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Abstract The pandemic rise in obesity has resulted in an

increased incidence of metabolic complications. Non-alco-

holic fatty liver disease is the hepatic manifestation of the

metabolic syndrome and has become the most common

chronic liver disease in large parts of the world. The adipose

tissue expansion and hepatic fat accumulation characteristics

of these disorders compromise local oxygen homeostasis.

The resultant tissue hypoxia induces adaptive responses to

restore oxygenation and tissue metabolism and cell survival.

Hypoxia-inducible factors (HIFs) function as master regu-

lators of this hypoxia adaptive response, and are in turn

hydroxylated by prolyl hydroxylases (PHDs). PHDs are the

main cellular oxygen sensors and regulate HIF proteasomal

degradation in an oxygen-dependent manner. HIFs and

PHDs are implicated in numerous physiological and patho-

logical conditions. Extensive research using genetic models

has revealed that hypoxia signaling is also a key mechanism

in adipose tissue dysfunction, leading to adipose tissue

fibrosis, inflammation and insulin resistance. Moreover,

hypoxia affects liver lipid metabolism and deranges hepatic

lipid accumulation. This review summarizes the molecular

mechanisms through which the hypoxia adaptive response

affects adipocyte and hepatic metabolism, and the

therapeutic possibilities of modulating HIFs and PHDs in

obesity and fatty liver disease.
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Introduction

Obesity and its associated comorbidities have become one

of the defining diseases of the last decades. A recent

analysis estimated that the number of overweight or obese

individuals has risen to 2.1 billion people worldwide [1].

Consequently, non-alcoholic fatty liver disease (NAFLD)

has become a global pandemic and is now the most com-

mon cause of chronic liver injury in large parts of the world

[2, 3]. NAFLD comprises a spectrum of disease that ranges

from hepatocellular steatosis to non-alcoholic steatohep-

atitis (NASH), cirrhosis, and hepatocellular carcinoma.

Simple steatosis should no longer be considered a benign

condition, as it predisposes the liver to further injury, and is

a precursor of and an independent risk factor for type 2

diabetes and cardiovascular disease [2, 4, 5].

Despite intensive research, satisfactory pharmacological

treatment for either obesity or NAFLD is currently lacking,

urging further research into the pathophysiological mech-

anisms underlying these disorders.

Complex multicellular organisms were able to evolve as

a result of energy production through mitochondrial

oxidative phosphorylation, which generates energy much

more efficiently than alternative fermentation processes

such as anaerobic glycolysis. Oxygen functions as the final

electron acceptor in this mitochondrial respiratory chain,

and is therefore vital for maintaining normal tissue
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homeostasis and metabolism [6, 7]. Accordingly, an evo-

lutionary conserved pathway, termed the hypoxia-induced

adaptive response, regulates adaptation to low oxygen

tensions at the cellular level [8]. Both hypoxia and this

adaptive response have been associated with many dis-

eases, such as anemia, lung and cardiovascular disease, and

cancer [6, 9].

Regarding obesity-related diseases, studies in animal

models [10, 11] have demonstrated that white adipose

tissue (WAT) becomes hypoxic as it expands in obesity. As

WAT hypoxia is one of the first pathophysiological chan-

ges in obesity, it may underlie the observed link between

obesity and low-grade chronic WAT inflammation [12, 13].

In human patients, the evidence for WAT hypoxia is more

controversial. Some studies have shown a decrease in

WAT oxygen levels as body fat increases [14, 15]. Nev-

ertheless, others have not been able to find a metabolic

signature characteristic of hypoxia in adipose tissues of

obese subjects [16], whereas one study even found an

increase in tissue oxygen levels, despite reduced WAT

blood flow [17]. In recent years, there has been consider-

able interest in brown adipose tissue (BAT) as a potential

anti-obesity target due to its capacity to burn excess energy

in thermogenesis [18]. Research has indicated that obesity

also causes BAT hypoxia, contributing to a loss of ther-

mogenic capacity [19].

Adipose tissue expansion and inflammation cause ecto-

pic lipid accumulation in muscle and liver tissue, leading to

insulin resistance and liver steatosis [20, 21]. Because the

liver is uniquely vascularized, receiving both oxygenated

blood via the hepatic artery and deoxygenated blood via the

portal vein, it is a hypoxia-sensitive organ. The blood that

flows in the hepatic lobule is directed from the periportal

region towards the central vein, creating an oxygen gra-

dient with lower oxygen tensions in the perivenous regions

of the liver lobule [22]. While it is known that acute and

chronic alcohol exposure causes perivenous hypoxia [23,

24], more recently, a similar pattern was established in

mice who were fed a high-fat diet (HFD) leading to

NAFLD [25].

This review discusses the pathways involved in hypoxia

signaling and the effects of modulating the hypoxia

response on the development of adipose tissue dysfunction

and NAFLD.

The hypoxia-induced adaptive response pathway

Hypoxia-inducible transcription factors (HIF) are the

master regulators of the cellular and tissue response to

hypoxic stress [26–28]. They are heterodimers consisting

of an oxygen-sensitive HIF-a subunit and a stable, con-

stitutively expressed b-subunit (HIF-1b), also known as

ARNT (aryl hydrocarbon receptor nuclear translocator).

Three forms of HIF-a, named HIF-1a, HIF-2a and HIF-3a,
have been characterized. HIF-a subunit stability is strictly

controlled by cellular oxygen concentrations (Fig. 1).

Under normoxic conditions, HIF-a is subject to hydroxy-

lation at specific proline residues by prolyl hydroxylase

domain proteins (designated PHD1, PHD2 and PHD3).

PHD activity requires oxygen and 2-oxoglutarate as co-

substrates and ascorbic acid and iron as co-factors [29].

Hydroxylation allows recognition of HIF-a by the von

Hippel Lindau (VHL) tumor suppressor gene, which acts as

a substrate for the E3 ubiquitin ligase complex, resulting in

polyubiquitination and proteasomal degradation [30].

Under hypoxic conditions, PHD activity is inhibited and

HIF-a can translocate to the nucleus where it dimerizes

with HIF-1b, thereby forming the active transcription

factor HIF.

HIF belongs to the PAS family of helix–loop–helix

transcription factors, and binds DNA at so-called hypoxia

responsive elements [31]. HIF regulates the expression of

numerous downstream target genes, such as vascular

endothelial growth factor (VEGF), erythropoietin and

various glucose transporters (GLUTs). In this way, HIF

increases oxygen delivery to the tissue, helps adapt the

tissue to lower oxygen levels and lowers oxygen con-

sumption. HIF-1a and HIF-2a share structural similarities

and coordinate processes such as erythropoiesis, angio-

genesis, glucose and lipid metabolism, proliferation, and

inflammation [32]. Yet each isoform has non-redundant

functions that vary in a tissue-specific way [33, 34]. In

addition, the affinity of different PHD isoforms for HIF

subunits and their relative abundance in different tissues

and cells varies, which allows fine-tuning of a flexible

hypoxia adaptive response to varying physiological oxygen

tensions [35]. For instance, PHD2 shows greater affinity for

HIF-1a, whereas PHD3 and, to a lesser extent, PHD1

predominantly hydroxylate HIF-2a [36].

Hypoxia signaling in adipose tissue

Adipose tissue has the unique property to expand drasti-

cally in adulthood, whereas most adult tissues retain a

relatively stable size [37]. Although adipogenesis and

angiogenesis are tightly interconnected, compensatory

WAT angiogenesis is often inadequate to parallel WAT

expansion and blood delivery to WAT is diminished [17,

38]. As adipocyte cell expansion also limits oxygen dif-

fusion, oxygen supply can become insufficient, although

some inconsistencies exist in the literature regarding WAT

oxygen levels in obese humans [14, 16, 17, 39]. Moreover,

the increase in free fatty acids in obesity directly increases

WAT oxygen consumption through activation of adenine
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nucleotide translocase 2 (ANT2), a mitochondrial inner-

membrane protein normally involved in BAT thermogen-

esis [40]. ANT2 specifically stimulates the uncoupling of

mitochondrial oxidative metabolism, causing energy to be

dissipated as heat instead of being coupled to ATP pro-

duction [41, 42]. The activation of ANT2 suggests that, in

obesity, oxygen consumption in WAT is increased in a

compensatory attempt to increase energy expenditure.

Importantly, research in animal models has shown that

WAT hypoxia and HIF-1a upregulation occur as early as

1–3 days after starting a high-fat diet, before inflammation

and insulin resistance develop [40, 43]. This WAT hypoxia

exerts a profound influence on tissue homeostasis and

dysregulates the expression of many adipokines and pro-

inflammatory cytokines [11, 44]. As a consequence, adi-

pose tissue is polarized towards a pro-inflammatory

phenotype, further contributing to the attraction of circu-

lating macrophages towards the hypoxic regions [11].

These data support the hypothesis that hypoxia is one of the

key features in the development of low grade inflammation

and adipose tissue dysfunction [13, 39]. Therefore, the

ability to modulate the hypoxia response might hold

important therapeutic potential (Table 1).

HIF isoform specificity in adipose tissue

HIF-1a can be artificially stabilized by deleting the HIF-a
oxygen-dependent degradation domain, thus conferring

resistance to hydroxylation by PHDs [45]. Using this

approach, Halberg et al. [43] found a HIF-1a dose-de-

pendent increase in adipocyte cell mass. HIF-1a transgene

hemizygotic mice gained more weight and experienced

decreased glucose tolerance compared to their wild-type

(WT) littermates. This led to WAT fibrosis through

upregulation of various collagens and the collagen cross-

linking protein lysyl oxidase. Fibrosis preceded infiltration

by immune cells, and inhibition of lysyl oxidase resulted in

a reversal of glucose intolerance, fibrosis, and inflamma-

tion, indicating that HIF-associated fibrosis is a central

mechanism of WAT dysfunction [43] (Fig. 2a).

Fig. 1 The Hypoxia adaptive response system. Under normoxic

conditions, hypoxia-inducible factor a (HIF-a) subunits are hydrox-

ylated by prolyl hydroxylase (PHD) at specific proline residues

(prolines 402 and 564 for HIF-1a and prolines 405 and 531 for HIF-

2a). Hydroxylated HIFs are recognized by the von Hippel–Lindau

(VHL) protein, leading to ubiquitinilation and proteasomal degrada-

tion. PHD activity is inhibited by hypoxia, allowing the nuclear

translocation of HIF-a, where it dimerizes with HIF-1b to activate

transcription of hypoxia target genes

Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver… 3421

123



T
a
b
le

1
S
u
m
m
ar
y
o
f
k
ey

st
u
d
ie
s
o
n
ad
ip
o
cy
te
-s
p
ec
ifi
c
H
IF

m
o
d
u
la
ti
o
n

G
en
e
m
o
d
u
la
ti
o
n

S
tu
d
y
p
ro
to
co
l

B
o
d
y

w
ei
g
h
t

G
lu
co
se

to
le
ra
n
ce

A
d
ip
o
cy
te

p
h
en
o
ty
p
e

A
d
ip
o
se

ti
ss
u
e

in
fl
am

m
at
io
n

V
as
cu
la
tu
re

H
ep
at
ic

m
et
ab
o
li
sm

R
ef
er
en
ce
s

H
IF
-1
a

o
v
er
ex
p
re
ss
io
n

aP
2
-H

IF
-1
a
-O

D
D

tr
an
sg
en
e
co
n
st
ru
ct

In
cr
ea
se
d

Im
p
ai
re
d

In
cr
ea
se
d
ce
ll
si
ze

In
cr
ea
se
d

N
o
t
af
fe
ct
ed

Im
p
ai
re
d
in
su
li
n
se
n
si
ti
v
it
y
,

T
G

in
cr
ea
se

H
al
b
er
g
et

al
.
[4
3
]

H
IF
-1
a
o
r
H
IF
-1
b

d
el
et
io
n

aP
2
-C
re

9
H
IF
-1
af

/f
/

H
IF
-1
b
f/
f

D
ec
re
as
ed

Im
p
ro
v
ed

S
m
al
le
r
ad
ip
o
cy
te
s

D
ec
re
as
ed

N
D

In
cr
ea
se
d
in
su
li
n
se
n
si
ti
v
it
y

Ji
an
g
et

al
.
[4
7
]

H
IF
-1
b
d
el
et
io
n

aP
2
-C
re

9
H
IF
-1
bf

/f
D
ec
re
as
ed

Im
p
ro
v
ed

S
m
al
le
r
ad
ip
o
cy
te
s

U
n
ch
an
g
ed

R
ed
u
ce
d

p
er
m
ea
b
il
it
y

U
n
ch
an
g
ed

li
p
id

ac
cu
m
u
la
ti
o
n
o
r
in
su
li
n

se
n
si
ti
v
it
y

L
ee

et
al
.
[5
3
]

H
IF
-1
a
d
el
et
io
n

H
IF
-2
a
d
el
et
io
n

aP
2
-C
re

9
H
IF
-1
af

/f

aP
2
-C
re

9
H
IF
-2
af

/f

U
n
ch
an
g
ed

In
cr
ea
se
d

Im
p
ro
v
ed

Im
p
ai
re
d

D
ec
re
as
ed

ce
ll
m
as
s

an
d
si
ze

N
D

D
ec
re
as
ed

In
cr
ea
se
d

N
o
t
af
fe
ct
ed

N
D

D
ec
re
as
ed

st
ea
to
si
s
an
d

in
fl
am

m
at
io
n

N
D

L
ee

et
al
.
[4
0
]

H
IF
-1
a
d
el
et
io
n

aP
2
-D

o
m
in
an
t-
n
eg
at
iv
e

(d
n
)-
H
IF
-1
a
co
n
st
ru
ct

In
cr
ea
se
d

Im
p
ai
re
d

‘W
h
it
en
in
g
’
o
f
B
A
T

In
cr
ea
se
d
W
A
T

m
as
s

In
cr
ea
se
d

in
fl
am

m
at
io
n

an
d
fi
b
ro
si
s

Im
p
ai
re
d

(B
A
T
)

N
D

Z
h
an
g
et

al
.
[6
9
]

H
IF
-2
a
d
el
et
io
n

F
ab
p
4
-C
re

9
H
IF
-2
a
f/
f

In
cr
ea
se
d

Im
p
ai
re
d

‘W
h
it
en
in
g
’
o
f
B
A
T

In
cr
ea
se
d
W
A
T

m
as
s

In
cr
ea
se
d

in
fl
am

m
at
io
n

an
d
fi
b
ro
si
s

Im
p
ai
re
d

In
cr
ea
se
d
st
ea
to
si
s
an
d
T
G

ac
cu
m
u
la
ti
o
n

P
ro
g
re
ss
io
n
to

N
A
S
H

G
ar
ci
a-
M
ar
ti
n

et
al
.
[5
1
]

H
IF
-1
a
in
h
ib
it
io
n

C
o
m
p
o
u
n
d
P
X
-4
7
8

A
p
n
-r
tT
A

9
T
R
E
-d
n
-H

IF
-

1
a

R
ed
u
ce
d

Im
p
ro
v
ed

D
ec
re
as
ed

ce
ll
m
as
s

an
d
si
ze

D
ec
re
as
ed

N
D

D
ec
re
as
ed

st
ea
to
si
s

S
u
n
et

al
.
[4
8
]

P
H
D
2
in
h
ib
it
io
n

aP
2
-C
re

9
P
H
D
2
f/
f

R
ed
u
ce
d

Im
p
ro
v
ed

S
m
al
le
r
ad
ip
o
cy
te
s

R
ed
u
ce
d

M
il
d
ly

in
cr
ea
se
d

N
D

M
at
su
u
ra

et
al
.

[6
0
]

P
H
D
2
in
h
ib
it
io
n

aP
2
-C
re

9
P
H
D
2
f/
f

In
cr
ea
se
d

U
n
af
fe
ct
ed

L
ar
g
er

ad
ip
o
cy
te
s

U
n
af
fe
ct
ed

In
cr
ea
se
d

D
ec
re
as
ed

li
v
er

T
G

M
ic
h
ai
li
d
o
u
et

al
.

[6
2
]

P
H
D
2
in
h
ib
it
io
n

P
H
D
2
g
t/
g
t
m
ic
e

F
G
-4
4
9
7
ad
m
in
is
tr
at
io
n

R
ed
u
ce
d

R
ed
u
ce
d

Im
p
ro
v
ed

Im
p
ro
v
ed

S
m
al
le
r
ad
ip
o
cy
te
s

S
m
al
le
r
ad
ip
o
cy
te
s

D
ec
re
as
ed

D
ec
re
as
ed

N
o
t
af
fe
ct
ed

N
D

D
ec
re
as
ed

st
ea
to
si
s

N
D

R
ah
tu
-K

o
rp
el
a

et
al
.
[1
1
4
]

O
u
tc
o
m
e
v
al
u
es

in
co
m
p
ar
is
o
n
w
it
h
W
T
m
ic
e
af
te
r
H
F
D

fe
ed
in
g

N
D

n
o
t
d
et
er
m
in
ed
,
T
G

tr
ig
ly
ce
ri
d
es

3422 S. Lefere et al.

123



In addition, a Cre recombinase under the control of the

human adipocyte fatty acid-binding protein (aP2) promotor

has been used to obtain adipose-tissue specific knock-out

(KO) of HIF-1a [46]. This protected against diet-induced

glucose intolerance and WAT inflammation [40, 47]. HIF-

1a KO increased energy expenditure, in part by increasing

physical activity and in part by increasing fatty acid b-
oxidation [47], in keeping with the role of HIFs in reducing

oxidative metabolism [6]. These results were reproduced

by the administration of PX-478, a selective HIF-1a inhi-

bitor. PX-478 treatment reduced HFD-induced weight gain,

adipocyte size, and serum leptin levels, suppressed WAT

fibrosis and inflammation, and increased glucose tolerance

[48]. In agreement with these data, temporally induced

overexpression of a defective HIF-1a protein by means of a

doxycycline sensitive transgene resulted in the same

metabolic phenotype [48].

Conversely, HIF-2a is a promotor of adipocyte differ-

entiation [49] and plays a protective role in adipose tissue.

HFD feeding downregulates WAT HIF-2a levels [47], and

HIF-2a haplodeficient mice displayed more glucose and

insulin intolerance and showed increased expression of

fibrotic collagen genes and pro-inflammatory macrophages

in WAT compared to WT littermates [50]. Adipocyte-

specific HIF-2a ablation had similar effects [40, 51].

Nevertheless, some ambiguity remains, as another group

reported that VHL deletion, resulting in HIF-a accumula-

tion, caused WAT inflammation. This effect was HIF-2a-
dependent and resulted in critical hypertrophic cardiomy-

opathy, independent of weight gain or insulin intolerance

[52].

A combined adipocyte-specific deletion of HIF-1a and

HIF-2a phenotypically resembled HIF-1a KO mice, indi-

cating that HIF-1a is the dominant isoform in WAT [40].

Correspondingly, deletion of HIF-1b, which impairs both

HIF-1a and HIF-2a signaling, had comparable effects to

HIF-1a deletion [47, 53].

At the molecular level, hypoxia induces a switch from

aerobic to anaerobic metabolism. An increase in anaerobic

glycolysis depends on increased glucose transport, which is

highly upregulated in WAT by hypoxia [39]. Indeed, glu-

cose uptake and lactate production progressively increase

Fig. 2 Proposed model of HIF actions in obesity and fatty liver.

Green arrows activation; red arrows inhibition. a White adipose

tissue (WAT) expansion in obesity causes regional hypoxia, activat-

ing the hypoxia adaptive response pathway. HIF-1a increases

collagen deposition and crosslinking, causing WAT fibrosis. This in

turn underlies the inflammation and insulin resistance characteristic of

the metabolic syndrome. HIF-2a has positive effects on WAT, most

likely through counteracting the HIF-1a pathway. In addition, HIF-2a
also stimulates WAT angiogenesis, improving oxygen delivery.

b Insulin resistance and WAT lipolysis cause ectopic lipid deposition

in the liver. Hepatic steatosis is associated with perivenous hypoxia,

again activating HIF signaling. Hypoxia has complicated effects, yet

in general lowers oxygen and energy consumption through inhibition

of both oxidative metabolism and fatty acid synthesis. Fatty acids are

stored as lipid droplets to protect against the toxic effects of free fatty

acids. Liver hypoxia is associated with pathological neo-angiogenesis,

which further deranges metabolic function. The role of HIF-2a in

NAFLD is still under debate, as it also improves hepatic metabolism,

in particular hepatic insulin signaling
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as oxygen levels drop in adipose tissue, with major shifts in

glucose utilization between oxygen tensions of 10 and 3 %

O2 [54]. As one animal study showed that oxygen levels

were about 45 mm Hg (6.5 % O2) in lean mice and 15 mm

Hg (2 % O2) in obese mice [10], these results show that

adipocytes are highly sensitive to oxygen. A relatively

small expansion of WAT can change oxygen tensions,

which in turn can drastically impact WAT gene expression.

Interestingly, WAT HIF-1b ablation decreased glucose

uptake through downregulation of the HIF-targets GLUT1

and 4, with a secondary decrease in glucose uptake and

lipogenesis [53]. It has been suggested that this mechanism

is involved in the reduced fat accumulation in HIF-1a and

HIF-1b adipose KO mice. This hypothesis needs to be

corroborated, as high-altitude hypoxia has also been known

to induce marked weight loss through HIF signaling [55].

Moreover, insulin induces translocation and activation of

GLUT4 in adipose tissue, whereas HIF-1b ablation greatly

improved insulin sensitivity, so that an increase rather than

a decrease in GLUT4 levels was to be expected [53, 56].

Role of PHDs to modulate HIFs in adipose tissue

A relatively novel approach in modifying the hypoxia

adaptive response in obesity and metabolic disease has

focused on inhibition of PHDs, inspired by promising

applications of PHD inhibitors (PHI) in animal models of

anemia and ischemic disease [57]. Two recently published

clinical trials using the PHI roxadustat for anemia in

chronic kidney disease show potential benefit, via upreg-

ulation of HIF-dependent genes in iron metabolism and

hemoglobin synthesis [58, 59]. Trials investigating PHIs in

coronary and peripheral vascular ischemia are underway

[57].

Concerning adipose tissue, Matsuura et al. [60] found

that adipocyte-specific deletion of PHD2 diminished HFD-

induced weight gain. Adipocytes were smaller and glucose

and insulin tolerance were likewise improved, secondary to

a HIF-induced switch to anaerobic glycolysis. This resulted

in inefficient metabolism, comparable to the weight-re-

ducing effects of hypoxia in high altitude and chronic lung

disease [55, 61]. However, Michailidou et al. [62] stated

different conclusions using an almost identical study pro-

tocol. Their mice gained considerable weight but

maintained normal glucose tolerance and experienced a

remarkable reduction in liver triglyceride content. Reasons

for this discrepancy could include an upregulation of PHD3

found only in one of these studies [60]. Indeed, PHD3

upregulation compensates for decreased PHD activity in

continued hypoxia to adapt cells to a novel set point [35,

63]. A similar mechanism could account for the observed

effect in the study performed by Matsuura et al., as PHD2

deletion artificially pre-adapts tissues to a lower oxygen set

point [60].

Modulation of HIFs and PHDs in adipose tissue have

thus resulted in discrepant outcomes, which are not easily

reconciled. In this context, it is important to note that both

HIF-1a and PHDs stand at cross-roads of diverse signaling

pathways. PHDs not only sense oxygen but also various

metabolites, such as citric acid cycle intermediates and

reactive oxygen species [64, 65], whereas HIF-1a expres-

sion is, for example, also affected by adipocyte

differentiation and insulin levels [66]. Furthermore, PHDs

regulate targets other than HIF-1a, such as the key gly-

colytic enzyme pyruvate kinase M2 and the nuclear factor

kappa-light chain-enhancer of activated B cells (NFjB)
pathway [65, 67].

Concerning the role of PHDs in hypoxia, the hypoxia

autoregulatory feedback mechanism could possibly be

exploited by PHD inhibition to create a therapeutic window

of HIF-1a and HIF-2a upregulation. A study by the group

of Giaccia [68] provided the first proof-of-concept by

demonstrating that liver-specific PHD3 deletion improves

hepatic insulin signaling, mainly through HIF-2a stabi-

lization. A further rise in HIF-2a (and HIF-1a) levels,

obtained by simultaneous PHD1 and/or PHD2 deletions,

did not further improve insulin signaling and even caused

liver steatosis.

Although PHD inhibition is a promising approach, fur-

ther research in this area is needed to explore these

discordant results.

Hypoxia-induced angiogenesis in adipose tissue

One of the central hypoxia-adaptive mechanisms induced

by HIFs, in virtually every tissue, is the stimulation of

angiogenesis through VEGF upregulation.

Zhang et al. [69] found that HIF-1a inhibition in BAT

results in a marked disruption of BAT angiogenesis, and

secondarily in impaired thermogenic activity, glucose

intolerance and WAT inflammation [69]. It is therefore

surprising that neither HIF-1a overexpression nor deletion

significantly altered angiogenesis in WAT [40, 43]. Con-

versely, adipocyte HIF-2a deletion resulted in deficient

vascularization in both WAT and BAT [51]. Michailidou

et al. further observed a twofold increase in WAT vessel

density as a result of adipocyte-specific PHD2 deletion,

mediated by HIF2a stabilization [62]. This was accompa-

nied by a 50 % increase in WAT mass, but not with

metabolic dysregulation. Mechanistically, a prophylactic

vascular remodeling of the adipose tissue was induced by

HIF upregulation, allowing a further increase in WAT mass

whilst preventing WAT inflammation and ectopic fat

deposition, a major cause of insulin resistance development
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[62, 70, 71]. Several studies have indeed shown that

transgenic overexpression of VEGF prevents and even

reverts HFD-induced metabolic dysfunction through

increased vascularization [72–74]. Accordingly, WAT

contained less hypoxic areas and HIF-1a protein levels

were significantly decreased compared to WT controls [73,

74]. VEGF also induced transdifferentiation of white to

thermogenic beige adipocytes [18, 72, 75].

In summary, VEGF is a potent inducer of adipose tissue

angiogenesis and can pre-adapt WAT to hypoxia [37]. This

mechanism is HIF-2a dependent, while HIF-1a intrigu-

ingly seems to regulate vascularization in brown but not

white adipose tissue (Fig. 2a).

Hypoxia signaling in fatty liver disease

Cross-talk between adipose tissue hypoxia and fatty

liver disease

Adipose tissue hypoxia also stimulates basal lipolysis,

another key feature of adipose tissue dysfunction. Although

a study by Lolmede et al. could not demonstrate an influ-

ence of hypoxia on basal lipolysis in vitro [76], other

groups subsequently reported an increase in lipolysis

in vitro and in vivo in hypoxic conditions [77–79]. Cor-

responding to the latter studies, lipolysis is inversely

correlated with WAT oxygen tensions in human patients

[80]. The resultant release of fatty acids into the blood-

stream leads to re-esterification and deposition of fatty

acids in insulin-sensitive organs such as the liver, causing

both insulin resistance and NAFLD [20, 21].

Accordingly, adipocyte HIF modulation affected liver

lipid accumulation. Use of the hyperinsulinemic-eug-

lycemic clamp technique to quantify insulin resistance

revealed that adipocyte HIF-1a KO leads to decreased

gluconeogenesis and thus improved insulin sensitivity [40,

47]. Moreover, both genetic and pharmacological HIF-1a
inhibition were able to prevent NAFLD [40, 47, 48] as well

as hepatocyte inflammation [40], which is an essential step

in the progression to NASH [81], while adipocyte-specific

HIF-1a overexpression had the opposite effects [43].

Hypoxia affects hepatic lipid metabolism

Because of the unique vascularization of the liver, there

exists an oxygen gradient across the liver lobule, with

lower oxygen tensions in the perivenous regions [22].

Research in animal models has shown that liver lipid

deposition induces perivenous hypoxia and HIF-1a acti-

vation [25].

Important evidence for a pathophysiological role of

hypoxia on hepatic lipid metabolism is provided by the

now well established independent link between the

obstructive sleep apnea syndrome, causing intermittent

hypoxia, and NAFLD development and stage [82–84]. In

experimental models of high-fat diet-induced obesity,

exposure to intermittent hypoxia exacerbated insulin

intolerance and hepatic steatosis [85]. Additionally, HIF-1a
haplodeficiency limited steatosis development when mice

were submitted to intermittent hypoxia, suggesting a role

for HIF-1a in sleep apnea-related NAFLD [86].

Hypoxia signaling exerts its effects through a direct

regulation of hepatic lipid metabolism (Fig. 2b). Break-

down of fatty acids through mitochondrial b-oxidation
consumes large amounts of oxygen and is a major HIF

target [87]. Hepatic fatty acid b-oxidation is regulated by

the transcriptional control of peroxisome proliferator-acti-

vated receptor a (PPARa) over key mitochondrial

oxidative enzymes [88]. Gene expression analysis revealed

that PPARa and its target genes are indeed downregulated

in hepatocyte HIF-2a overexpressing mice [89, 90],

whereas HIF-1a KO in hepatocytes leads to an induction of

oxidative enzymes [91]. PPARa agonism has beneficial

effects in preventing NAFLD, NASH and progression to

fibrosis [92]. Unsurprisingly, it has since long been an

attractive pharmacological target [93], and promising new

PPAR agonists are currently being developed for the

treatment of metabolic disorders [94].

The effect of hypoxia signaling on lipogenesis, another

oxygen-consuming metabolic process, is more ambiguous.

Qu et al. [90] have shown a downregulation of key lipo-

genic enzymes 2 weeks after genetic induction of HIF-a in

hepatocytes, in an attempt to limit energy consumption in

hypoxic cells [87]. Nevertheless, 3 days after HIF-a
induction a marked upregulation of lipogenic enzymes was

observed. Possibly, this upregulation was secondary to a

HIF-mediated increased uptake of glucose by hepatocytes

[6, 95].

Moreover, the lipid binding protein adipocyte differen-

tiation-related protein (ADRP) was upregulated in

hepatocyte-specific HIF overexpressing mice [89, 96].

ADRP strongly promotes lipid droplet formation in various

tissues [97, 98]. Formation of lipid droplets may represent

a protective mechanism against the direct toxic effects of

free fatty acids, which cause oxidative stress and inflam-

mation [81], although this initiates a vicious circle of lipid

deposition and hypoxia.

Extrapolation from experimental data to the role of

hypoxia in human liver metabolism is not straightforward.

The intricate regulation of hepatic lipid metabolism by

HIFs is made even more complex by zonation of metabo-

lism and oxygen supply in the liver. Perivenous

hepatocytes, prone to hypoxia, are more engaged in lipo-

genesis, whereas the well-oxygenated periportal

hepatocytes are more involved in b-oxidation [99]. Hence,
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whereas overexpression HIF-a isoforms in mouse models

inhibits fatty acid oxidation, perivenous hypoxia would not

affect periportal b-oxidation in human NAFLD [87]. In

patients with NAFLD, b-oxidation is indeed typically

increased instead of reduced [100]. And although hypoxia

inhibits lipogenesis, lipogenic genes are upregulated in

human NAFLD and play a central role in hepatic fat

accumulation [101, 102]. Therefore, zonated modulation of

the hypoxia response in fatty liver disease could provide

interesting insights.

Hepatocyte-specific HIF modulation in fatty liver

disease

To modulate the hypoxia response system in vivo, hepa-

tocyte-selective ablation and overexpression models of

HIFs have been used. These were obtained either by

injection of adenoviral particles or by hepatocyte-specific

Cre-mediated recombination, in most cases by use of the

albumin-Cre mouse strain [103] (Table 2).

The first studies showing the significance of HIF mod-

ulation in hepatic steatosis used conditional VHL deletions,

which prevented proteasomal degradation of hydroxylated

HIFs. This resulted in increased vascularization, cavernous

liver hemangiomas and severe hepatic steatosis [104]. This

phenotype was copied by simultaneous HIF-1a and HIF-2a
overexpression using degradation-resistant HIF variants

(HIF-1dPA and HIF-2dPA) [105]. Furthermore, HIF-1a
activation resulted in moderate steatosis, whereas HIF-2a
overexpression greatly increased liver microvascular den-

sity with only minimal lipid deposition [105].

By inducing simultaneous deletions in VHL and HIF-1a
and/or HIF-2a, to reverse the overexpression of specific

HIFs after VHL deletion, a dominant role for HIF-2a in

fatty liver disease was asserted, as deletion of HIF-2a, but
not of HIF-1a, prevented the severe steatosis associated

with VHL deletion [89]. Qu et al. [90] have confirmed

these data and showed that temporal disruption of VHL

causes severe steatohepatitis with progression to fibrosis.

Again, deletion of HIF-2a but not HIF-1a rescued this

phenotype.

Conversely, several papers have convincingly shown

pathophysiological effects of HIF-1a in fatty liver disease.

Using degradation-resistant HIF-1dPA mice, Nath et al.

[96] demonstrated that hepatocyte HIF-1a overexpression

causes hepatomegaly and liver triglyceride accumulation,

which were further exacerbated by liquid ethanol admin-

istration, whereas hepatocyte-specific HIF-1a KO provided

protection against steatosis. Comparable results were

obtained in models of diet-induced obesity, as antisense

nucleotide treatment, resulting in both hepatocyte and

adipocyte HIF downregulation, protected against adverse

metabolic effects of HFD feeding [106]. However,

Nishiyama et al. [91] postulated the opposite hypothesis of

HIF-1a as an adaptive mechanism, as they found that

hepatocyte HIF-1a deletion aggravated lipid deposition in

an alcoholic model of fatty liver disease. The same group

also reported the development of insulin resistance when

these mice were fed a HFD [107]. These discrepant results

are difficult to reconcile, as both groups [91, 96] have used

identical genetic approaches. However, different control

animals were used by the two groups, which may have

biased the outcome. It has also been suggested that dif-

ferences in the intestinal flora between the two research

group animal facilities and between the different mice

strains could have influenced steatosis progression, as it is

well known that the gut microbiome contributes to the

development of NAFLD [96, 108–110]. Research in related

fields, such as liver fibrosis, nonetheless suggests that HIF-

1a is a mediator of liver disease progression rather than a

protective regulator [111].

In addition to HIF1a modulation, hepatocytic deletion

of HIF-1b, targeting all HIF signaling pathways, has

resulted in increased gluconeogenesis and mild whole-body

insulin resistance, yet slightly lowers hepatic triglyceride

content [112]. Consistently, another group reported a

decrease in steatosis in hepatocyte HIF-1b null mice when

subjected to binge ethanol models [113].

Taken together, these studies indicate that both HIF-1a
and HIF-2a promote hepatic lipid accumulation. Which

HIF-a isoform plays the dominant role, however, remains

to be elucidated. The difference in the genetic mouse

models used may explain some of the discrepancies. For

instance, indications for a pathological role of HIF-2a in

WAT [52] and fatty liver disease [89, 90] have solely been

obtained in mice with tissue-specific VHL deletions by

showing that additional HIF-2a KO reversed these effects.

Further research with other genetic approaches to HIF-2a
could help to clarify this discussion.

Role of PHD inhibition as a treatment strategy

in fatty liver disease

Parallel to PHD inhibition in obesity, it also represents an

attractive target in fatty liver disease. Rahtu-Korpela et al.

[114] have used hypomorphic PHD2gt/gt mice, which

express decreased amounts of PHD2 and show differing

levels of HIF-1a and HIF-2a stabilization across various

tissues [115]. Whereas 1-year-old control littermates

spontaneously developed insulin resistance and hepatic

steatosis, PHD2gt/gt mice were protected against metabolic

dysregulation through an upregulation of insulin receptor

substrate 2 (Irs2) [114]. These mice retained improved

metabolic parameters after a HFD. As only hepatic HIF-2a
was stabilized, these results are concordant with a study by

Wei et al. [116]. They found that VEGF inhibition and the
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concomitant impaired angiogenesis caused local hypoxia

and specifically stabilized HIF-2a, which in turn improved

insulin signaling through Irs2 induction. Therefore, these

studies postulate a beneficial effect of moderate HIF-2a
upregulation in fatty liver disease through PHD inhibition,

contrary to the studies that used VHL deletion to stabilize

HIFs discussed in the previous paragraph.

Remarkably, pharmacological PHD inhibition with the

compound FG-4497 led to highly similar results in the

models of metabolic dysregulation, suggesting that treat-

ment could not only prevent but also reverse metabolic

dysfunction [114]. In accord with this study, Nishiyama

et al. [91] demonstrated a marked improvement in alco-

holic fatty liver disease upon treatment with the PHI

dimethyloxalylglycine. Although isoform-specific PHD

inhibitors are not yet available, these could represent a new

approach in the treatment of obesity and its associated

metabolic disorders.

Hypoxia-induced angiogenesis in fatty liver disease

In chronic liver disease, especially hepatocellular carci-

noma [28, 117], hypoxia-induced angiogenesis is an

attractive therapeutic target, yet its role in NAFLD is not

extensively researched. We have shown that increased

angiogenesis and VEGF upregulation are hallmarks of

NAFLD progression, whereas treatment with anti-VEGF

receptor 2 antibodies prevents disease progression [118].

Wei et al. [116] have additionally demonstrated that VEGF

inhibition improves hepatic insulin signaling through

induction of hypoxia and stabilization of HIF-2a.
In general, HIF-2a seems to play a major role in blood

vessel normalization and homeostasis and can impact tis-

sue function and metabolism in various organs [34, 119].

Thus, the HIF/PHD pathways could represent an attractive

therapeutic strategy to remodel the hypoxia-induced

angiogenic response in obesity and NAFLD.

Conclusion and future perspectives

The prevention and treatment of obesity and the associated

non-alcoholic fatty liver disease has become one of the

major priorities in public health care. Unfortunately, sus-

tained weight loss is difficult to achieve for many patients,

and no pharmacological treatment can satisfactorily rem-

edy these conditions. Therefore, a greater understanding of

the underlying pathological mechanisms is required.

Hypoxia signaling pathways represent an attractive target

in obesity and NAFLD. Although HIF modulation in adi-

pose tissue and fatty liver has yielded conflicting results,

prolyl hydroxylase inhibition is a promising approach as

studies have consistently yielded beneficial effects.

It is of significance that pharmacological HIF-1a and

PHD inhibition were able to prevent or reverse the meta-

bolic dysregulation associated with obesity, thus proving

the therapeutic potential of tweaking the hypoxia response.

As there are still many gaps in our understanding of

hypoxia in metabolic disorders, further research is war-

ranted to determine the physiological functions of each HIF

isoform, and to explore their cell-specific role in adipose

and hepatic tissue.
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