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Abstract Cancer stem cells (CSCs), are thought to be at
the origin of tumor development and resistance to thera-
pies. Thus, a better understanding of the molecular
mechanisms involved in the control of CSC stemness is
essential to the design of more effective therapies for
cancer patients. Cancer cell stemness and the subsequent
expansion of CSCs are regulated by micro-environmental
signals including neurotrophins. Over the years, the roles of
neurotrophins in tumor development have been well
established and regularly reviewed. Especially, nerve
growth factor (NGF) and brain-derived neurotrophic factor
(BDNF) are reported to stimulate tumor cell proliferation,
survival, migration and/or invasion, and favors tumor
angiogenesis. More recently, neurotrophins have been
reported to regulate CSCs. This review briefly presents
neurotrophins and their receptors, summarizes their roles in
different cancers, and discusses the emerging evidence of
neurotrophins-induced enrichment of CSCs as well as the
involved signaling pathways.
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Introduction

Cancer stem cells (CSCs), also known as tumor initiating
cells, represent a rare population of tumor cells with the
biological characteristics that are similar to normal stem
cells: self-renewal and differentiation. CSCs are thought to
be the fundamental driving force of tumor initiation and
metastasis. They are resistant to conventional therapies and
are proposed to be responsible for recurrence. Thus, a better
understanding of the molecular mechanisms involved in the
control of cancer cell stemness is essential to the design of
more effective therapies for cancer patients. The stemness of
cancer cells and their subsequent expansion are regulated by
micro-environmental signals as well as genetic and epige-
netic alterations. Neurotrophins are a family of structurally
conserved growth factors including nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF), neu-
rotrophin 3 (NT-3) and neurotrophin 4/5 (NT-4/5).
Neurotrophins and their receptors are expressed by both
tumor and microenvironmental cells, and are involved in the
development of various tumors. Recently, neurotrophins
have been demonstrated to enlarge CSC pool by influencing
the behaviors of both CSCs and non-CSCs. Here, following
an overview of cancer stem cell model, we briefly present
neurotrophins and summarize their well-known roles in
cancers. We then highlight the emerging evidence of neu-
rotrophins-induced enrichment of CSCs and discuss the
involved molecular mechanisms.

Cancer stem cell model
Two mutually non-exclusive models have been proposed to

explain tumor development and intratumoral heterogene-
ity: the stochastic model and the cancer stem cell model.
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The stochastic model postulates that every cell within a
tumor is equally likely to be the cell of origin. According to
this model, cancer is raised from cells accumulating
genetic mutations. The cancer stem cell model posits that
cancers arise from, and are sustained by a unique sub-
population of cells that possess stem-like properties, the so-
called tumor-initiating cells or cancer stem cells (CSCs).
CSCs have the capacities of unrestricted self-renewal and
differentiation, giving rise to progenitors and more differ-
entiated cells with limited proliferation and tumorigenic
potential. The cancer stem cell model for solid cancer was
first introduced in breast cancer by the group of Clarke.
This group identified a rare subpopulation having the
phenotype of CD447/CD24"°“/Lineage™ as putative
CSCs-enriched population. Indeed, as few as 100 CD44/
CD24"°¥/Lineage™ cells were sufficient to recapitulate
the tumor, when injected into immunodeficient SCID mice
[1]. Based upon serial transplant xenograft/limiting dilution
assays and the use of tumor-specific CSC markers, studies
in other solid tumors such as brain, ovarian and colon
cancer constantly verified that CSCs exist at low frequen-
cies within a tumor and are able to recapitulate some of the
heterogeneity of the original tumors when injected into
immunodeficient mice [2—4].

The importance of CSCs in tumor development was
further reinforced by lineage tracing experiments in mouse
models, which permit the follow-up of individual cells at
different stages of tumor progression. In these experiments,
CSCs are clearly shown to be at the origin of tumor for-
mation, chemotherapy resistance and relapse of several
cancers including intestinal adenoma, glioblastoma and
squamous skin tumor [5-7]. The clinical relevance of CSCs
is illustrated by findings showing that a stem cell-like gene
expression signature is predictive of patient outcome in
human leukemia, breast cancer, glioblastoma, and ovarian
cancer [8-11].

Mounting evidences indicate that the stochastic
model and the cancer stem cell model are not mutually
exclusive and can be unified by cancer cell plasticity.
CSCs within an established tumor are found to be
heterogeneous [12—14]. It is hypothesized cancer may
originate from the oncogenic activation of an original
CSC, which can give rise to other CSCs that accumulate
genetic and epigenetic modifications necessary for
tumor initiation and progression. Each CSC subclone,
derived from the initial CSC, has the capabilities of
self-renewal and differentiating to intermediate transit-
amplifying progenitors and more differentiated cells. A
subset of these progenitors would be capable of bidi-
rectional conversion between non-CSC and CSC states
in response to microenvironment stimuli, including
cytokines, chemokines and growth factors [15].
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Neurotrophins and their receptors

Neurotrophins are a family of structurally conserved growth
factors including NGF, BDNF, NT-3 and NT-4/5. Neu-
rotrophin  transcripts are first translated into pre-
proneurotrophins. After signal peptide elimination, the
proneurotrophins are cleaved at a dibasic amino acid site by
intracellular proteases such as furin and proconvertases, or by
extracellular proteases such as plasmin, MMP-3 and MMP-7,
hence generating mature neurotrophins [16, 17]. Although
neurotrophins have been initially studied for their role in ner-
vous system development, they exert various effects on non-
neuronal cells including cancer cells from different tissues.

Neurotrophins exert their biological functions mainly via
two types of cell membrane receptors: the Trk tyrosine kinase
receptors and the common neurotrophin receptor P75}, The
tyrosine kinase receptors include TrkA, TrkB and TrkC, each
of which exhibiting specificity for the different neurotrophins.
TrkA preferentially binds to NGF, TrkB preferentially binds
to BDNF and NT-4/5, TrkC preferentially binds to NT-3.
Binding of Trks by their preferred neurotrophins activates
their kinase domain to trigger downstream signaling pathways
including MAPK, PI3 K and PLCy-PKC [18]. Moreover,
Trks can be activated by a number of receptors including
steroid receptors, G-protein coupled receptors (GPCR) and
CD44[18, 19]. Other receptor tyrosine kinases such as c-MET
can also transactivate Trks in the absence of neurotrophins
[20]. On the other hand, P75N™® binds to neurotrophins and
proneurotropins with similar affinity. P75N™ does not have
intrinsic enzymatic activity, and it owes its signaling to the
recruitment of intracellular binding proteins or through reg-
ulated proteolysis signaling [21]. Although P75N™ has the
ability to signal alone, many of its functions rely on its inter-
action with Trks and other co-receptors. For example, the
formation of a P75~ "®/Trk complex increases the affinity of
each neurotrophin for its Trk receptor, most likely by the
induction of conformational changes in its intracellular and
extracellular domains [22]. More recently, a direct interaction
between P75 TR and TrkA has been demonstrated, even in the
absence of NGF [23]. P75N™ participates also in several
signaling platforms by interacting with co-receptors such as
sortilin, Nogo receptor and LINGO-1. Interactions with co-
receptors seem to be dependent on P75N™® cellular localiza-
tion, its post-translational modifications and the state of
cellular differentiation [24].

Given the diverse (co-)receptors described above, the
overall outcome of neurotrophin signaling is the conse-
quence of the integration of distinct receptor signaling
networks. This leads to divergent cellular responses
including cell survival, apoptosis, proliferation, differenti-
ation, migration, and invasion, depending on cell type and
cell context.
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Cancer promoting effects of neurotrophins

Over the years, accumulating data have shown the
expression of neurotrophins and their receptors in different
tumors. In most cases, neurotrophins have been shown to
favor tumor development and progression. In this part, we
will sum up major findings concerning NGF/TrkA, BDNF/
TrkB, and neurotrophins/p75~™® signaling axes.

NGF/TrkA axis

Overexpression of NGF and/or TrkA has been correlated
with perineural invasion in several cancers including pan-
creatic cancer [25, 26], oral squamous cell carcinoma [27]
and adenoid cystic carcinoma [28]. The active form of TrkA
(phospho-TrkA) has been associated with poor patient out-
come in ovarian and breast carcinomas [29, 30] suggesting
the involvement of the NGF/TrkA axis in tumor progression.
NGEF exhibits protumoral effects in several types of tumors
including pancreatic, ovarian and breast cancers [29, 31, 32].
We have shown that NGF is overexpressed in the majority of
breast cancers, and that NGF/TrkA inhibition reduces tumor
growth in xenograft mouse model [32]. In breast cancer cell
lines, ectopic overexpression of TrkA enhances anoikis
resistance, invasion and metastasis [33, 34]. In addition to its
involvement in promoting breast cancer cell proliferation,
survival, migration and invasion, NGF promotes also
angiogenesis by inducing the expression of proangiogenic
factors such as vascular endothelial growth factor (VEGF)
and transforming growth factor beta (TGFp) [35, 36].

By contrast to most of the solid tumors, in neuroblastoma,
NGF/TrkA may exert anti- or protumoral effects, depending
on the expression of TrkA isoforms TrkAI or TrkAIll
Overexpression of TrkAl (exon 9 excluded) has been cor-
related with better prognosis in neuroblastoma [37-39]. NGF
inhibits cell growth and induces terminal differentiation in
neuroblastoma cell lines expressing high levels of TrkAl
[40]. In contrast, TrkAIII (exons 6, 7 and 9 excluded) was
described to be associated with neuroblastoma of poor
prognosis [41, 42]. TrkAIIl lacks the extracellular D4 Ig-like
domain and related N-glycosylation sites required for cell
surface localization [43]. TrkAIll is retained within the
intracellular membrane, where it exerts protumoral activity
through different mechanisms independent of NGF. These
include constitutive PI3K/Akt/NF-kB signaling [41] and
interaction with the centrosome, promoting centrosome
amplification and genetic instability [44].

BDNF/TrkB axis

Mounting data show that the BDNF/TrkB axis is often asso-
ciated with metastatic potential and poor prognosis in different

cancers including neuroblastoma and cancers of non-neuronal
origin such as head and neck, lung, breast, stomach and colon
cancers [45-52]. For example, elevated levels of TrkB and
BDNF predict a poor prognosis in neuroblastoma [50] and
Wilm’s tumor [51]. TrkB-positive pancreatic tumors develop
more rapidly liver metastasis than TrkB-negative tumors [52].
Increased BDNF expression at the invasive front of primary
tumors is significantly correlated with poor prognosis in gas-
tric cancer [48]. The co-expression of BDNF and TrkB mRNA
is associated with liver and peritoneal metastasis in colorectal
cancer [49]. Where studied, BDNF promotes cell prolifera-
tion, migration, invasion, and inhibits anoikis. Blockade of
BDNF/TrkB signaling in different cancer cell lines signifi-
cantly decreases their proliferative, migratory and metastatic
ability in vitro and in vivo [46, 53]. Apart from direct action on
tumor cells, BDNF exhibits also strong angiogenic property.
BDNF increases the expression of HIF-1o which in turn up-
regulates VEGF [54] and TrkB expression [55, 56]. Moreover,
BDNF stimulates neovascularization via recruitment of TrkB-
expressing endothelial progenitor cells [57], raising the pos-
sibility that any tumor cells secreting BDNF may be also able
to induce angiogenesis through similar mechanisms.

Neurotrophins/P75N "™

P75N™R | the common receptor of neurotrophins and
proneurotrophins, has been suggested to act as a tumor
suppressor in gastric, bladder and prostate cancers by
blocking cell cycle progression and inducing apoptosis [58—
60]. In the majority of other tumors including melanoma,
glioma, breast cancer and squamous cell carcinoma, p75NTR
is proposed to favor tumor development [34, 47, 61, 62]. For
example, NGF/P75™™® signaling is known to be implicated
in melanoma cell proliferation and migration [63] and has
been associated with increased brain metastases [64—-66].
P75NTR expression is observed in high grade glioma [62] and
is associated with poor prognoses and a risk of local recur-
rence of oral cancer [67]. P75NTR s correlated with
perineural invasion of skin cancers [68]. More recently,
P75N™R has been reported as a marker of CSCs in melanoma,
esophageal and hypopharyngeal carcinomas [69].

The protumoral effects (i.e. prognostic value of
expression and/or biological effects) of neurotrophins and
their associated receptors in different solid tumors are
summarized in Table 1.

Evidence for the role of neurotrophins in cancer
stem cells
Neurotrophins have been reported to regulate CSCs in

several types of cancers such as glioma, neuroblastoma,
head and neck squamous cell carcinoma, melanoma and
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Neurotrophins and cancer cell plasticity
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Fig. 1 Mechanisms of neurotrophins-induced enrichment of cancer
stem cells (CSCs). Cancer cell plasticity designates the capacity of
cancer cells to interconvert between differentiated and stem-like
states, through a continuum of cell fate specifications. This phenotype
shifting is modulated by microenvironmental signals and cellular
interactions arising in the tumor niche. Among numerous factors from
the microenvironment, neurotrophins are found to regulate cancer cell
plasticity by acting on different types of cells. Particularly, neu-
rotrophins can enlarge CSC pool: (1) by stimulating CSC self-
renewal; (2) by inducing differentiated epithelial cells to epithelial-
mesenchymal transition (EMT) and the conversion of mesenchymal
like cancer cells (MLCCs) to CSCs (central frame). First, (pro)neu-
rotrophin are found to increase CSC renewal in glioma and breast
cancer (left frame). In glioma cells, BDNF, NT3 stimulate CSC
proliferation through tyrosine kinase receptors TrkB-, TrkC-depen-
dent activation of ERK and Akt pathways, while NGF stimulates CSC

breast cancer. Neurotrophins can induce enrichment of
CSCs through two major mechanisms: direct action on
CSCs or indirect action through epithelial-to-mesenchymal
transition (EMT) (Fig. 1).

In glioma, several cell lines named brain tumor initiating
cells (BTICs) have been established by culturing cells,
derived from patient tumors, on laminin-coated flasks in
the presence of EGF and FGF2. The established cell lines
exhibit cancer stem cell properties, as they express neural
stem cell markers and are able to form neurospheres
in vitro and tumors in xenograft mouse model. Forsyth
et al. reported that neurotrophins (NGF, BDNF and NT-3)
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MLCC and CSC

proliferation through the cleavage of P75"'® that gives rise to the

soluble P75 intracellular domain (P75NTR-ICD). P75NTR.ICD is able
to activate Akt pathway to stimulate CSC proliferation. In breast
cancer cells, NGF induces P75N"™R_mediated expression of the
pluripotency transcription factors SOX2, NANOG and MYC.
ProNGF increases also SOX2 expression in a p75NTR—independent
manner. Moreover, neurotrophins are also described to induce EMT-
linked enrichment of CSCs in lung and breast cancers (right frame).
In lung carcinoma, BDNF and TrkB increase the expression of the
master EMT transcription factors SLUG, TWIST and SNAIL. In
breast cancer cells, NGF enhances p75™ ~-dependent expression of
SLUG. Thus, through the common transcription factors, neu-
rotrophins  activate signaling networks, allowing for the
reprogramming of differentiated epithelial cancer cells to CSCs in a
stepwise manner

and their receptors (TrkA, TrkB, TrkC and P75NTR) are
detected in several lines of BTICs [75]. Moreover, NGF,
BDNF and NT3 are able to stimulate the proliferation of
BTICs. The authors further showed that NGF stimulates
BTIC proliferation through P75N'™® cleavage. P75N'R
cleavage is a highly regulated two-step process: P75™'® is
firstly cleaved at the extracellular domain by the metallo-
proteases ADAMI17 to generate a membrane-bound
C-terminal fragment (P75NTR—CTF); the P75NT™R.CTF is
subsequently cleaved within the transmembrane domain by
v-Secretase and gives rise to the soluble P75 intracellular
domain (P75N™-ICD). Interestingly, ectopic expression of

@ Springer
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P75NTRICD is sufficient by itself to stimulate BTIC cell
invasion and proliferation [73, 75]. Under physiological
conditions, P75N™® cleavage implies the activation of tyr-
osine kinase receptors Trks, as inhibition of Trks by the
pharmacological inhibitor K252a blocks accumulation of
P75 fragments and prevents NGF-stimulated BTIC prolif-
eration. Moreover, P75V TR.ICD is able to induce Akt
activation in BTICs [75]. It is already reported that P75 ™R
cleavage is needed for Akt activation and neurotrophins-
induced survival in PC12 and neurons [95-97]. Further-
more, Akt pathway is required for brain cancer stem cell
growth [98, 99]. Thus P75N"R-ICD-induced Akt activation
could be the key mechanism of neurotrophins-stimulated
BTIC proliferation. How Akt is activated by P75™ *-ICD
in the context of BTICs is still to be determined. By using
another set of patients-derived BTICs, Lawn et al. reported
that BDNF, NT3, TrkB, TrkC and P75"™ are frequently
expressed [72]. In these cells, BDNF and NT3 promote
BITC growth through the activation of tyrosine kinase
receptors TrkB and TrkC and the downstream activation of
ERK and Akt pathways. Taken together, it seems that
neurotrophins and their receptors are widely expressed in
BITCs to promote proliferation, invasion and survival
through different pathways including ERK and Akt acti-
vation as well as P75™'® cleavage (Fig. 1, left frame).
Although more detailed and complete activation of these
pathways in the context of CSCs remains to be clarified, it
is known that neurotrophin-dependent MAP kinase acti-
vation in neurons is mediated by SoS-Ras-MAP kinase and
Frs2/ARMS-Crk pathways. Moreover, Akt activation in
these models is mediated by SoS-Ras-PI3K [100]. MAP
kinase and Akt activation regulates RSK kinase, CREB
phosphorylation, and NFkB activation, which promote
transcription of genes necessary for neuronal survival
[101-103].

In neuroblastoma, works from the group of AR Mackay
showed that in the SH-SY5Y neuroblastoma cell line, the
NGF non responsive TrkAIIl variant promotes the forma-
tion of larger spheres and the expression of stemness
markers including Nanog, Nestin, SOX2 and CDI117
through its tyrosine activity [104]. These data are consis-
tent with previous findings demonstrating that expression
TrkAIIl in SH-SYSY cells can induce an undifferentiated
stem cell-like phenotype that exhibits increased tumori-
genic and metastatic behavior [41]. However, whether this
occurs in primary tumors remains to be determined.

In head and neck squamous cell carcinomas, it has been
recently reported that P75N'™® is a functional and tar-
getable marker of CSCs. In these cells, loss of p75NTR
inhibits cell proliferation and tumor formation. Moreover,
targeting of P75™'® with a monoclonal antibody reduces
NGF-induced Erk activation in head and neck squamous
cell carcinoma [105]. In melanoma cells, knock down of
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P75N™ induces a change in morphology from spindled-
shaped to epithelial-like cells with loss of expression of
stemness markers including SOX10 and SOX2. Moreover,
cells knocked-down for p75™ "= did not form any tumors in
xenograft mouse model [83].

In breast cancer, we have shown that NGF and proNGF
enrich for a CSC subpopulation by regulating the dynamics
between quiescence and proliferation and by increasing the
frequency of symmetric divisions of CSCs [106]. NGF and
proNGF lower the proportion of cells undergoing asym-
metric division and decrease the expression of NUMB, a
cell fate determinant involved in the asymmetric division
of stem cells [107]. We observed an enrichment of P75N R
expressing cells in the ALDH14 CSC population. In
addition, P75"™® §iRNA silencing abolishes the NGF/
proNGF-enhanced sphere-forming capacity, indicating that
NGF/proNGF-induced sphere formation is mediated by
P75N™® However, it seems that NGF and proNGF imply
different molecular mechanisms to increase the CSC pool.
For example, NGF is able to induce P75N ™R mediated
expression of pluripotency transcription factors including
sox2, nanog, and myc, which are involved the maintenance
of stemness. In contrast, proNGF increases the expression
of sox2 in a P75N"™R.independent manner (Fig. 1, left
frame). This may be explained by the different involved
receptors, as NGF and proNGF can bind to both common
and specific receptors. NGF exerts its biological effects via
P75NTR and TrkA receptors, while proNGF, at least in
neuronal cells, induces its effects through complexes often
formed with P75N™ and sortilin [108] and less frequently
with TrkA and sortilin [109]. In breast cancer cells, we
showed that the pro-invasive effects of proNGF are
mediated by TrkA and sortilin but not by P75N'® [110]. On
the other hand, NGF binding to TrkA permits the recruit-
ment of membrane CD44, which in turn activates Rho
GTPase pathways to increase the aggressive phenotype of
breast cancer cells [19]. This is particularly interesting, as
CD44 is increasingly shown to be involved in the main-
tenance of stemness and survival of CSCs [111, 112].
Indeed, CD44 functions as a signaling platform by inter-
acting with both extracellular matrix components (i.e.
hyaluronan) and several types of membrane receptors
including TrkA, c-MET, EGFR, PDGFR [113]. Clearly,
NGF and proNGF signaling pathways through different
(co-)receptors remain to be studied in the context of breast
CSCs.

Yin et al. have shown the involvement of BDNF/TrkB
in sustaining CSCs of recurrent triple-negative breast
cancers (TNBC) [90]. TNBC express neither estrogen
receptor, nor progesterone receptor and do not overexpress
human epidermal growth factor receptor 2 (HER2). TNBC
are clinically characterized as more aggressive with a
poorer overall prognosis due to high recurrence rate. By
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developing an elegant post-chemotherapy relapse xenograft
mouse model of TNBC, using cancer cells freshly isolated
from patients with primary TNBC, Yin B et al. demon-
strated that differentiated recurrent TNBC cells after
paclitaxel treatment express and secrete BDNF, following
activation of the JNK-CREB pathway [90]. BDNF acts
then in a paracrine manner on ALDH1+4/TrkB+ cells to
induce the expression of KLF4, a zinc finger-type tran-
scription factor of Kriippel-like factor family, already
known to be involved in cell reprogramming and the
maintenance of stemness [114, 115]. The BDNF-induced
expression of KLF4 in ALDHI1+/TrkB+ is found to be
necessary for maintaining the stemness of ALDHI+/
TrkB+ TNBC stem cells. Thus, differentiated recurrent
TNBC cells constitute a specific microenvironment by
providing BDNF to support the self-renewal capacity of
CSCs. The subpopulation of ALDH1+ CSCs expressing
TrkB is more resistant to chemotherapeutic agents both
in vitro and in vivo. Moreover, using a genetically engi-
neered mouse model of TNBC, the authors showed that
ablation of the TrkB+ CSCs in the endogenous tumors
prevents relapse of malignant tumors and prolongs survival
of mice, further indicating that the TrkB+ CSCs represent
the real source of TNBC recurrence [90].

Neurotrophins at the crossroad between epithelial-
mesenchymal transition and cancer stem cells

Epithelial-to-mesenchymal transition (EMT) is a develop-
mental process wherein epithelial cells transdifferentiate
into mesenchymal cells. This process is characterized by
molecular reprogramming including a decrease in the
expression of proteins that enhance cell-cell contact such
as E-cadherin and an increase in the expression of mes-
enchymal markers such as vimentin and fibronectin.
Consequently, epithelial cells lose cellular junctions,
reorganize cytoskeleton to gain the ability to migrate and
invade adjacent tissue. EMT is coordinated by pleiotropic
EMT transcription factors including zinc finger E-box
binding homeobox members ZEB1 and ZEB2, the SNAIL
zinc finger family, and the TWIST family of basic helix-
loop-helix transcription factors [116]. Activation of EMT
programs is also described to endow neoplastic epithelial
cells with both mesenchymal phenotype and stemness
traits. Chaffer et al. showed that ZEB1 can drive the con-
version of breast neoplastic non stem cells (CD44-) into a
stem-like state (CD444) [117]. Moreover, interaction
between EMT transcription factors and CSC transcription
factors such as SOX and NANOG can promote stem cell
self-renewal as well as commitment to either epithelial and/
or mesenchymal lineage programs, depending on cellular
context. For example, SOX2 binds directly to the

promoters of the EMT transcription factors SLUG, SNAIL
and TWISTI, leading to the loss of E-cadherin and the
acquisition of stem cell features in pancreatic cancer cells
[118]. Similarly, forced expression of SLUG with Sox9 in
breast cancer cells can efficiently induce entrance into the
CSC state [119]. More recently, by using the MMTV-
PyMT transgenic model of mammary tumor development,
the group of Robert A. Weinberg showed that SNAIL but
not SLUG is tightly associated with a CSC phenotype
[120].

Among numerous diffusible factors in tumor microen-
vironment, neurotrophins are increasingly described to be
involved in the regulation of EMT and EMT-linked CSC
enrichment (Fig. 1). Indeed, the BDNF/TrkB axis is con-
stantly reported as an important promotor of EMT in a
variety of cancers, including gastric [48], colon [49, 92],
head and neck [82], lung [46, 84, 121], endometrial [122,
123], and breast cancers [90, 124]. BDNF/TrkB signaling
activates Akt and MAP kinases, which in turn induce the
expression of EMT transcription factors including TWIST,
SNAIL, ZEBI1, EZB2 [82, 121, 125, 126]. These EMT
transcription factors can drive EMT by directly acting on
target genes, and can also act in a stepwise manner. For
example, in TrkB-transformed rat kidney epithelial cells,
TrkB-induced EMT and metastasis is mediated by ZEB1,
which acts downstream of a MAPK-dependent TWIST-
SNAIL axis [126].

Ricci et al. clearly demonstrated the involvement of
BDNF/TrkB in EMT-linked enrichment of CSCs of lung
carcinoma by using as model system primary cell cultures
derived from patients with malignant pleural effusions
[127]. This system has been shown to reproduce the natural
heterogeneity of non-small-cell lung cancer and to consti-
tute a source of tumor-initiating cells as they can form
tumors with histopathological features similar to those of
original human tumors when propagated in immunodefi-
cient mice [128, 129]. Using this model system, Ricci et al.
showed that the couple of BDNF/TrkB is overexpressed in
sphere culture conditions. This is associated with an
increase of sphere formation and vimentin expression.
Pharmacological inhibition of TrkB with K252a or
silencing of TrkB by siRNA strongly reduces sphere for-
mation and expression of EMT markers including
vimentin, SLUG, TWIST and SNAIL (Fig. 1, right frame).
Moreover, spheroids generated in the presence of siRNA
against TrkB are not able to implant in immunodeficient
mice, further supporting the importance of TrkB in tumor-
initiating cells [84].

On the other hand, by using a mouse model system to
mimic recurrent triple negative breast cancers as already
mentioned above, Yin et al. showed that the ALDH1+/
TrkB+ CSCs of recurrent triple negative breast cancers
express higher levels of EMT markers including vimentin
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and TWIST [90]. ALDHI1+/TrkB+ CSCs exhibit
enhanced invasive capacity when compared to the corre-
sponding ALDHI1+/TrkB- and ALDHI- cells. These
results suggest that in recurrent triple negative breast can-
cers, EMT and stemness maintenance may require the
common signaling pathways of BDNF/TrkB.

We showed that NGF-treated luminal breast cancer
cells, cultured under mammosphere conditions, exhibit an
enhanced ability to generate tumors. Of note, the in vitro
NGF pretreatment of breast cancer cells promotes EMT in
tumors of SCID mice, as evidenced by the acquisition of
migratory properties, a spindle-like cell morphology and
the downregulation of epithelial markers, including
E-cadherin, keratin 18 and keratin 19, but also the upreg-
ulation of mesenchymal markers such as vimentin and
SLUG (Fig. 1, right frame). Moreover, the NGF-induced
EMT yields cells with a CD44"€"/CD24~"°% antigenic
phenotype, which is widely used to identify breast CSCs
[1, 117], thus linking NGF signaling to both EMT and
CSCs. Interestingly, NGF increases expression of the
SNAIL2, SNAIL1 and TWISTI1 transcription factors in
luminal breast cancer cells even under monolayer culture
condition [106]. This suggests that NGF primes molecular
changes in breast epithelial cancer cells, which may lead to
EMT and CSC emergence from non-stem epithelial cells,
depending on cellular context and tumor
microenvironment.

Conclusion

In this review, we summarize the role of neurotrophins in
cancer development and highlight the emerging evidence
of neurotrophins in the regulation of CSCs. Accumulated
data suggest that targeting the neurotrophin signaling
pathways in CSCs may provide a new therapeutical option
against treatment resistance and tumor relapse. Clearly,
further study is needed to decipher the downstream sig-
naling pathways of each neurotrophin receptor including
TrkA, TrkB, P75V and to identify key molecular events
involved in neurotrophins-induced CSC enrichment.
Moreover, given the plasticity of cancer cells and the
dynamic interactions between CSCs and their microenvi-
ronment, it should be interesting to investigate the potential
influence of neurotrophins and their receptors on the phe-
notype switching between CSCs and non CSCs.
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