate a three-dimensional meshwork

architecture that hosts hematopoietic stem cell-derived

T-lineage cells, called thymocytes, and critically supports

their development. The thymus is subdivided into two

histologically discrete regions, the cortex and medulla. The

cortex is the outer region of the thymus, where a stromal

meshwork houses densely packed immature thymocytes,

while the medulla is the inner region with less densely

localized mature thymocytes and enriched stromal cells.

The most characteristic stromal components that distin-

guish cortical and medullary microenvironments are two

different subsets of TECs: cortical TECs (cTECs) and
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medullary TECs (mTECs). cTECs and mTECs are both

derived from endodermal epithelium, yet they display

distinct phenotypes and functions in the regulation of T cell

development. These TECs, along with other stromal cells,

provide multiple signals to guide the differentiation,

migration, proliferation, survival, and death of developing

thymocytes, thus playing pivotal roles in forming the

adaptive immune system [6, 7].

In this review, we first provide an overview of the

stepwise process of T cell development in the thymus, and

then review historical and recent studies on the develop-

ment and function of TECs, particularly focusing on the

contrasting roles of cortical and medullary microenviron-

ments. We will also highlight the bidirectional interplay

between TECs and developing thymocytes that is required

for optimal development and repertoire formation of T

cells. In addition, recently discovered functions of TEC

subsets in controlling unconventional T cell development

are also discussed.

Overview of thymic T cell development

T cell development begins with seeding of the thymus by

early T cell progenitors (ETPs) derived from hematopoietic

stem cells in fetal liver or adult bone marrow [8]. These

ETPs belong to CD4/CD8 double negative (DN) thymo-

cytes and undergo developmental programs through DN1

(CD44?CD25-), DN2 (CD44?CD25?), DN3 (CD44--

CD25?), and DN4 (CD44-CD25-) stages. During DN2

and DN3 stages, V(D)J rearrangement at TCRc, d and b
loci occurs. Production of a successfully rearranged TCR

b-chain leads to further differentiation into the DN4 stage.

This process, called ‘b selection’, ensures commitment to

the abT cell lineage, and DN4 thymocytes proliferate and

express CD4 and CD8 coreceptors, giving rise to CD4/CD8

double positive (DP) thymocytes. These differentiation

processes are associated with relocation of thymocytes [9]:

in adult thymus, ETPs first arrive at the cortico-medullary

junction, developing DN2 and DN3 thymocytes migrate

through the cortex toward the subcapsular region, and the

generation of DP thymocytes occurs in the outer cortex.

In the cortex, DP thymocytes undergo TCRa-VJ rear-

rangement, thereby expressing abTCR on the cell surface.

Interaction of abTCR with peptide-MHC (pMHC) com-

plexes presented in the cortical microenvironment leads to

the fate decision of DP thymocytes. DP thymocytes that

receive low avidity TCR interactions with self pMHC

survive and differentiate into CD4 single positive (SP) or

CD8SP thymocytes, in a process referred to as positive

selection. In contrast, DP thymocytes expressing TCR

strongly reactive to self pMHC (self-reactive cells) die by

apoptosis, a process referred to as negative selection.

Positively selected CD4SP or CD8SP thymocytes relocate

to the medulla by chemotactic migration. In the medulla,

mTECs express a variety of peripheral tissue-restricted

antigens (TRAs) that are presented autonomously by

mTECs or indirectly by DCs, such that SP thymocytes

reactive to TRAs are deleted by negative selection or

induced to differentiate into Foxp3? regulatory T cells

(Tregs). These medullary controls of T cell development

are crucial for establishment of self-tolerance and pre-

venting autoimmunity, and largely depend on autoimmune

regulator (Aire), a nuclear factor expressed in mTECs.

Consequently, mature SP thymocytes that have completed

cortical and medullary selection processes—and which

thereby express diverse yet self-tolerant TCRs—are

released to the circulation as naı̈ve T cells (Fig. 1).

In addition to the mainstream conventional abT cell

development, the thymus also supports the development of

unconventional (non-classical) T cells. cdT cells form a

distinct T cell lineage expressing cdTCR that recognizes

native non-peptide and peptide antigens such as stress-in-

duced proteins. abT and cdT cell development diverge at

the DN2 and DN3 stages. Unlike abT cell development,

cdT cell development does not require antigen-specific

interactions in the thymus [10]. cdT cell subsets expressing

different TCR-Vc chains are generated at defined periods

during ontogeny and distribute to different epithelial and

mucosal tissues [11]. Invariant natural killer T (iNKT) cells

represent an unconventional abT cell subset expressing

invariant Va14-Ja18 TCR that recognize glycolipid anti-

gens presented by MHC-like CD1d molecules, and play

roles in controlling innate and adaptive immune responses

[12]. These iNKT cells are positively selected by CD1d/

glycolipid complexes expressed on the surface of DP thy-

mocytes [13].

T cell development as described above is controlled in

the thymic microenvironment, mainly by TECs, and in

turn, developing T cells critically regulate the development

of TECs, such that T cell immunity can be finely tuned for

optimal immune responses.

Generation of thymic epithelium

Thymic epithelial cells are derived from endodermal

epithelium from the third pharyngeal pouch [14]. Early

TEC development is controlled by specific transcription

factors including FoxN1 (Whn), Tbx1, and Pax1 [15, 16].

FoxN1 is a major mediator of TEC development and

function, as FoxN1 deficiency completely disrupts thymic

T cell development in animals and human [17–20]. FoxN1

regulates the transcription of various target genes essential

for hematopoietic function of the thymus, including

cytokines, chemokines, and Notch ligands. FoxN1
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expression is detected in almost all TECs during embryo-

genesis [21], in a manner dependent on Wnt signaling [22],

while a fraction of TECs from adult mice lose the

expression of FoxN1 but maintain the expression of its

target genes [23], suggesting a FoxN1-independent mech-

anism for maintenance and function of postnatal TECs.

Other factors that regulate TEC development include the

transcription factor p63 and its interacting partner Poly-

comb protein Cbx4. Both are strongly expressed in TECs

and required for proliferation and maintenance of cTECs

and mTECs [24–26].

Thymic cortex

cTEC development

The stromal architecture in the thymic cortex is mainly

composed of cTECs. cTECs can be identified by expres-

sion of marker proteins such as Keratin-8, Keratin-18,

Cerebellar degeneration-related antigen 1 (CDR1), CD205,

CD249 (Ly51), Interleukin (IL)-7, the thymoproteasome

subunit b5t, and the atypical non-signaling chemokine

receptor CCRL1 (CCX-CKR1). In contrast, mTECs are

characterized by a different set of markers such as Keratin-

5, Keratin-14, CD80, and Aire. Both cTECs and mTECs

are derived from common endodermal progenitor cells

identified in the third pharyngeal pouch [27, 28]. These

common TEC progenitors progress to a transitional pro-

genitor stage, a process dependent on the transcription

factor FoxN1 [29, 30]. Such transitional TEC progenitors

express cTEC-associated genes such as CD205, b5t,
CCRL1, and IL-7, and give rise to both cTECs and mTECs,

including the Aire? subset [30–33]. It is still unclear how

cTEC and mTEC lineage determination progresses: whe-

ther asymmetrically, in that the transitional progenitors

undergo maturation into cTECs by default or lose cTEC

traits upon differentiation to mTECs, or symmetrically, in

that the transitional progenitors coexpress cTEC- and

mTEC-associating genes and acquire enhanced expression

of lineage-associating genes or lose ones for another lin-

eage during lineage determination [34].

Generation of transitional TEC progenitors does not

require lymphocyte-derived signals, since Keratin-8? cells

are detected in Rag2/cc double-deficient mice, in which the

development of T, B, and NK cells is completely impaired

Fig. 1 Roles of thymic stromal cells in T cell development.

Developing DN thymocytes migrate from the cortico-medullary

junction toward the subcapsular region, and then back toward the

medulla upon development to DP thymocytes. In the cortex, DP

thymocytes begin to express TCR on their surface and are selected

upon interaction with pMHC complexes displayed in the microenvi-

ronment. cTECs produce a unique set of MHC-bound peptides that

are essential for inducing positive selection, while DCs critically

contribute to induction of negative selection. Intimate interaction

between DP thymocytes and cTECs results in formation of TNCs,

which facilitate prolonged survival of inner DP thymocytes and

secondary TCRa recombination. Positively selected cells migrate into

the medulla in response to chemokines produced by mTECs. cdT
cells diverge from the abT cell lineage at the DN stage, and their

repertoire formation is regulated by cTECs through unknown

mechanisms. The cortical microenvironment is also important for

positive selection of iNKT cells that depends on cell–cell interaction

among DP thymocytes. In the medulla, SP thymocytes are screened

for self-reactivity. SP thymocytes reactive to TRAs presented by

mTECs or DCs are deleted by negative selection or induced to

differentiate into Foxp3? Treg cells
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[35], and b5t expression in TECs is readily detectable in

CD3eTg26 mice, in which thymocyte development arrests

at DN1 due to the unidentified mechanism caused by

genomic insertion of multiple copies of a human CD3e
transgene [36]. The expression of cTEC-specific markers

or functional proteins, such as CD249, CCRL1, b5t and
MHC class II, gradually increases along cTEC ontogeny

[29, 33, 36, 37]. Mature MHC class IIhi cTECs are

detectable in Rag1-deficient mice (arrested at DN3) but not

in CD3eTg26 mice (arrested at DN1) [29], indicating that

the functional maturation of cTECs requires thymocyte

development beyond the DN1 stage. This is consistent with

an early report that the meshwork architecture of thymic

cortical epithelium is disturbed in CD3eTg26 mice [38].

Maturation of cTECs was restored in CD3eTg26 mice by

transfer of wild-type T-progenitor cells [39]. Together,

these results indicate that maturation of cTECs requires

signals delivered by developing thymocytes, likely through

as of yet unidentified intercellular signals (Fig. 2).

Early T cell development and migration

in the cortex

Cortical TECs are the predominant source of Notch ligands,

cytokines, and chemokines required for early T cell devel-

opment. Delta-like 4 (Dll4), a Notch ligand expressed by

cTECs, is essential and sufficient for T-lineage determination

of early lymphoid progenitors in the thymus [40–42]. IL-7 is

also predominantly produced by cTECs [43] and promotes

survival, proliferation, and differentiation of thymocytes [44–

46]. Outward migration of DN thymocytes from the cortico-

medullary junction to the subcapsular region is mediated by

chemokines CCL25 and CXCL12, produced by cTECs, and

their receptors CCR9 and CXCR4, respectively, expressed on

DN thymocytes [47–50]. CXCL12-CXCR4 signaling also

promotes b selection [51]. CCRL1, an atypical non-signaling

chemokine receptor highly expressed in cTECs [52], pro-

motes outwardmigrationofDN thymocytes via still-unknown

mechanisms [53, 54]. Vascular-cell adhesion molecule-1

Fig. 2 Development of thymic epithelial cells is induced by various

subsets of thymocytes. cTECs and mTECs arise from common

progenitor TECs (pTECs) in endodermal epithelium from the third

pharyngeal pouch. pTECs differentiate into ‘transitional’ pTECs that

express cTEC-associated genes such as b5t and IL-7. This process is

critically regulated by the transcription factor FoxN1 but independent

of lymphocytes. Thymocyte development beyond DN1 induces

maturation of cTECs expressing high levels of b5t. The development

of mTECs is triggered in embryonic thymus by LTi cells and cdT
cells that express RANKL. In postnatal thymus, SP thymocytes and

NKT cells express RANKL to promote the differentiation and

proliferation of Aire-expressing mTECs. RANKL-stimulated mTECs

produce OPG to self-tune their development. CD40L expressed in

CD4SP thymocytes cooperates with RANKL to promote mTEC

development. CD4SP thymocytes also express LTs, which induce

terminal differentiation of mTECs
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(VCAM-1), expressed by cTECs, and its receptor integrins

a4b1 and a4b7, expressed by DN thymocytes, are also

important for intimate stromal interaction and outward

migration of DN thymocytes [55]. DN thymocytes turn back

inward and differentiate into DP thymocytes at the subcap-

sular region, where transforming growth factor (TGF) b is

expressed and exerts negative feedback on DN to DP differ-

entiation [56].

The majority of DP thymocytes move randomly in the

cortex, likely scanning pMHC ligands for with newly

generated TCR in the cortical microenvironment [57].

Successful TCR interaction with pMHC ligands leads to a

stop of the ‘random walk’ migration and a prolonged

duration of thymocyte–stromal interaction [58], which is

required for efficient positive selection. Indeed, DP thy-

mocytes with enhanced migratory activity to cortical

chemokines CCL25 and CXCL12 in vitro and dysregulated

migration in in vivo thymic cortex undergo less positive

selection but unaltered negative selection [59, 60], indi-

cating that properly regulated migration and stromal

interaction of DP thymocytes is distinctly required for

positive selection.

Positive selection in the cortex

The most recognized function of cTECs is the induction of

T cell-positive selection. As described above, low affinity

TCR engagement by pMHC complexes induces positive

selection of functional T cells, whereas high affinity TCR-

pMHC interaction leads to negative selection of self-reac-

tive (potentially harmful) T cells. Recent studies support

the idea that cTECs have unique proteolytic and antigen-

processing capabilities to produce MHC-associating pep-

tides that are essential for positive selection.

For the MHC class I system, cTECs are equipped with a

unique type of proteasome. Proteasomes are multi-subunit

protease complexes responsible for producing MHC class

I-associating peptides as well as for turnover of intracellular

proteins [61]. Peptides with C-terminal hydrophobic anchor

residues are produced by chymotrypsin-like activity of the

proteasomes, which is mediated by b5 catalytic subunits.

Unlike most somatic cells that express ‘standard protea-

somes’ containing b5 subunits or immune cells and

interferon (IFN) c-stimulated cells that express b5i subunit-
containing ‘immunoproteasomes’ [62, 63], cTECs express a

specialized type of proteasome, called a ‘thymoproteasome’,

that contains the b5t subunit [64, 65]. b5t is exclusively

expressed by cTECs throughout the lifespan of mice [36],

thus representing a specific marker of cTECs. In mice defi-

cient for b5t, cTECs express b5- and b5i-containing
proteasomes and display a spectrum of MHC class I-asso-

ciating peptides that are different from those in b5t-sufficient
cTECs [66, 67]. In these mice, positive selection of MHC

class I-restricted thymocytes is substantially reduced, lead-

ing to a marked reduction (20 % of wild-type) and altered

repertoire of CD8 T cells, indicating that optimal positive

selection of CD8 T cells requires the b5t-dependent peptide
repertoire in cTECs. The b5t-dependent peptides are also

essential for functionally conditioning antigen responsive-

ness of positively selected CD8 T cells [68]. A recent study

identified unique cleavage motifs in b5t-dependent MHC

class I-associating peptides that confer low affinity TCR

interaction and capabilities to efficiently induce positive

selection [69]. This uniqueness of the peptide motifs might

be attributed to the peptide cleavage preference between b5t
and the other subunitsb5 andb5i [64, 69]. Collectively, these
aspects indicate that cTECs regulate positive selection of

CD8 T cells by producing a unique set of MHC class I-as-

sociating peptides that exhibit low affinity for TCR [70].

In the MHC class II system, various lysosomal proteases

produce peptide antigens [71]. cTECs highly express lysoso-

mal proteases cathepsin L and thymus-specific serine protease

(TSSP) [71, 72]. Mice deficient for cathepsin L show a

reduced positive selection of polyclonal CD4 T cells [73, 74].

TSSP-deficient mice show a defective positive selection of

CD4 T cells with certain TCR specificities [75, 76], including

diabetogenic self-reactive CD4T cells [77]. It was also shown

that cTECs exhibit high levels of constitutive macroau-

tophagy [78], a cellular process that facilitates loading of

endogenously generated peptides onto MHC class II mole-

cules. Mice with defective macroautophagy induction,

specifically in TECs, show altered repertoire selection of

certain CD4 T cells [79]. These data strongly support the idea

that cTECs have unique protein degradation and antigen-

processingmachineries for inducingpositive selection ofCD4

T cells, although the nature of MHC class II-associating

peptides produced by cTECs remains to be elucidated.

Negative selection in the cortex

Thymic cortex is also the place where self-reactive thy-

mocytes are deleted by negative selection. A recent study

estimated that nearly 6 times as many thymocytes undergo

negative selection compared with positive selection, and

75 % of negative selection occurs in the cortex [79], most

frequently in the inner cortical region [80]. However,

negative selection, by any experimental model tested, was

observed to be normal in b5t-deficient mice [66] and

TSSP-deficient mice [75], indicating that cTEC-specific

peptides are not required for cortical negative selection.

Involvement of cTECs in negative selection in the cortex

was also challenged by our recent finding that negative

selection was not affected in the TN mutant mice that

intrinsically lack mature cTECs (see below) [37]. Rather, it

is the cortex-resident DCs that appear to be responsible for

negative selection in the cortex [80].
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Thymic nurse cell

Recently, a long-argued topic in cTEC function was

revisited. In 1980, a group reported the discovery of unique

multicellular complexes in cell suspensions prepared by

enzymatically dissociating thymus tissues [81, 82]. These

complexes were termed ‘thymic nurse cells’ (TNC) for the

large thymic epithelial cells that had engulfed multiple (up

to 50) living lymphocytes within their intracellular vesi-

cles. These studies, as well as many later studies (reviewed

in [83]), hypothesized that TNCs provide a unique

microenvironment for T cell selection, although the precise

cell lineage and function of TNC-forming thymic epithe-

lium had long remained elusive. A recent report found that

approximately 10–15 % of b5t-expressing cTECs, but not

mTECs, form thymocyte-wrapping complexes in adult

mouse thymus that are identical to previously described

TNCs [84]. The formation of TNC requires normal

development of cTECs, as cTEC-deficient mice have no

TNCs in the thymus ([37] and our unpublished data). TNCs

are poorly formed in embryonic thymus from normal mice

or in adult thymus from ‘positive-selector’ TCR transgenic

mice, but readily detectable in the ‘null-selector’ mouse

thymus. The majority of TNC-enveloped lymphocytes are

long-lived, unselected DP thymocytes undergoing sec-

ondary TCRa-VJ rearrangements. Thus, TNCs are formed

upon persistent cTEC-DP thymocyte interactions and

facilitate secondary TCRa rearrangements. Given that the

efficiency of secondary TCRa rearrangements is controlled

by DP thymocyte survival [85], the microenvironments

within intra-TNC vesicles may ensure survival of enclosed

DP thymocytes. Secondary TCRa rearrangement is

required for multiplying the opportunities for positive

selection and thereby maximizing the developmental effi-

ciency of functional T cells [86]. The mechanisms by

which unselected thymocytes are enclosed into and posi-

tively selected thymocytes are released from the TNC

complexes, and how intra-TNC microenvironments pro-

mote survival and/or continued TCR rearrangement in DP

thymocytes, remain to be studied.

Taken together, SP thymocytes that passed positive and

negative selection in the cortex set out on a new journey

toward the medulla, to be further screened for TCR reac-

tivity to self.

New aspects of cTEC function: unconventional T

cell development

To date, a few studies have reported mutant mice lacking

normal cTEC development. Preferential loss of cTECs and

disorganized thymic cortical architecture were observed in

Keratin-5-driven Stat3-deficient mice [87], Eph4-deficient

mice [88], and transgenic insertional mutant mice called

Tg66 [89], although the molecular basis of the cTEC

deficiency in these mice remains unclear. A study using

mice transgenic for the human diphtheria toxin receptor

under the control of the CCRL1 promoter demonstrated

that diphtheria toxin-inducible depletion of cTECs resulted

in nearly complete loss of DN and DP thymocytes, con-

firming that cTECs are essential for thymic cortical

architecture and thereby maintenance of cortical thymo-

cytes [52].

Recently, we established a spontaneous mutant mouse

line, called TN that exhibits an almost complete loss of

mature cTECs yet only a modest effect on mTECs [37]. A

missense mutation in the gene encoding b5t was respon-

sible for this phenotype. The mutant b5t inhibits normal

proteasome assembly and cell survival, resulting in sub-

stantial loss of b5thigh mature cTECs and accumulation of

b5tlow transitional TEC progenitors. Therefore, the TN

mouse is a novel animal model that intrinsically and

specifically lacks mature cTECs. The thymus from TN

mice shows a disorganized cortical architecture, massive

loss of thymic cellularity, impaired positive selection, and

altered abTCR repertoire: all in agreement with the above-

described functions of cTECs in forming the cortical

microenvironment and inducing positive selection. cTEC

deficiency also caused a reduction in iNKT cell develop-

ment, possibly due to inefficient cell–cell interaction

among DP thymocytes in the disorganized cortical

microenvironment.

The most unexpected and significant finding from the

study of TN mice is the influence of mature cTEC defi-

ciency on development and repertoire formation of cdT
cells. It has been known that thymic development of cdT
cell subsets is ontogenically regulated and that cdT subsets

show different tissue distribution and effector functions

[11]. Recent studies have highlighted an IL-17-producing

subset of cdT (cdT17) cells, which includes Vc4? and

Vc6? cells in mice, as being essential for various infec-

tions, inflammations, and malignancies [90], although

regulation of thymic development of cdT17 cells remains

unclear. In the thymus from cTEC-deficient TN mice, while

the frequency of total cdT cells is unaltered, the proportion

of cdT17 cells is greatly increased [37]. Among these

cdT17 cells, the Vc6? subset robustly increased, whereas

the Vc4? subset decreased, resulting in the marked skew-

ing from Vc4 to Vc6 in the TCR repertoire of cdT17 cells

and the perturbation of cdT17-dependent inflammatory

responses in peripheral tissues. The cdT17 repertoire is

unaffected by b5t deficiency and mTEC development.

Thus, normal cTEC development contributes to optimal

repertoire formation not only of conventional abT cells but

also of unconventional ‘innate type’ cdT cells. The thymus

from TN mice may provide a ‘fetal type’ microenvironment

that specifically supports the predominant development of
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Vc6? cdT17 cells [91, 92]. It is also possible that the

thymus lacking mature cTECs has altered expression of as

of yet unidentified selecting ligand molecule(s) or cell-

surface proteins that mediate differentiation or deletion of

cdT17 cell subsets: for example, as mTECs regulate

development of Vc5?Vd1? cdT cells via expression of a

B7-family protein called ‘selection and upkeep of

intraepithelial T cells (Skint1)’ [93].

Thymic medulla

mTEC development

Medullary TECs emerge from TEC progenitors expressing

cTEC-associated genes, and are distinguished by the

expression of proteins such as Keratin-5, Keratin-14, CD80,

Aire, Claudin-3, and Claudin-4 and their reactivity with the

fucose-binding lectin Ulex europaeus agglutinin 1 (UEA1)

[94, 95]. mTECs are further classified into two subsets,

mTEChi (MHC class IIhi CD80hi) cells and mTEClo (MHC

class IIlo CD80lo) cells [94], and the mTEChi cells represent

functionally mature mTECs expressing Aire (Fig. 2). Sev-

eral reports show that mTEClo cells can give rise to mTEChi

cells [96–98], but recent lineage tracing studies show that

Aire? mTEChi cells progress to an Aire- mTEClo stage [99,

100], indicating that mTEClo is a heterogeneous cell popu-

lation including developing immature mTECs and

developed mature ‘post-Aire’ mTECs. The ‘post-Aire’

mTEClo cells represent a distinct mTEC subpopulation

expressing chemokines such as CCL21 [101]. This cell

subset also includes terminally differentiated mTECs,

characterized by the expression of Involucrin and the strat-

ified squamous epithelia resembling Hassall’s corpuscles, as

observed in the human thymus [102, 103].

Early studies, mostly conducted in the 1990s, indicated

that thymic medulla formation is defective in mice with T

cell development arrested at early stages [104]. Particu-

larly, mice deficient for positive selection showed a marked

reduction of thymic medullary regions and mTEC cellu-

larity without affecting overall thymus size and cortical

architecture [94, 105–107], indicating that the positively

selected SP thymocytes induce the development of mTECs,

which, in turn, provide a microenvironment for selection

and maturation of SP thymocytes. This mTEC-thymocyte

interdependency is referred to as ‘thymic crosstalk’.

Over a span of two decades, a series of studies has

revealed that the signaling pathways for the activation of

nuclear factor-jB (NF-jB) are required for mTEC devel-

opment. Mice deficient for TNF receptor-associated factor

6 (TRAF6), NF-jB-inducing kinase (NIK), IjB-kinase a
(IKK a), Bcl-3, NF-jB2 (p52), or RelB, exhibit defective

development of Aire? mTECs and thymic medulla

formation in an mTEC-autonomous manner [108–116].

These NF-jB pathways for thymic medulla formation are

activated by TNFR superfamily receptors, receptor for

activating NF-jB (RANK), CD40, and lymphotoxin b
receptor (LTbR), expressed on mTECs, and their TNF

superfamily ligands RANKL, CD40L, and lymphotoxins

(LTs), respectively, are expressed by lymphoid cells,

mostly SP thymocytes [117–120]. This configuration of

receptor-ligand expression provides an explanation for

early observations of ‘thymic crosstalk’ and mechanism for

later findings of NF-jB involvement. Indeed, TNF super-

family ligand-mediated mTEC development is ensured by

TCR–ligand interactions between self-reactive SP thymo-

cytes and mTECs [121–125].

RANKL, a major mediator of mTEC development, is

produced by lymphoid tissue inducer (LTi) cells and cdT
cells in the embryonic thymus and by SP thymocytes and

iNKT cells in postnatal thymus [118, 120, 126, 127]

(Fig. 2). CD40L and LTs are expressed predominantly by

SP thymocytes [117, 120, 126]. These TNFSF ligands have

cooperative as well as distinct non-redundant functions in

mTEC development. RANKL and CD40L synergistically

promote development and proliferation of Aire? mTECs

[119, 120], while LTs regulate the development of a dis-

tinct subset of mTECs expressing CCL21 [101, 128, 129].

LT signals also regulate the expression of RANK in

mTECs [130] and the terminal differentiation of mTECs

[103].

RANKL signaling in mTECs up-regulates the tran-

scription factor Spi-B, which in turn induces the expression

of some TRAs, co-stimulatory molecules, and osteoprote-

gerin (OPG) [131]. OPG is an inhibitory decoy receptor for

RANKL and represses RANKL-mediated mTEC devel-

opment and expansion [98, 120, 131]. The fact that mTEC

development is primarily dependent on interaction with SP

thymocytes and controlled by the RANKL-OPG negative

feedback system indicates that the cellularity and function

of mTECs must be properly adjusted, such that self-reac-

tive SP thymocytes can be moderately, not excessively,

deleted in the thymic medulla.

mTEC development is promoted by coordination

between RANKL and type I interferon signals [132] and

negatively regulated by TGFb signaling [133]. It was also

reported that the microRNA production by the endori-

bonuclease Dicer, and specifically microRNA miR-29a,

was essential for postnatal maintenance of mTECs [134,

135].

Medulla migration and emigration of thymocytes

Double positive thymocytes that received positive selection

signals differentiate into CD4SP or CD8SP thymocytes and

express the chemokine receptor CCR7 on the cell surface
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[136]. CCR7 ligand chemokines, CCL19 and CCL21, are

produced by mTECs [136] and medullary fibroblasts [137],

and attract CCR7-expressing SP thymocytes from the

cortex to the medulla [136, 138, 139]. During medullary

residency, which is estimated to be 4–5 days [140], SP

thymocytes are exposed to antigens presented by mTECs

and DCs. CCR7-mediated medullary migration is required

to ensure negative selection of self-reactive SP thymocytes

[128, 141]. Indeed, mice deficient for CCR7 or CCR7

ligand chemokines exhibit organ-specific autoimmunity

[139, 142, 143]. CCR7 signals also direct the migration of

cdT cells to the medulla [144]. mTECs produce another

chemokine XCL1 that mediates medullary accumulation of

thymus-resident DCs [145].

SP thymocytes that have completed developmental

programs and repertoire selection are exported from the

thymus into circulation. Export of thymocytes is controlled

by chemotactic signaling via sphingosine-1 phosphate

(S1P) and its receptor S1PR1. Mature SP thymocytes

express high levels of S1PR1 and then migrate toward a

gradient of S1P [139, 146, 147], which is provided by

neural crest-derived perivascular cells (pericytes) in the

cortico-medullary junctions [148] and circulating blood

[149]. However, the mechanism that determines the timing

of thymocyte emigration such that only mature yet self-

tolerant SP thymocytes are permitted to exit the thymus

remains largely unclear. It is speculated that, in mature SP

thymocytes that have completed self-reactivity screening,

cessation of TCR signaling leads to down-regulation of

CD69—an inhibitor of S1PR1 surface expression—result-

ing in up-regulation of S1PR1 expression, thereby

rendering SP thymocytes responsive to S1P and primed for

thymic exit [150].

TRA expression by mTECs

In the medulla, a diverse array of TRAs—whose expression

is primarily restricted to peripheral tissues—are transcribed

in mTECs, particularly mTEChi cells [151–154], in a phe-

nomenon termed ‘promiscuous gene expression’. SP

thymocytes reactive to these TRAs are ejected from the

conventional T cell pool through deletion by negative

selection or differentiation to Foxp3? Tregs (see below). As

shown by many studies, T cells produced in mice lacking

normal mTEC development caused autoimmune disorders,

indicating that mTECs are essential for establishing central

tolerance [99, 109, 111–119, 155]. TRA expression repre-

sents a mosaic pattern, as each TRA protein is expressed in

only 1–3 % of mTECs, such that a maximal number and

sufficient epitope density of TRAs can be displayed to SP

thymocytes [7]. A single mTEC expresses a set of TRA

genes, which are clustered in chromosomes and colocalized

to nuclear subdomains [156].

A substantial fraction of TRAs is controlled by Aire

[157], a nuclear protein predominantly expressed in

mTECs [158–160]. Aire-driven TRA expression is crucial

for negative selection of TRA-reactive SP thymocytes

[161–163] and generation of Foxp3? Tregs [164–166] in

the medulla. Genetic deficiency of Aire results in autoim-

mune polyendocrinopathy syndrome type 1 (APS1) or

autoimmune polyendocrinopathy–candidiasis–ectodermal

dystrophy (APECED) in human [167, 168], and similar

organ-specific autoimmune disorders in mice [157, 169,

170], indicating that Aire is essential for establishment of

self-tolerance. Accruing evidence indicates that Aire has no

obvious DNA binding domain [171, 172] but instead epi-

genetically regulates transcriptional elongation and pre-

mRNA processing of target TRA genes [154, 173–175].

However, some groups propose another mechanistic view

whereby Aire controls the differentiation program of

mTECs to enable TRA expression. This is because Aire

deficiency in mice causes abnormal medulla organization

and mTEC development [97, 100, 102, 176–178] and

defective T cell tolerance against transcriptionally unre-

pressed TRAs [163, 170]. Indeed, Aire also regulates

expression of a large number of non-TRA proteins such as

cytokines, chemokines, MHC class II peptide-loading

factors, posttranslational modifiers, and proteases [145,

163, 179–181]. Several studies showed that Aire regulated

the expression of some microRNAs, including the miR-376

family members, which were located in the genome within

an Aire-dependent TRA gene [182], and miR-29a, which

affected Aire-dependent TRA expression and maintenance

of TEC cellularity in aged mice [134, 183].

Also, it should be noted that more than half (60 %,

estimated by [181]; 64 %, estimated by [184]) of total

TRAs expressed in mTECs are Aire-independent [154,

157], indicating that additional transcriptional or epigenetic

mechanisms must be responsible for the induction of Aire-

independent gene expression in mTECs. Some Aire-inde-

pendent TRAs are regulated by LTbR signaling [129, 185],

although the downstream regulator(s) remain to be

identified.

Although mTEC-dependent tolerance induction is

essential for protection against autoimmunity, this system

has a possible demerit in anti-tumor immunity. Because

self-antigens expressed in mTECs include tumor-associ-

ated antigens, tumor-specific T cells can be deleted in the

thymic medulla and fail to reach peripheral targets [165,

186–188]. Given the double-edged potential of mTECs and

the medullary microenvironment, it seems reasonable that

the capacity and function of the thymic medulla is finely

modulated by the RANKL-OPG feedback mechanism [98,

120, 131]. It has been experimentally shown that sup-

pression of RANKL-mediated mTEC development and

maintenance can rescue tumor-specific T cells from
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medullary deletion and attenuate tumor progression in mice

[98, 131]. Further study may lead to the development of

new therapeutic approaches to control T cell tolerance and

anti-tumor immunity.

mTEC-DC interactions for central tolerance

In addition to mTECs as the lead player, thymic DCs also

play a pivotal role in inducing T cell tolerance in the

thymic medulla. Thymic DCs are predominantly localized

in the medulla, with a small fraction sparsely localized in

the cortex [138, 144]. As well as peripheral DCs, thymic

DCs are derived from hematopoietic precursor cells [189],

some through intrathymic differentiation and others from

peripheral circulation [190].

It has been shown that thymic DCs contribute to T cell

tolerance, through direct presentation of endogenously

expressed antigens and indirect presentation of antigens

expressed by other cells. Mtv-encoded superantigens as

well as TRAs expressed by mTECs and blood-borne anti-

gens can be presented by thymic DCs to developing

thymocytes, to induce negative selection [191–194]. Fur-

thermore, a subpopulation of peripheral DCs can be

recruited to the thymic medulla and present peripheral

antigens to induce negative selection [190, 195, 196].

Antigen presentation by mTECs and thymic DCs also

induces development of Foxp3? Treg cells, which are

essential for protection from autoimmunity [197, 198].

Foxp3? Treg cells differentiate from Foxp3- CD25?

CD4SP or Foxp3? CD25- CD4SP precursor cells, a pro-

cess that requires cytokine signals and TCR-CD28 co-

stimulatory signals [199–201]. In the thymus, the majority

of Foxp3? Treg cells are detected in the medulla [164,

202], where mTECs and DCs present antigens with co-

stimulatory molecules. In mice deficient for mTEC devel-

opment or expression of MHC class II on mTECs, thymic

development of Foxp3? Treg cells is impaired [111, 112,

116, 203]. Studies using neo-self antigen transgenic mice

showed the generation of Foxp3? Treg cells specific for

self-antigen expressed by Aire? mTECs [164, 204]. It was

also reported that Foxp3? Treg cells reactive to endoge-

nous self-antigens are generated in an Aire-dependent

manner [165, 166]. These data provide a link between

Aire-dependent TRA expression and development of TRA-

specific Treg cells. A recent report estimated that a sub-

stantial portion (about half) of Aire-dependent negative

selection and Treg development are mediated by indirect

presentation of TRAs by thymic DCs [205]. This mTEC-

DC cooperation might be dependent on unidirectional,

intercellular transfer of mTEC-derived proteins to DCs

[206, 207]. For optimal Treg cell induction, these tripartite

interactions among mTECs, DCs, and CD4SP thymocytes,

require medullary accumulation of thymic DCs, which

depends on the chemokine XCL1 [145], as well as CCR7-

mediated medullary migration of CD4SP thymocytes

[208]. Thymic DCs can also induce development of Fox-

p3? Tregs reactive to blood-borne antigens [194, 195].

Unique swirled epithelial structures composed of ter-

minally differentiated mTECs, called ‘Hassall’s

corpuscles’, may provide the microenvironment for the

generation of Treg cells. Hassall’s corpuscles produce

thymic stromal lymphopoietin (TSLP) [209], which was

shown to activate immature thymic DCs to promote the

expression of co-stimulatory molecules [210, 211]. TSLP-

activated thymic DCs induce differentiation of CD4SP

thymocytes into Foxp3? Tregs [209].

The number of thymic Foxp3? Tregs is likely controlled

by the mTEC cellularity and size of the medulla, as the

thymus from OPG-deficient mice contains the increased

number of Foxp3? Tregs [131]. A recent report showed

that the increased Foxp3? Tregs in OPG-deficient thymus

included a substantial number of recirculating Tregs that

re-entered the thymus from the periphery [212], suggesting

that mTECs provide intrathymic niches for peripheral

Tregs.

Unconventional T cell development in the medulla

Medullary TECs play a role in cdT cell development, in a

manner different from that of cTECs. mTECs from fetal

thymus express Skint1, a B7-family protein required for

intrathymic maturation of Vc5Vd1? epidermal cdT cells

[93, 213, 214]. Skint1 is considered to induce strong,

agonist-like signals to Vc5Vd1 TCR and a differentiation

program toward an IFNc-producing lineage [215]. Given

that cTECs and mTECs regulate distinct subpopulations of

cdT cells, it is possible that cTECs and mTECs provide a

distinct set of putative ligands or selecting molecules for

modulating cdT cell immunity. In fetal mouse thymus,

Vc5Vd1? cdT cells closely associate with mTECs, and

foster Aire? mTEC development by expression of RANKL

[93], implying a bidirectional crosstalk as well between

RANKL-expressing cdT cells and Skint1-expressing

mTECs.

It was also shown that mTECs were required for optimal

maturation of iNKT cells and that developing iNKT cells

express RANKL and CD40L to promote development of

Aire? mTECs [127], suggesting that thymic crosstalk

interactions also occur between iNKT cells and mTECs,

although the intrathymic distribution of developing iNKT

cells remains to be determined. Mature iNKT cells express

the chemokine receptor CXCR3, which is required for

thymic retention in response to its ligand CXCL10 pro-

duced in the medulla [216].

A series of studies demonstrated that the thymic medulla

supports the development of natural IL-17-producing T
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helper (nTh17) cells, a recently described unconventional

CD4? abT cell subset that potentially contributes to pro-

tective and pathological inflammatory responses.

Intrathymic development of nTh17 cells requires MHC

class II expression on mTECs but not on cTECs [217], and

is induced by self-antigen recognition and the cytokines IL-

6 and TGFb [218]. It was also reported that RelB-depen-

dent Aire? mTECs are required for nTh17 cell

development [219], suggesting a novel mTEC-mediated

regulatory mechanism of inflammatory and autoimmune

responses.

Concluding remarks

Here, we focused on the developmental mechanisms and

functions of thymic stromal cells—namely, TECs. cTECs

and mTECs are derived from common progenitors and

upon differentiation and maturation acquire distinct func-

tional characteristics essential for supporting T cell

development. cTECs shape the functional T cell repertoire

through positive selection, whereas mTECs trim the self-

reactive repertoire through negative selection and cell fate

conversion into Tregs. The development of TEC subsets is

largely dependent on the signals from developing T cells,

and these crosstalk interactions are indispensable for

organization and fine-tuning of the thymic microenviron-

ment. It should also be noted that cTECs and mTECs are

important for the development not only of conventional T

cells but also of unconventional T cells that bridge innate

and adaptive immunity. Given this cellular and molecular

basis for orchestrating the development and function of

thymic stromal cells, current and forthcoming studies will

provide invaluable information toward in vivo regeneration

and reconstitution of thymic tissue for future therapeutic

application.
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