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Abstract Insulin, insulin-like growth factors (IGFs) and

insulin-like peptides (ILPs) are important regulators of

metabolism, growth, reproduction and lifespan, and

mechanisms of insulin/IGF signaling (IIS) have been well

conserved over evolution. In insects, between one and 38

ILPs have been identified in each species. Relatively few

insect species have been investigated in depth with respect

to ILP functions, and therefore we focus mainly on the

well-studied fruitfly Drosophila melanogaster. In Droso-

phila eight ILPs (DILP1-8), but only two receptors (dInR

and Lgr3) are known. DILP2, 3 and 5 are produced by a set

of neurosecretory cells (IPCs) in the brain and their

biosynthesis and release are controlled by a number of

mechanisms differing between larvae and adults. Adult

IPCs display cell-autonomous sensing of circulating glu-

cose, coupled to evolutionarily conserved mechanisms for

DILP release. The glucose-mediated DILP secretion is

modulated by neurotransmitters and neuropeptides, as well

as by factors released from the intestine and adipocytes.

Larval IPCs, however, are indirectly regulated by glucose-

sensing endocrine cells producing adipokinetic hormone,

or by circulating factors from the intestine and fat body.

Furthermore, IIS is situated within a complex physiological

regulatory network that also encompasses the lipophilic

hormones, 20-hydroxyecdysone and juvenile hormone.

After release from IPCs, the ILP action can be modulated

by circulating proteins that act either as protective carriers

(binding proteins), or competitive inhibitors. Some of these

proteins appear to have additional functions that are inde-

pendent of ILPs. Taken together, the signaling with

multiple ILPs is under complex control, ensuring tightly

regulated IIS in the organism.

Keywords Insulin � Insulin-like growth factors �
Neuropeptide release � Nutrient sensing � Metabolism

Introduction

Insulin is one of the most extensively investigated peptide

hormones due to its critical role in carbohydrate metabo-

lism and thus importance in diabetes and obesity. Since its

discovery in 1922 [1], insulin and insulin-like peptides

have been identified in a large number of animals from

invertebrates, such as nematode worms, mollusks, and

insects to chordates [2–5]. In humans, there is one insulin,

two insulin-like growth factors (IGFs), one relaxin and a

number of human insulin-like peptides (INSL3-7) that are

members of the insulin superfamily of peptides [6–10].

These peptides display a variety of functions in different

tissues both during development and in the mature organ-

ism. In insects, varying numbers of insulin-like peptides

(ILPs) have been identified in different species, ranging

from one in the locusts, Locusta migratoria and Schisto-

cerca gregaria, to 38 in the silkmoth Bombyx mori [11–

15]. The classification of insect ILPs as insulin-like is

based on similarities in the amino acid sequence of the

mature peptides to those of mammalian insulins, especially

the number and positions of cysteine residues [4, 12, 16].

Another conserved feature is the arrangement of the
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precursor (pre-proinsulin) protein with B, C and A-chains

that can be processed into dimeric peptides with an A and a

B-chain linked by disulphide bridges. An exception to this

structure is seen for the insulin-like growth factors (IGFs),

where a short C-peptide is retained and the extended pep-

tide is a single chain with internal cysteine bridges. In

insects, ILPs of both insulin and IGF type have been

identified (see [3, 13, 16]).

In Drosophila eight ILPs (DILP1-8), encoded on sepa-

rate genes, have been detected [16–21]. One of these,

DILP6, is IGF-like structurally and functionally [18, 22],

and DILP7 and DILP8 have been proposed to be relaxin-

like [19, 20, 23, 24]. Only one of the eight Drosophila

DILPs seems to have conserved orthologs in insects outside

the Drosophilids and that is DILP7 [4, 15]. The different

DILPs are produced in a distinct spatio-temporal pattern

that suggests separate functions of the peptides, although

some redundancy has been detected [4, 16, 20]. One con-

served feature among insects is that certain ILPs are

produced in a set of median neurosecretory cells in the pars

intercerebralis of the brain (see [3, 11, 13, 16]). In Dro-

sophila, these cells, designated as insulin-producing cells

(IPCs) express DILP2, 3 and 5, which seem to be inde-

pendently regulated transcriptionally (see [4, 25, 26]).

Whereas there are several receptors for the different

members of the insulin family in mammals [6, 27, 28], only

one receptor has as yet been identified in most invertebrate

species. In mammals, the receptors are of the tyrosine

kinase type (insulins and IGFs) and G-protein coupled

receptors (GPCRs; relaxin and INSLs), while in inverte-

brates only receptor tyrosine kinases have been clearly

identified as cognate ILP receptors (see [3, 16]). However,

two relaxin receptor-like leucine-rich repeats containing

GPCRs (LGR type C) were recently discovered in Droso-

phila [29]. For one of these, Lgr3 (CG31096) it was

established that the relaxin-like DILP8 is the ligand [30].

Also, there are two reports of additional receptor tyrosine

kinases with ILP ligands in a single arthropod species, two

in the hemipteran planthopper Nilaparvata lugens [31] and

four putative receptors in the water flea Daphnia pulex

[32]. The signaling pathway downstream of the insulin

receptor (InR) is also well conserved across phyla, and

among invertebrates it has been extensively studied in

Caenorhabditis elegans and D. melanogaster (see [2, 3, 5,

33–36]). In the planthopper, the two insulin receptors (InR1

and InR2) couple differently to downstream signaling:

InR1 stimulates phosphatidylinositol-3-kinase (PI3K)—

protein kinase B (Akt) signaling, whereas InR2 inhibits the

PI3K-Akt pathway in regulation of wing polyphenism [31].

In the last 15 years, the interest in insulin/IGF signaling

(IIS) in invertebrates has increased dramatically. This was

probably triggered by the discovery that defects in IIS

increased lifespan in the worm C. elegans and in

Drosophila [37–43]. However, it was soon found that IIS

also plays multiple roles in cell and organism growth, cell

cycle regulation, including stem cell activation, and in

stress responses, fecundity and not least in metabolic

homeostasis (see [3, 16, 34, 36, 44–49]). Furthermore, it

seems that IIS plays an important role in regulating the

dormancy state known as diapause in insects [50–52] and

as dauer stage in C. elegans [53], and may modulate certain

behaviors [54–57]. A common feature of the above aspects

of IIS is that they integrate nutrient and energy storage

information with cellular and physiological activities that

regulate the anabolic branches of metabolism, in associa-

tion with processes such as growth and reproduction.

Over the years, several reviews on various aspects of IIS

have been published. Thus, we try to focus this review on

what happens before and after release of ILPs in insects:

cell-autonomous activation of IPCs, neuronal and hor-

monal regulation of IPC activity and thereby production

and release of ILPs, circulating factors interacting with

secreted ILPs, as well as peripheral modulators of IIS and

feedback mechanisms. Among the latter are insulin-bind-

ing proteins that recently have emerged as important

regulators of growth and organ wasting [17, 58–63]. We

also discuss the complex interactions between IIS and the

lipophilic hormones 20-hydroxyecdysone (20E) and juve-

nile hormone (JH). Since much of the available data derive

from studies of D. melanogaster, this review will be

somewhat biased towards this species, but we make an

effort to discuss other insects. References to Drosophila in

the text refer to D. melanogaster, other species will be

given with full name.

A brief overview of insulin/IGF-like peptides
in insects

Different ILPs are produced in different cell types and

tissues at different developmental stages. However, in all

insects studied at least one of the ILPs is produced by

neurosecretory cells in the brain. Thus, a set of median

neurosecretory cells (MNCs) in the pars intercerebralis,

referred to as IPCs (Fig. 1), is an important source of ILPs

in postembryonic insects [11, 16, 26, 64, 65]. In some

insects such as the mosquitos Aedes aegypti and Anopheles

gambiae, lateral neurosecretory cells of the brain also

express ILPs [64, 66, 67], and in the hemipteran bug

Rhodnius prolixus additional brain neuroendocrine cells

stain with antisera to ILPs [68]. The ILPs of the brain IPCs

can be released into the circulation via axon terminations in

neurohemal areas of the corpora cardiaca and corpora

allata, anterior aorta and anterior intestine (Fig. 1).

Although conclusive data are lacking, there are indications

that ILPs can be released within the Drosophila brain from
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IPCs, or at least ILPs can enter into the brain after release

into the circulation. One line of evidence for modulatory

action of ILPs within the brain is sequestering of DILP2 by

specific sets of neuroendocrine cells in the Drosophila

brain and activation of Akt1 (protein kinase B) in these

neurons [58].

The IGF-like ILPs in Drosophila (DILP6) and moths are

produced in the adipose cells of the fat body [18, 22, 69,

70]. In adult Drosophila, the cellular expression of the

eight DILPs has been analyzed in some detail: DILP2, 3

and 5 are expressed in the brain IPCs (also in larvae),

DILP3 in the intestine, DILP5 in ovaries and Malpighian

tubules, and DILP7 in neurons of abdominal ganglia [16,

23, 24, 26, 71, 72] (Fig. 1). A developmental expression of

some of the Drosophila peptides has been recorded: DILP1

in IPCs mainly during pupal stages, DILP2-5 in the embryo

(mesoderm), and DILP8 primarily in imaginal discs of the

larva [19, 20, 25]. In the following, we will focus on ILPs

produced by brain IPCs and the fat body.

It is important to note that the current view is that the

three DILPs produced by the IPCs of the Drosophila brain

have distinct, but overlapping, functional roles. This is

based on data showing a differential regulation of DILP2, 3

and 5 at the transcript and protein levels (see [25, 73–76]).

A recent report suggests that release of these individual

DILPs from the IPCs may occur independently from dis-

tinct storage vesicle populations [77]. Another important

aspect of Drosophila IPCs is that most of these cells also

produce the peptide drosulfakinin (DSK), a peptide that

induces satiety [78].

The regulation of ILP production and release

The mechanisms behind secretion of insulin from mam-

malian pancreatic beta cells have been intensely studied

(see [79–81]). Insulin secretion is triggered by cell-au-

tonomous sensing of increased circulating glucose by the

beta cells, which induces membrane depolarization and

subsequent membrane fusion of insulin containing vesicles

and thereby release. The glucose sensing is mediated by a

glucose transporter (GLUT1), that allows entry of glucose

into the glycolysis pathway. Subsequent production of ATP

in mitochondria leads to inactivation of ATP-sensitive

potassium channels (KATP) in the cell membrane and

subsequent depolarization of the beta cell. This depolar-

ization activates voltage-sensitive calcium channels

resulting in secretion of insulin by exocytosis in a fashion

similar to regular neurotransmitter release, and requires

similar synapse and channel proteins (see [80, 81]). Insulin

secretion from pancreatic beta cells also depends on fuel

stimuli additional to glucose, such as free fatty acids and

amino acids. After uptake into the beta cells, the fatty acids

and amino acids enter appropriate metabolic pathways,

similar to glucose, and key signaling molecules are pro-

duced that influence insulin secretion, as described in detail

by Prentki et al. [81].

The calcium-dependent exocytosis can be modulated by

neurotransmitters and circulating hormones via action on

membrane receptors that change ion channel activity or

recruit second messenger systems [79]. Thus, in addition to

glucose-induced depolarization of the beta cells, various

secreted factors regulate the exact amount of secreted

insulin. Several stimulatory (incretins) and inhibitory

Fig. 1 Overview of sites of production and release of DILPs in the

CNS and other organs of adult Drosophila. Three DILPs are produced

in the insulin-producing cells (IPCs) of the brain, shown in yellow:

DILP2, 3 and 5. These DILPs are released from axon terminations in

the corpora cardiaca (CC), corpora allata (CA), crop and anterior

intestine. DILP3 is additionally produced by the intestinal muscle and

DILP5 in the ovaries and Malpighian tubules (not shown). DILP6 is

mainly produced by adipocytes of the fat body in the head and body

of the fly. Finally, DILP7 is produced by about 20 neurons in the

abdominal neuromeres of the ventral nerve cord (VNC) and may be

released onto the posterior intestine and oviduct, as well as inside the

CNS. This figure is redrawn and altered from [76], which was based

on an illustration by Toivonen and Partridge [192]

Insulin/IGF signaling in Drosophila and other insects: factors that regulate production,… 273

123



(decretins) modulators of glucose-induced insulin secretion

from beta cells are known in mammals [80, 81]. These are

both neurotransmitters produced locally in the islets of the

pancreas and hormones released from other sources.

Somatostatin released from pancreatic delta cells and

adrenalin from circulation hyperpolarize beta cells and

inhibit insulin secretion via somatostatin and a2-adrenergic
receptors, respectively. Another inhibitor is the gut peptide

galanin. Among the stimulators of insulin secretion are

acetylcholine acting on M3 muscarinic receptors, GABA

acting on ionotropic GABAA receptors, as well as glucagon

and glucagon-like peptide-1 (GLP-1) acting on their

GPCRs. Another stimulator is ATP, which is co-released

with insulin and acts in an autocrine loop on P2X3 recep-

tors. The GABA signaling to beta cells is complex. GABA

is produced in beta cells and after release it acts both on

GABAA and metabotropic GABAB receptors on the same

cells in an autocrine fashion [80]. Whereas GABAA acti-

vation stimulates insulin secretion, GABAB activation

decreases it by inhibiting vesicle exocytosis, thus GABA

signaling seems to be part of a local fine-tuning of insulin

release.

Recent reviews have summarized some mechanisms that

regulate the activity of brain IPCs in Drosophila and the

production and release of DILPs [76, 82, 83]. However,

quite a few studies on this topic have been published

recently and will be reviewed here. It is evident that the

functional roles of DILPs differ between larvae that feed

constantly, grow, develop and undergo molting, and adult

flies that feed intermittently, reproduce and age. In line

with this, it has been shown in Drosophila that sensing of

circulating nutrients by IPCs and other cells, as well as

regulation of DILP production and release, differs between

larvae and adults. Thus, we will describe IPC regulation in

these developmental stages separately.

Mechanisms in adult Drosophila

It was shown relatively recently that the brain IPCs have

cell-autonomous glucose-sensing capacity and that a sugar

meal triggers DILP release by direct activation of these

cells [84]. The mechanisms for glucose-induced DILP

release are similar to those in mammalian pancreatic beta

cells. Thus, the IPCs express an ATP-sensitive potassium

channel (KATP), a glucose transporter (GluT1) and voltage-

sensitive calcium channels [84, 85]. Until now the only

peptide that was clearly shown to be released from IPCs by

any mechanism is DILP2; and its release is glucose

dependent [84]. Since it is known that the different DILPs

are individually regulated at the transcriptional level in the

IPCs [25, 73–75] and also suggested to be released sepa-

rately by different triggers [77], we cannot generalize

mechanisms for regulation of production and release of

these peptides. Several neurotransmitters, neuropeptides

and peptide hormones have been implicated in acting on

IPCs to alter expression of DILPs (or their transcripts) and

affect readouts of systemic insulin signaling. However, we

will first discuss some factors released from the nutrient

sensing fat body. In Fig. 2, the nutrient-derived signals to

IPCs are shown, and in Fig. 3 and Table 1 the receptors

(mostly GPCRs) expressed by IPCs.

Unpaired 2 and brain GABA

The glucose-induced DILP release seems to be modulated

by alteration of the membrane potential of the IPCs. It was

shown that IPCs express metabotropic GABAB receptors,

GABAB-R [86] and that these cells are tonically hyper-

polarized by GABA [87]. This GABAergic inhibition can

be disengaged by a signal from the fat body, the cytokine

peptide Unpaired 2 (Upd2), considered to be leptin-like

[87]. Upd2 release from the fat body is triggered by ele-

vated levels of lipid or carbohydrate in the hemolymph and

circulating Upd2 acts on the cytokine receptor domeless

(Dome) that activates JAK/STAT signaling in the

GABAergic neurons and thereby blocks GABA release and

diminishes IPC hyperpolarization (Fig. 2). It is, however,

not known how Upd2 passes through the blood–brain

barrier to act on the GABAergic neurons. These findings

suggest involvement of GABA signaling in modulation of

Fig. 2 Scheme showing factors regulating IPCs in Drosophila. The

IPCs (black cells) are regulated by multiple factors released from the

intestine, fat body, endocrine cells (APCs) of the corpora cardiaca

(CC) and brain. Green pathway shows lipid and carbohydrate-

mediated Upd2 release from fat body that inhibits GABAeric neurons

and thereby lifts tonic inhibition of IPCs. Red pathway shows

glucose-mediated AKH release from CC that stimulates IPCs. Blue

pathway is carbohydrate-mediated inhibition of AKH-producing cells

that triggers release of limostatin (Lst) which inhibits IPCs. Finally,

the magenta pathway shows adiponectin release from fat body that

stimulates IPCs
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Fig. 3 Local and remote regulation of IPCs in the brain. The IPCs are

regulated by sNPF and corazonin from the DLP (dorsal lateral

peptidergic) neurons that send processes to the IPC dendrites in the

pars intercerebralis. These DLPs express sNPF and corazonin, the

fructose receptor Gr43b and a GPCR for diuretic hormone 31 (DH31),

a peptide that could be released from the intestine. The IPCs express

DILP2, 3 and 5, drosulfakinin (DSK) and a number of GPCRs (in red

text), as well as the insulin receptor (dInR). The GPCRs are discussed

and acronyms explained in the text. The DILPs are released from the

peripheral axon terminations (not shown) of the IPCs; asterisks where

these axons originate in the brain and project to the corpora cardiaca,

aorta and anterior gut structures. MB mushroom bodies (shown for

orientation)

Table 1 Neurotransmitters, neuropeptides and peptide hormones acting on IPCs in Drosophila melanogaster

Substance Production sitea Receptor on IPCs Stage References

GABA Brain neurons GABAB Adult [86, 87]

Serotonin Brain neurons 5-HT1A Adult [108]

Octopamine Brain neurons OAMB Adult [57]

sNPF Brain neuronsb sNPFR1 Adult [91]

Corazonin Brain neuronsb CrzR (GRHRII)c Adult [91]

Tachykinin Brain neurons, ECd DTKR (TkR99D) Adult [94]

Allatostatin A Brain neurons, ECd DAR2 (AstA-R2) Adult [96]

CCHamide2 EC (fat body?) CCHa2-R Adulte/larva [100, 101]

Limostatin Corpora cardiacaf LstR (PK1-R)g Adult [103]

DILP6 Fat body dInR (InR) Adult [90]

Adiponectin Fat body AdipoR Adult/larva [89]

AKH Corpora cardiaca AkhR (GRHR) Adult/larva [77, 96]

a In most cases, tentative site of production is shown and actual cells releasing onto IPCs have rarely been identified
b The DLP neurons of pars lateralis
c In brackets synonyms are given
d EC enteroendocrine cells. Like suggested for CCHamide2 [100], these peptides may enter the circulation and act on IPCs
e The adult action on IPCs is less well documented
f More specifically, the endocrine cells that also produce AKH
g Also known as PK1-R, a pyrokinin 1 receptor (CG9918, a neuromedin U-receptor-like GPCR)
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insulin release both in mammals and Drosophila, but with

different mechanisms.

Adiponectin

In mammals, adiponectin (a 244 amino acid polypeptide

adipokine) acts on two GPCRs, AdipoR1 and AdipoR2 in

muscle and liver to regulate lipid and carbohydrate

homeostasis [88]. One adiponectin receptor ortholog

(dAdipoR; CG5315) was identified in Drosophila and

shown to be expressed by the IPCs and some other brain

neurons in larvae and adult flies [89]. Knockdown of the

dAdipoR in IPCs leads to increased circulating trehalose

and glucose levels and stored lipids, as well as increased

sensitivity to high lipid diet. Furthermore, the dilp3 mRNA

was slightly decreased in these flies and DILP2 release

from IPCs in starved and re-fed flies was inhibited [89]. As

a consequence of decreased DILP release in dAdipoR

knockdown flies, these authors noted effects on FOXO and

4E-BP suggesting reduced IIS in the fat body. The Dro-

sophila adiponectin itself was not yet identified, but human

adiponectin acts on IPCs (in larvae) to decrease DILP2

immunolabeling [89]. It was suggested that the Drosophila

adiponectin is produced by the fat body and constitutes yet

another adipokine connecting the nutrient sensing fat body

and the IPCs [89] (Fig. 2).

DILP6

The IGF-like DILP6 is produced in the adult fat body, is

under control by FOXO and regulates carbohydrate and

lipid storage as well as oxidative stress resistance [90].

Overexpression of dilp6 in the fat body decreases the

expression of dilp2 and dilp5 mRNA in the brain and

reduces release of DILP2 and thereby increases longevity

[90]. Thus, DILP6 may serve as another adipokine signal

from fat body to IPCs.

Short neuropeptide F and corazonin

Several neuropeptides, peptide hormones and neurotrans-

mitters have been proposed as modulators of IPC activity.

However, only for a few of these ligands has it been estab-

lished which cells or neurons that are likely to deliver them to

the IPCs, and what triggers their action on these target cells.

Two neuropeptides, short neuropeptide F (sNPF) and cora-

zonin, are produced in a bilateral set of neurons, the so-called

dorsal lateral peptidergic neurons (DLPs; Fig. 3), located in

the pars lateralis [91]. These neurons impinge on the median

processes of the IPCs in the pars intercerebralis. The IPCs

express the sNPF receptor (sNPFR1) and indirect evidence

suggests that this is also the case for the corazonin receptor

(CrzR) [91]. Targeted knockdown of these receptors in IPCs

produces a phenotype suggesting that systemic insulin sig-

naling is down regulated [91]. Knockdown of sNPF in the

DLPs also results in diminished dilp2 and dilp5 expression,

whereas diminishing corazonin in these neurons has no effect

on dilp transcription. Thus, the two peptides of theDLPs seem

to have different actions on the IPCs. Interestingly, a subset of

theDLPs also express a gustatory receptor,Gr43a (seeFig. 3),

that responds to circulating fructose, a carbohydrate that is

transiently increased in the circulation after a sugar meal [92].

Thus, the DLPs may be nutrient sensors that stimulate pro-

duction and/or release ofDILPs from IPCs. TheDLPs are also

known to express receptors for diuretic hormones 31 and 44

(DH31 and DH44) [93]. Therefore, these peptides may also

modulate DLP activity, either via brain neurons, or in the case

of DH31 via circulating peptide released from endocrine cells

of the intestine (see [71]).

Drosophila tachykinin

Another neuropeptide, Drosophila tachykinin (DTK;

actually five peptides, DTK1-5, encoded on the same pre-

cursor gene), has been proposed to regulate IPCs. The DTK

receptor, DTKR, is expressed by IPCs and targeted

knockdown of DTKR induces up regulation of dilp2 and 3

in fed flies and up regulation of dilp2 and down regulation

of dilp3 in starved flies [94]. Although there are processes

of DTK-expressing brain neurons superimposing the pre-

sumed IPC dendrites, the individual neurons of origin

could not be identified. Another possible source of DTK is

enteroendocrine cells of the midgut [95] signaling via the

circulation, but this remains to be tested experimentally.

Allatostatin A

Recently, it was shown that the IPCs express a galanin

receptor-like GPCR (DAR2) for the neuropeptide allato-

statin A (AstA) and that several AstA producing neurons

have branches superimposing the IPC branches in the pars

intercerebralis and the tritocerebrum [96]. Another possible

source of AstA is the numerous AstA producing

enteroendocrine cells of the midgut [71, 97]. Interestingly,

also the AKH-producing cells (APCs) in the corpora car-

diaca express the DAR2 receptor. Thus, it was shown that

both IIS and AKH signaling is stimulated by AstA via

DAR2. More specifically, it was shown that genetic inac-

tivation of AstA producing cells, or knockdown of DAR2

in IPCs or APCs, induced changes in the expression of

several genes indicative of reduced IIS or AKH signaling.

Targeted stimulation of AstA neurons with a depolarizing

channel (NaChBac) increases expression of dilp3 and tar-

get of brain insulin (tobi), an a-glucosidase known to be

activated by both AKH and DILPs [98], while an AstA

loss-of-function mutant displays the opposite phenotype,

276 D. R. Nässel, J. V. Broeck

123



suggesting that AstA stimulates AKH and DILP signaling

[96].

To separately analyze the role of AstA signaling on

APCs and IPCs, targeted dar2-RNAi was employed using

Akh-Gal4 and dilp2-Gal4 lines. Both APC and IPC

knockdown of DAR2 lead to increased starvation resis-

tance (suggestive of decreased systemic IIS). However,

when reducing DAR2 only in APCs, specific features of

AKH signaling were affected that suggest that AstA reg-

ulates AKH release: increased expression of the AkhR and

two metabolic genes brummer lipase (Bmm) and phos-

phoenolpyruvate carboxykinase (PEPCK), and decreased

tobi [96]. Knockdown of DAR2 in IPCs decreases dilp2

and tobi, and increases the dFOXO target 4E-BP indicating

that AstA normally stimulates IIS via the IPCs [96]. Thus,

both AKH and DILP signaling is stimulated by AstA

suggesting a complex interaction between these signal

systems. As suggested previously [98, 99], APCs and IPCs

may interact directly via contacts in the corpora cardiaca

and intestine. This interaction could be seen after dar2-

RNAi in APCs of female flies where dilp2 and dilp3

transcripts were up and down regulated, respectively, and

4E-BP was reduced; in males only dilp2 was affected and

4E-BP was up regulated [96]. These findings indicate that

APCs regulate activity in IPCs (see Fig. 2) and that there is

a sexual dimorphism in the interaction.

Another interesting finding was that AstA and Dar2

mRNA expression is dependent on diet. Flies kept on

restricted diet and then transferred to either protein- or

carbohydrate-rich diet displayed different transcript levels.

Whereas both AstA and Dar2 are down regulated after

nutrient restriction, both are strongly up regulated after re-

feeding on high sugar diet, but only a weak up regulation of

AstA is seen after high yeast diet [96]. Furthermore, flies

kept on standard food prefer sucrose-rich food, whereas

flies with AstA neurons activated by expression of NaCh-

Bac displayed a preference for protein-rich food, especially

in females [96]. In contrast, the AstA mutant flies con-

sumed more sucrose than control flies. In summary, the

AstA signaling may be part of a nutrient-sensing mecha-

nism and act on APCs and IPCs to guide feeding decisions

to uphold a balance between energy requirements and

feeding, and the sex-specific differences may be related to

specific nutrient requirements during egg development

[96]. As mentioned earlier, the mammalian galanin

receptor is known to regulate pancreatic beta cells, sug-

gesting another conserved signal pathway.

CCHamide2

The bombesin-like peptide CCHamide2 has been more

extensively studied in larval Drosophila as a modulator of

IPCs and DILP signaling [100, 101] and will be discussed

in more detail below. This peptide may also act on adult

IPCs, but more conclusive experiments are required. In

adult flies, CCHa2 is produced by enteroendocrine cells of

the midgut [102], as well as by brain neuroendocrine cells

[100]. What is known in adults is that CCHa2 mutant flies

feed less and display strongly reduced locomotor activity

during the day.

Limostatin

A gene encoding a polypeptide, named limostatin (Lst)

after Limos a Greek goddess of starvation, was recently

identified as a suppressor of insulin production and release

[103]. From the limostatin precursor, it was proposed that a

peptide consisting of 15 amino acids with the sequence

AIVFRPLFVYKQQEI (Lst-15) is liberated. The Lst gene

is expressed in the fat body and together with AKH in the

APCs of the corpora cardiaca and is produced during

fasting [103]. Lst mutant flies were found hypoglycemic,

with reduced lifespan and they display increased levels of

Dilp2, 3 and 5 mRNA and circulating DILP2. Knockdown

of Lst in the APCs produced the same phenotype as the Lst

mutation suggesting that these cells are a sufficient source

of secreted peptide (see Fig. 2). Furthermore, the authors

showed that Lst expression is regulated by carbohydrate,

but not protein, diet after a period of starvation, and that

synthetic Lst-15 attenuated Ca2? in IPCs and thereby

depressed DILP release [103]. A GPCR (CG9918), related

to neuromedin-U receptors in mammals, was detected in

IPCs and its knockdown produced a phenotype similar to

Lst mutant flies or Lst knockdown in AKH cells [103]. The

CG9918 receptor has previously been identified as a pyr-

okinin-1 (Capability-PK), receptor (PK1-R) [104] and

therefore it is possible that IPCs are modulated by both Lst

peptide from APCs and PK-1 released from neurons in the

subesophageal ganglion (see [105, 106]). In summary, Lst

produced by APCs is induced by carbohydrate restriction

and after release it suppresses DILP production and release

[103] (Fig. 2).

Serotonin and octopamine

The monoamines serotonin and octopamine have also been

implicated in regulation of IPCs [55, 57, 107, 108]. The

IPCs express the serotonin receptor 5-HT1A [108] and

octopamine receptor OAMB [55, 57, 109] and branches of

non-identified serotonin and octopamine producing neu-

rons impinge on the IPCs in the pars intercerebralis.

Knockdown of the 5-HT1A receptor in IPCs increases

expression of dilp2 and dilp5 mRNA, reduces starvation

resistance and food intake and increases circulating glucose

as well as stored trehalose and glycogen in fed flies [57,

108]. Furthermore, the diminished serotonin signaling to
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IPCs increases sensitivity to heat and cold, but increases

resistance to oxidative stress [57, 108]. Diminishing

OAMB in IPCs leads to elevated dilp3 transcript levels,

increased starvation resistance and food ingestion, but has

no effect on carbohydrate levels in fed flies [57]. At pre-

sent, it is not clear what the modulatory roles of

octopamine and serotonin are in the IPCs of adult Droso-

phila or what neuronal circuits underlie this signaling.

Olfactory inputs

Another signal that affects IPCs and dilp transcription is

food odors, such as vinegar [110]. Even a brief

(15–30 min) exposure to vinegar odor triggers a transient

increase in Akh, Dilp2, Dilp3 and Dilp5 mRNA in the

starved fly. This exposure is accompanied by increases in

dilp6, Upd2 and tobi transcripts and, taken together, food

odor appears to induce an anticipatory endocrine response

in the hungry fly to get it ready for food ingestion and

digestion [110]. The circuits connecting the odor inputs to

the IPCs and APCs are not known.

Mechanisms in larval Drosophila

In Drosophila, the larval IPCs do not appear to sense

nutrient levels cell-autonomously, in contrast to the adult

ones and to mammalian pancreatic beta cells. Instead,

nutrient sensing occurs in the adjacent cells of the ring

gland that produce AKH, the APCs (see Fig. 4) and by

adipocytes in the fat body [74, 99] or maybe even gut

endocrine cells [100]. The APC sensors respond to glucose

and trehalose and induce release of AKH that in turn

triggers secretion of DILP3 from the IPCs [99], whereas

the sensors in the fat body, such as the slimfast-TOR

pathway, are activated by dietary amino acids and trigger

release of an unidentified factor from the fat body that

activates the IPCs to secrete DILP2 [74]. A recently pro-

posed adipokine signaling via an adiponectin receptor in

the IPCs that controls DILP2 release suggests another

pathway from the nutrient sensing fat body [89]. As men-

tioned in the previous section, this adiponectin signaling

seems to be present also in adults. Interestingly, blocking

this adiponectin pathway does not affect growth of larvae,

but alters carbohydrate and lipid homeostasis in both

developmental stages [89].

The cell-autonomous sensing of glucose by the APCs

relies on the expression of ATP-sensitive potassium

channels (KATP) formed by a sulphonylurea receptor and

inward-rectifying potassium channel (Kir) subunits [99].

Thus, these channels are cellular sensors of the ADP/ATP

ratio that, depending on glucose uptake and ensuing gly-

colysis, depolarize the cell membrane and thus increase

calcium currents that control hormone release. AKH is

often referred to as a functional analog of mammalian

glucagon and, thus, its action is primarily antagonistic to

that of ILPs; AKH acts on a GPCR to increase lipolysis,

glycogenolysis and production of trehalose in the fat body

[111–113]. Of interest here is that it was shown that car-

bohydrate-dependent release of DILP3 from IPCs depends

on activation of AKH signaling in these cells [77]. These

authors showed that trehalose triggers AKH release from

the corpora cardiaca and that this hormone acts on AKH

receptors on the IPCs to induce secretion of DILP3 (see

Fig. 4 for cell interrelations), which in turn activates TOR

signaling in the fat body of the larva. This mechanism is

presumed to operate during nutritional stress where sugar

homeostasis is promoted at the same time as insulin sig-

naling is kept high to ensure cell growth during

development of the larva [77]. Apparently simultaneous

release of DILPs and AKH occurs under specific conditions

both in adult flies and larvae to keep a balance between

carbohydrate homeostasis and other IIS-mediated functions

[77, 96]. It is interesting to note that interference with AKH

signaling to the IPCs did not affect dilp3 mRNA levels,

suggesting that release, but not production of DILP3 is

Fig. 4 Interactions between AKH- and insulin-producing cells in the

larva. Schematic representation of the relations between insulin-

producing cells (IPC), AKH-producing cells in corpora cardiaca (CC)

and DLP neurons that produce corazonin. These three cell types may

interact in the CC and the AKH-mediated regulation of IPCs is likely

to occur here. IPCs and DLPs may also interact in the pars

intercerebralis and tritocerebrum. All three cell types are likely to

release their peptide hormones into the aorta via the CC part of the

ring gland. Note that the AKH cells have neurite-like extensions along

the aorta that are not shown here, and that for simplicity the full

number of AKH cells and IPCs are not drawn. This figure is slightly

altered from [105]
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controlled by AKH [77]. The role of the carbohydrate/

AKH-regulated DILP3 signaling in larvae seems to be to

link dietary sugar to growth and metabolism.

The fat body sensing of nutrients may recruit three

different signals that enter the circulation, the aforemen-

tioned unidentified factor [74], an adiponectin-like

adipokine [89], and a recently suggested peptide hormone,

CCHamide-2 [101]. This peptide hormone is expressed in

the fat body and intestine of Drosophila and expression of

the CCHamide-2 receptor (CCHa2-R) was detected in the

IPCs of larval Drosophila [101]. Knockdown of the peptide

or its receptor diminished release of DILP2 and 5, and

decreased the mRNA of Dilp5, and furthermore lead to

reduced growth and a developmental delay. The CCHa2

transcript is increased after feeding glucose or yeast and is

dependent on active TOR signaling in the fat body [101].

Another study found that CCHa2 mutant larvae display

reduced feeding, delayed development and down regulated

dilp2 and dilp3 mRNA levels [100]. These authors also

showed that the ccha2 mRNA is produced mainly in the

intestine and to a lesser extent by the brain, whereas the fat

body displays very low expression [100]. In summary, the

CCHa2 signaling links glucose levels, to DILP production

and release and growth, which is in contrast to the previ-

ously described fat body sensing that relies on dietary

amino acids [74], but reminiscent of the previously

described Upd2 signaling in adults that is glucose and lipid

sensitive [87]. It is not clear whether the glucose sensing

resides in CCHa2-expressing enteroendocrine cells or in fat

body, but it seems that there are several nutrient-sensing

pathways regulating IIS both in larvae and adults. This may

ensure that energy balance and growth can be tightly reg-

ulated even under unbalanced nutritional conditions.

Genes in IPCs that affect DILP production
and release

In addition to the GluT1 [84] and specific membrane

channels [84, 114], a number of genes and microRNAs

expressed in the IPCs have been shown to affect expression

of dilp mRNA, or influence transport or release of DILPs

under certain conditions (see Table 2). These genes encode

protein kinases, transcription factors and other proteins and

due to their action in IPCs they play roles in regulating IIS.

Moreover, microRNAs (miRNAs), small endogenous

RNAs that regulate the stability and/or the translation of a

number of target mRNAs, also constitute an important

level of control that can be situated both upstream and

downstream of hormonal signaling pathways such as IIS.

Different miRNAs have indeed been found to directly or

indirectly control the production of ILPs by controlling

targets in the Drosophila IPCs (miR-14 [115]; miR-9a

[116]) and/or in the fat body (miR-278 [117]; miR-8

[118]). Deregulation of these miRNAs can lead to IIS-as-

sociated defects in hormone signaling, metabolic

homeostasis and body growth. The complex interactions

between miRNAs and IIS in Drosophila have recently been

reviewed by Luhur et al. [119].

Functional interactions between lipophilic
hormones and ILP signaling in insect reproduction

In many insect species, belonging to different orders, it is

well documented that IIS also plays a prominent role in the

control of reproduction, as recently reviewed by Badisco

et al. [120]. In adult female insects, vitellogenesis and

oocyte growth, processes that depend on the availability

and/or reallocation of nutrients and energy, are controlled

by nutrient-sensing and hormonal pathways. In these pro-

cesses, the role of IIS is situated within a complex

physiological regulatory network that also encompasses the

lipophilic insect hormones, 20-hydroxyecdysone (20E) and

juvenile hormone (JH), which are produced in adult insect

gonads and corpora allata (CA), respectively. While the

nutritional status is likely to be a crucial determinant of the

regulatory network’s output, the exact regulatory hierarchy

of hormones and ILPs, which can influence each other,

seems to be species dependent. Moreover, sensitivity and

responses to lipophilic hormones and ILPs may also be

cell-type and stage-dependent [120].

The relationship between IIS and ovarian ecdysteroid

synthesis has been most profoundly investigated in dipteran

species, such as the mosquito A. aegypti. In adult female

mosquitoes, the amino acids required for yolk protein

production are derived from an ingested protein-rich blood

meal, which initiates a complex endocrine regulation [121].

After this blood meal, neurohormones are released which

induce ecdysteroidogenesis in the ovaries, and this will

result in increased levels of circulating ecdysteroids that

will further induce the process of vitellogenesis [122, 123].

Interestingly, this ecdysteroidogenic response could also be

induced by injection of vertebrate insulin [124, 125] and

more recently an endogenous ILP (ILP3) was indeed

shown to bind the mosquito insulin receptor and to stim-

ulate ovarian ecdysteroidogenesis [126, 127]. In addition to

ILPs, another mosquito ecdysteroidogenic neurohormone

was also shown to function after the ingestion of a blood

meal, the ‘‘ovary ecdysteroidogenic hormone’’ (OEH)

[128], which displays sequence similarity to neuroparsins

(see sections below).

In many insects, JH appears to be the lipophilic hormone

that acts, in concert with the insulin and TOR signaling

pathways, as a major regulator of nutrient and energy

allocation during vitellogenesis. In some species, IIS was
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suggested to elicit stimulatory influences on JH biosyn-

thesis in the CA [129–134]. However, in others, JH

signaling was shown to exert its effects by inducing IIS.

For instance, the vitellogenic effect of JH in adult female

Tribolium castaneum beetles may be mediated via a stim-

ulatory effect of JH on ILP gene expression in the fat body

[135]. RNAi-mediated silencing of IIS and TOR signaling

components in the red flour beetle mimicked the effects of

starvation and resulted in reduced vitellogenin transcript

levels [136], whereas knockdown of JH biosynthesis and

signaling components did not only reduce ILP gene

expression, but also resulted in a FOXO-mediated inhibi-

tion of vitellogenin gene expression [135]. In this beetle

species, it was also suggested that JH controls trehalose

homeostasis and starvation resistance by regulating the

synthesis of ILP2 [137]. The extended life span under

reduced ILP signaling conditions could be normalized by

injection of bovine insulin, but not by treatment with JH

[137]. In adult female desert locusts, RNAi-mediated

knockdown of the ILP precursor transcripts also resulted in

significantly reduced vitellogenin transcript levels, while

silencing of neuroparsin mRNA led to the opposite effects

[138]. Since the locust ILP precursor gene is highly

expressed in both brain and fat body, it remains to be

proven whether this peptide acts directly or indirectly on

the fat body to stimulate vitellogenin synthesis [11].

All this information illustrates the complexity and

diversity of functional interactions between these inter-

secting signaling pathways in insects. In addition to

reproduction, functional interactions between ecdysteroids,

JH and IIS have also been reported in the control of

postembryonic growth and development, further demon-

strating the complex relationships between these pathways

[139–144]. Moreover, recent studies have also implicated

the role of multiple miRNAs at the crossroads between

these pathways [119].

The modulation of the ILP signal after release

A number of polypeptides have been identified in mam-

mals, as well as in insects, that interact with IGFs and ILPs

after their release. Some function as carrier proteins in the

circulation, others have actions antagonistic to ILPs, and

Table 2 Genes in IPCs of Drosophila melanogaster with roles in DILP production, transport or release

Gene Proposed function Role in IPCs Stage References

Apsa (Nudt3-like) Regulation of signaling nucleotides dilp3 increase Adult [193]

IDEb Insulin-degrading enzyme Not determined affects IISb Adult [146]

JNKc (basket) MAP kinase, stress tolerance dilp2 repression Adult [194]

Lmdd (Glis3-like) Transcription factor dilp2 increase Adult [84]

Mioe Carbohydrate response element binding protein dilp3 repression Adult [195]

miR-9a MicroRNA dilp2, dilp3, dilp5 repression Larvaf/adult [116]

miR-14 MicroRNA dilp3, dilp5 increase Adult [115]

Ogtg O-GlcNAc transferase dilp2, dilp3, dilp5 increase Larva [196]

Ogag O-GlcNAcase dilp2, dilp3, dilp5 repression Larva [196]

Pax6 (eyeless) Transcription factor dilp5 increase Larva [197]

Rab1h Small GTPase DILP transport Larva [198]

Taillessi Transcriptional repressor Affects peptide release Adult [199]

Atrophini Tailless co-repressor Affects peptide release Adult [199]

Unc-104j Kinesin 3 family gene DILP transport Larva [198]

a Aps (CG6391) encodes a Drosophila ortholog of a nudix hydrolase family protein, nucleoside diphosphate-linked moiety X motif 3 (NUDT3).

Aps knockdown also lowers Akh and dilp6 mRNA
b IDE (CG5517), a metalloprotease, known to degrade insulin. IDE knockdown in IPCs reduces hemolymph carbohydrate and increases

fecundity as well as body weight and decreases lifespan, all suggesting upregulated DILP signaling
c JNK Jun-N-terminal Kinase (stress-responsive mitogen-activated protein kinase, MAP kinase). Basket (CG5680) is a Drosophila JNK
d Lmd lame duck (CG4677) is an ortholog of Glis3, a mammalian transcription factor required for insulin expression in pancreatic beta cells
e Mio (missing oocyte; CG7074) functions as a transcription factor and regulates dilp3 and feeding
f In larvae, only dilp2 and dilp3 decrease
g Ogt (supersex combs; CG10392) and Oga (CG5871) serve in the final step of a nutrient-driven hexosamine-signaling pathway and play a role

in insulin signaling in mammals
h Rab1 regulates membrane trafficking, e.g., in ER-Golgi transition and affects DILP transport in IPCs
i Tailless (CG1378) and athrophin (grunge; CG6964) form a transcriptional control module that regulates DILP release from IPCs
j Unc-104 (C. elegans) ortholog (CG8566)
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several seem to have functions additional to interactions

with ILPs. One factor that deserves further study is the

insulin-degrading enzyme (IDE) [145]. In Drosophila, IDE

knockdown in IPCs reduces hemolymph carbohydrate and

increases fecundity and lifespan, suggesting elevated cir-

culating DILP levels and increased systemic IIS [146]. It is

not known how IDE acts to degrade DILPs within or out-

side the IPCs.

Binding proteins for vertebrate insulin-like peptides

In vertebrates, IGFs are expressed in a wide variety of

tissues and play a prominent role as regulators of cellular

metabolism, proliferation and survival [147, 148]. Their

action is modulated by the presence of a set of IGF binding

proteins (IGFBP) that function as IGF carriers within the

circulatory system [149–151]. When released in the cir-

culation, IGFs are mainly occurring in ternary protein

complexes of IGF:IGFBP with the acid-labile subunit

(ALS), while binary IGF:IGFBP complexes are also

encountered. When circulating within these complexes, the

half-life of IGF increases. The smaller binary complexes

are capable of crossing the vascular epithelial barrier and

can thus deliver the IGFs to their target tissues. Both cir-

culating and locally produced IGFBPs can modulate the

availability of bioactive IGFs to their receptor sites at

target cells. Release of bioactive IGF from protein com-

plexes can be mediated by extracellular matrix interactions

and/or proteolytic cleavage, which may reduce the affinity

of the IGFBP to the IGF [152]. However, it should be

mentioned that IGFBPs are also known to play many

functional roles that are IGF-independent. Indeed, apart

from IGFs, IGFBPs can also interact with many other

molecules and binding partners [153–158]. Some IGFBPs

were even shown to enter cells and migrate into the

nucleus, where they may interact with particular tran-

scription factors and nuclear receptors [149, 152, 159–

161].

In mammals, six different IGFBPs (IGFBP1-6) have

been identified which differ in their structural and func-

tional properties [149, 152, 162]. Nevertheless, they share

an overall structural organization consisting of two well-

conserved protein domains, separated by a more variable

region. The N-terminal IGFBP domain is highly Cys-rich

and the conserved pattern with 10–12 Cys-residues can also

be found in several other proteins that display lower

affinities to IGFs. The C-terminal domain contains three

pairs of Cys-residues and adopts a thyroglobulin-type

onefold. Isolated N-terminal IGFBP domains have affini-

ties, which are up to 1009 lower than the intact IGFBPs,

while the isolated C-terminal domains have even lower

affinities to the IGFs. Therefore, each of the separate

domains is capable of interacting with IGF, but the

combination of both seems to be required for high affinity

binding [152]. In addition to mammals, IGFBP sequences

have also been identified in a wide selection of other ver-

tebrates, as well as more primitive chordates, such as

lancelets and tunicates [162]. The IGFBP of Amphioxus

was also shown to enter the nucleus of cultured cells and to

possess transcriptional activation activity, suggesting that

the IGF-independent role(s) of these proteins may refer to

ancient functions [161]. However, the evolutionary origins

of this protein family become more vague when looking for

clear homologs in invertebrate phyla, as seen in the fol-

lowing sections.

ILP-binding proteins in Drosophila

Imaginal morphogenesis protein-late 2 (IMP-L2)

Imp-L2 was originally identified as a 20-hydroxyecdysone

(20E) inducible late gene transcript in mass cultures of

Drosophila imaginal discs associated with membrane-

bound polysomes [163, 164]. In vivo, this transcript was

found to be abundant at the onset of metamorphosis,

reaching maximal levels in pupae ca. 14 h after puparium

formation [163]. Further studies indicated that the Imp-L2

gene is already expressed in the cellular blastoderm stage

and that it is essential during development. Its transcript

can be observed in several cell types throughout develop-

ment [165]. In addition, IMP-L2 was immunolocalized in

specific neuronal structures late in embryogenesis, sug-

gesting a role of this immunoglobulin (Ig) type domains

containing factor in the development of the nervous

system.

Interestingly, Sloth Andersen et al. [61] described an

insulin-related peptide binding protein that was secreted by

cultured cells derived from the lepidopteran insect, Spo-

doptera frugiperda. The protein was also shown to be

capable of inhibiting human insulin action at its receptor.

The secreted lepidopteran protein contains two Ig-like

domains and displays clear sequence similarity with Dro-

sophila IMP-L2. The second domain also shows some

similarity with the C-terminal Ig-like domain of the

mammalian tumor suppressor protein Mac25, which pos-

sesses an additional N-terminal IGFBP-like domain

(Mac25 was previously also designated as ‘‘IGFBP7’’, but

it is not considered as a genuine IGFBP). In Drosophila,

IMP-L2 was shown to counteract DILP signaling and to be

essential for the tolerance to starvation stress [59]. IMP-L2

was also shown to be capable of interacting with some of

the DILPs. Therefore, IMP-L2 may act as a secreted

antagonist of insulin-like signaling in this fly species. In

addition, the elimination of germ cells in the fruit fly

resulted in increased lifespan, while IMP-L2 expression

was up regulated [166]. Indeed, overexpression of IMP-L2
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was shown to extend lifespan in Drosophila [167]. More

locally restricted effects of IMP-L2 have also been

described recently. Some neurons that are directly con-

tacted by DILP producing cells in the larval brain appear to

express IMP-L2, and this was demonstrated to be necessary

for local neuronal uptake of DILP2 resulting in induced

insulin signaling activity in the target neurons [58]. In this

case, DILP2 and IMP-L2 seem to act together to enhance

the insulin signaling activity within this distinct subset of

neurons. An intact insulin receptor InR is also required for

this process. Furthermore, Sarraf-Zadeh et al. [60] dis-

covered that some IMP-L2 expressing neurons directly

contact the prothoracic gland (PG) portion of the larval ring

gland and that these neurons are responsible for sensing the

nutritional status of the animals and for coordinating

ecdysone production to adjust the developmental timing

under conditions of starvation. Increased IMP-L2 produc-

tion in these neurons severely delayed pupariation, while

its loss-of-function resulted in a reduction of the develop-

mental delay caused by starvation as well as in increased

levels of ecdysone production [60].

Two recent studies in the fruit fly pointed at an impor-

tant regulatory role for the ILP antagonist Imp-L2 in the

organ wasting process that can occur in conditions of

extreme nutritional starvation and resembles the human

wasting disorder designated as cancer-associated cachexia.

In one study, a fruit fly model with overproliferating gut

tissue was generated and shown to produce high levels of

IMP-L2, resulting in a dramatic systemic reduction of IIS

and in wasting of fat body, muscle and ovary [62]. The

reduced IIS mimicks the starved state in these organs,

while upregulation of IIS components and glycolytic

enzymes probably overrules this effect in the overprolif-

erating gut. Interestingly, the wasting phenotype could be

rescued by a loss-of-function of Imp-L2. In the other study,

transplantation of malignant tumors also induced wasting

of adipose, muscular and gonadal fly tissues [63]. Again,

IMP-L2 was shown to be secreted from these tumors and

responsible for the organ wasting phenotype, suggesting

that its upregulation in the tumors resulted in insulin

resistance of the wasting organs.

Drosophila acid-labile subunit (dALS)

Arquier et al. [168] identified dALS, a Drosophila

homolog of the acid-labile subunit (ALS). In vertebrates,

together with IGF and IGFBP, ALS is a component of the

ternary IGF-containing complex that can be found in the

circulation. The fruit fly homolog consists of a series of

Leu-rich repeats (LRRs), which also form the core of

vertebrate ALS. In larvae, dALS appears to be expressed

in the DILP producing cells of the brain and in the fat

body. Its expression level in the fat body depends on the

nutritional state of the animals. Similar to its mammalian

homolog, dALS has been proposed to be part of a circu-

lating heterotrimeric complex, together with an insulin-

like peptide and IMP-L2. Moreover, it was shown to

functionally antagonize the role of DILPs in controlling

body growth as well as the metabolism of carbohydrates

and lipids [168].

Secreted decoy of insulin receptor (SDR)

Recently, Okamoto et al. [17] discovered a protein (SDR,

CG3837) that displays structural similarities to the extra-

cellular domain of the Drosophila insulin receptor (InR).

This protein, designated Secreted Decoy of InR (SDR), was

demonstrated to be capable of interacting with several

DILPs, independently of IMP-L2. Its expression remains

relatively constant under changing nutritional conditions,

which also contrasts with the situation described for IMP-

L2. Glia-derived SDR was shown to have an inhibitory

effect on larval body growth and on the outgrowth of

peripheral structures, such as the wings, while the RNAi-

based knockdown conditions resulted in the opposite

effects. Therefore, SDR was proposed to function as a

negative regulator of DILP signaling in Drosophila [17].

Insulin-like peptide binding proteins in other species

Genuine IGFBPs, containing both the N-terminal (IGFBP-

type) andC-terminal (thyroglobulin-type) domains, have only

been identified in deuterostomes [162]. Nevertheless, the

IGFBP-type domain appears to have amore ancient origin and

it can be found in several protostomian proteins, for which the

evolutionary relationships remain difficult to resolve. Some of

these protostomian proteins have even been shown to be

capable of interacting with IGFs and/or insulin-like peptides

[11, 169, 170]. In themollusk,Haliotis laevigata, perlustrin, a

nacre protein was discovered that contains an IGFBP-like

domain [169]. This protein displayed binding affinities to

IGFs that were in a similar range as those of the N-terminal

domains of the mammalian IGFBPs, while perlustrin also

showed affinity to bovine insulin. In addition, Claeys et al.

[171] discovered that neuroparsins (NPs), a family of small

cysteine-rich proteins present in several insect and crustacean

species, also displayed clear sequence similarities with per-

lustrin, as well as with the N-terminal hormone-binding

module of IGFBPs.A fewyears later, they indeed showed that

a recombinant locust NP was capable of interacting in vitro

with the purified locust insulin-related peptide [11]. When

searching the available sequence databases, the same authors

also found that several other arthropod proteins, designated as

neuroparsin-like peptides (NPLPs), displayed sequence sim-

ilarity with the N-terminal IGFBP module [172]. More

recently, a multidomain protein of the crayfish, Cherax
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quadricarinatus, was also shown to contain this N-terminal

module (followed by a kazal-type serine protease inhibitor

domain and an Ig-type C2 domain) [170]. Interestingly, this

protein (Cq-IGFBP) was demonstrated to specifically interact

with the insulin-like androgenic gland hormone (Cq-IAG) of

this crayfish species. From the information above, it can be

concluded that at least three types of IGFBP-like domain

containingproteinsoccur in arthropods, i.e.,NPs,NPLPs (also

designated as single IGFBP-like domain containing proteins

or SIBD) and IGFBP-like multidomain factors. Interestingly,

all three typeswere found to be present in themud crab, Scylla

paramamosain; their gene expression appeared to be under

control of IIS and a regulatory role in reproduction was sug-

gested [173].Based on data obtained in these different reports,

the hypothesis can be suggested that some of these inverte-

brate IGFBP-like proteins may act in vivo by controlling ILP

availability, in a similarway as IGFBP inmammals.However,

as in the case of mammalian IGFBP, the existence of ILP-

independent effects cannot be ruled out.

Other roles of neuroparsins and the ovary

ecdysteroidogenic hormone

Some NPs indeed appear to have functions independent of

ILPs. The first member of the NP family was initially

isolated from the pars intercerebralis—corpora cardiaca

(CC) neurohemal complex of the migratory locust, Locusta

migratoria [174, 175]. This peptide was functionally

characterized as an anti-gonadotrophic factor that showed

various effects opposite to those elicited by JH, without

directly affecting JH biosynthesis. Later on, it was shown

that locusts possess several other NP variants, which

probably result from alternative splicing and are expressed

in a tissue-, stage-, and locust phase-dependent manner

[171, 172, 176, 177]. Searches in sequence databases

indicate that neuroparsins and related peptides are present

in several insect and crustacean species. However, their

sequences appear to be more divergent in higher insect

orders, such as Diptera, and even seem to be absent in D.

melanogaster, as well as in a number of related species in

the melanogaster subgroup within the Drosophila genus

[178]. In the mosquito, A. aegypti, a NP-like neurohor-

monal factor, the ovary ecdysteroidogenic hormone (OEH),

plays an important role in stimulating ovarian ecdysteroid

synthesis in response to a protein-rich blood meal [128].

Recent studies revealed that the mode of action of OEH is

exerted independently from the mosquito insulin receptor

(MIR), although it also activates Akt/PKB, a well-known

downstream target of the IIS pathway [179]. Very recently,

a previously orphan receptor tyrosine kinase (RTK) has

been shown to mediate the effects of OEH on egg forma-

tion in A. aegypti [180]. This receptor is distantly related to

the insulin receptor and belongs to an evolutionary distinct

group of RTKs characterized by the presence of a Venus

flytrap module, typical of amino acid receptors. Although

the exact evolutionary origin of this OEH receptor type

remains unclear, close relatives can be found in several

other Diptera, including a number of Drosophila species in

which a NP sequence has been described previously [178].

Interestingly, the Venus kinase receptor, which has been

identified in the platyhelminth Schistosoma mansoni, can

be bound and activated by amino acids and also seems to

play a role in reproduction, in addition to larval growth and

development [181]. Therefore, it is possible that a flatworm

peptide activating this receptor still has to be discovered.

Alternatively, at some point in insect/arthropod evolution,

a NP-like ligand may have been ‘‘hijacked’’ by a member

of this RTK subfamily for small amino acid ligands (or

vice versa).

Conclusions and perspectives

In insects, the production and release of multiple ILPs is

under complex control, ensuring a tightly regulated sys-

temic IIS in the organism. In adult Drosophila, the major

sources of ILPs, the brain IPCs and adipose cells of the fat

body, cell-autonomously monitor nutrient levels and

energy stores by several mechanisms to allow for optimal

ILP secretion into circulation. In addition, the IPCs are

under modulatory control by neurotransmitters, neuropep-

tides and other secreted factors, derived from brain

neurons, adipocytes and gut endocrine cells, some of which

may be nutrient sensing. During growth and development,

as well as in reproduction and diapause, IIS is interfaced

signaling with the lipophilic hormones JH and 20E.

Finally, several proteins, such as binding proteins and

proteases regulate IIS availability and action after release

of ILPs.

It is obvious from reviewing the literature on IIS in

insects that there are many gaps in our knowledge. One

major gap is at the biochemical level. In most insects, and

certainly in Drosophila, it is not clear in what form the

ILPs are released (or if they are indeed released). Only in a

few cases have ILPs been chemically isolated and

sequenced (e.g., from silkmoths and locusts) and shown to

have structures reminiscent of insulin-like peptides with A

and B chains, or an IGF-like structure in the case of

Bombyx IGF-like peptide [11, 13, 70, 182, 183]. Thus, it

would be of interest to unveil whether ILPs encoding genes

expressed in different tissues give rise to tissue-specific

forms of ILPs. Another question is whether the C-peptide,

when cleaved off from the precursor, is released in

equimolar concentration, as in mammals [184] where it

seems to have a function [185]. Synthetic C-peptide from

L. migratoria was found to depolarize neurons explanted
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from thoracic ganglia [186]. In this species, another peptide

was isolated that was proposed to be cleaved off from the

extended B-chain of the ILP precursor, and was shown to

inhibit glycogen phosphorylase activity in the fat body

[187]. In this context, it should also be noted that there are

very few studies actually analyzing ILP ligand binding to

and activation of the insulin receptor (see [127, 188, 189]).

Thus, many conclusions on receptor activation are drawn

from genetic interactions.

In most insects studied, only one ILP receptor has been

identified in spite of multiple ILPs. Are there further

receptors, especially for the ILPs that have been classified

as relaxin-like, such as DILP7 and 8 in Drosophila [19, 20,

23, 24, 190]? Or is there a single receptor with different

affinities for the ILPs and associated coupling to different

downstream signaling pathways? Just after this paper was

accepted, it was shown that DILP8 is acting via the GPCR

Lgr3 in a pathway controlling PPTH release during late

larval development and thus regulating ecdysone pulses to

coordinate organ growth with developmental transition

[30]. Alternatively, the ILPs might have different access to

the receptor due to specific proximity (spatial or temporal),

sensitivity to peptidase degradation, or affinity to circu-

lating binding proteins. It might also be of interest to

analyze cell type-, stage- or species-dependent differences

in the interactome of the ILP receptor protein.

The functional interactions between ILPs and other

hormones need to be further explored. Some studies,

reviewed here, have investigated the relations between IIS,

JH and 20E, but further work is required to understand

feedback between the different ILPs (see [4, 90, 191]), as

well as between ILPs and for instance circulating sul-

fakinins, AKH and corazonin and other peptides that

regulate feeding, metabolism and stress responses.

Finally, it might also be of interest to determine the most

ancient and conserved functions of ILP signaling, as

compared to derived species-specific functions. Whereas

the intracellular IIS pathways appear well conserved over

evolution, it remains to be determined to what extent

functions and physiological roles in intercellular signaling

are conserved between different insect species. Another

intriguing question is how locusts manage with one

molecular form of ILPs, when fruitflies and silkmoths

require at least 8 forms? Obviously ILP signaling needs to

be further explored in more detail in a variety of insect

species.
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