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Abstract The morphogenic factor sonic hedgehog (Shh)

actively orchestrates many aspects of cerebellar development

and maturation. During embryogenesis, Shh signaling is

active in the ventricular germinal zone (VZ) and represents an

essential signal for proliferation of VZ-derived progenitors.

Later, Shh secreted by Purkinje cells sustains the amplifica-

tion of postnatal neurogenic niches: the external granular

layer and the prospective white matter, where excitatory

granule cells and inhibitory interneurons are produced,

respectively.Moreover, Shh signaling affects Bergmann glial

differentiation and promotes cerebellar foliation during

development. Here we review the most relevant functions of

Shh during cerebellar ontogenesis, underlying its role in

physiological and pathological conditions.
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Introduction

Sonic hedgehog (Shh) signaling has been implicated in the

regulation of key events during mammalian developmental

processes [1]. The first gene of the Hedgehog family (Hh)

was cloned in Drosophila in the early 1990s [2] and its role

in controlling proper segmental identity during fruit fly

embryonic development was identified [3, 4]. Shortly after,

different Hh genes in vertebrates were described [5, 6] and

their evolution was explained as the result of genome

duplication. They were classified as desert hedgehog

(Dhh), Indian hedgehog (Ihh), and Shh [7]. In mammals,

Shh was found to be expressed from early embryogenesis

and was established as one of the key molecules respon-

sible for the regulation of central nervous system (CNS)

patterning [8].

During CNS organogenesis, Shh plays key roles as a

morphogen, mitogen, and guidance molecule [9, 10]. Shh

is one of the master players in cerebellar patterning and

maturation from early phases to adulthood (discussed in the

following sections; [11]).

Given its prominent role during development, alter-

ations of its physiological functions are implicated in many

human cerebellar pathologies, such as ataxias [12], Joubert

syndrome, and medulloblastoma (MB) [11, 13–18].

In this review, we discuss the broad range of actions of

Shh in cerebellar genesis. Shh is produced by separate

extracerebellar and cerebellar sources at distinct develop-

mental stages. It sequentially targets different cell

populations, thereby orchestrating the production of ade-

quate numbers of diverse cell phenotypes and contributing

to the shaping of cerebellar structure. We also discuss the

broad range of actions of Shh in cerebellar genesis as a

most remarkable example of the pleiotropic roles of this

morphogen in CNS development.

Insight into the hedgehog pathway

Shh is a protein capable of signaling both in an autocrine

and a paracrine fashion. It is translated as a 45-kDa pre-

cursor and then auto-proteolytically cleaved by its own
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C-terminal domain into two secreted peptides: a 19-kDa

amino terminus (Shh-N), with a signaling domain, and a

26-kDa carboxy terminus (Shh-C), devoid of any known

signal transduction activity [19, 20] (Fig. 1).

Next, lipophilic moieties are added to the Shh-N, which

are essential first for its membrane insertion, followed by

its multimerization and detachment [19, 21–23]. This leads

to the release of soluble Shh-N, which diffuses away from

the site of synthesis [24–27] (Fig. 1A1).

Extracellular levels and diffusion of Shh have been

proposed to be regulated by multiple molecules and

mechanisms, for example, those involving megalin and the

heparin sulphate proteoglygan glypicans. Cell surface

glypicans [28, 29] can sequester Shh and increase its

affinity with the endocytic receptor megalin, which belongs

to the low-density lipoprotein receptor family. Megalin

mediates endocytosis of Shh into the cell and directs it to

either lysosomal degradation, thereby contributing to the

regulation of extracellular Shh concentration, or transcy-

tosis and further diffusion [30, 31] (Fig. 1A2).

The cell surface machinery responsive to Shh comprises

a complex interaction network [32]. Shh binds to its

specific receptor patched 1 (Ptch1), a 12-pass transmem-

brane protein, and this binding is facilitated by other

transmembrane proteins (e.g., Cdo, Boc, and Growth

Arrest Specific 1 (Gas1), (Fig. 1B1–3; [33, 34]). In the

absence of the ligand, the receptor Ptch1 represses the

action of Shh signal transducer Smoothened (Smo). Smo is

a seven-transmembrane-span receptor-like protein that is

confined to intracellular endocytic vesicles in the absence

of Shh [35]. After the interaction of Shh with Ptch1, Smo is

phosphorylated by Casein kinase 1 a (CK1a) and G-protein
coupled receptor kinase 2 (GRK2), resulting in the release

of its inhibition [36] (Fig. 1B2). Phosphorylated Smo

activates intracellular signals regulating several protein

kinases, which in turn activate a class of transcription

factors known as glioblastoma (Gli) proteins [37].

In the meantime, hedgehog–patched complex is inter-

nalized and degraded by lysosomes [37] (Fig. 1B2). In this

context, Ptch1 plays an important role in correct signal

transduction, since the lack of its function induces abnor-

mal activation of the Shh pathway leading to MB (see ‘‘Shh

and cerebellar pathology: evidence from medulloblas-

toma’’ section).

Notably, in vertebrates, Shh receptor and co-receptors

are concentrated in the primary cilium, a microtubule-

based membrane protrusion present in nearly all nucleated

cells [38]. Several studies suggest a crucial role of primary

cilia during development of the cerebellum and, specifi-

cally, in Shh-induced proliferation of granule cell

progenitors (GCPs) [18, 39, 40]. The inhibition of cilio-

genesis in GCPs does not affect their initial specification

but only their proliferation, with a consequent hypoplasia

of the cerebellar vermis typical of human ciliopathies, such

as Joubert and Meckel syndromes [16, 17, 39].

The transcriptional effectors of the Hedgehog signaling

are the Gli proteins. In the absence of Shh, their nuclear

localization is prevented by the binding of Gli2 and Gli3 to

the Suppressor of Fused (Sufu) in the cytoplasm (Fig. 1B1;

[41–44]). Sufu is essential for correct cerebellar develop-

ment (see ‘‘Cerebellar territory and germinal zones’’

section) and its altered function is implicated in the onset of

MB (see ‘‘Shh and cerebellar pathology: evidence from

medulloblastoma’’ section). The Gli–Sufu complex, which

also includes several scaffolding proteins and kinases (e.g.,

the scaffold kinesin family member 7 (Kif7), protein kinase

A (PKA), glycogen synthase kinase 3 (GSK3) and CK1)

contains phosphorylated Gli proteins. Consequently, Gli2 is

rapidly degraded, whereas Gli3 is cleaved and then acts as a

repressor, blocking transcription of downstream targets [25,

45–48]. The relevance of this regulatory complex in cere-

bellar morphogenesis is indicated by studies showing that

deregulation of PKA-mediated inhibition of Gli activity

leads to the uncontrolled proliferation of GCPs [49, 50].

Upon activation, Smo induces the inhibition of Gli2 and

Gli3 phosphorylation by dissociating the Sufu–Gli-kinase

complex and regulating PKA cytoplasmic availability. This

results in the stabilization and nuclear accumulation of

these two Gli family members, which in turn activate Gli1

transcription (Fig. 1B3; [48, 50–52]). The Gli1 transcrip-

tional level is a popular biomarker for activated Shh

signaling. Its experimental manipulation, together with that

of Gli2, is widely used to alter physiological Hedgehog

signaling in the cerebellum (see ‘‘Shh and GABAergic

interneurons’’, ‘‘Shh and cerebellar glia’’, ‘‘Shh orches-

trates normal cerebellar foliation’’ sections).

The target genes of Shh signaling include genes

involved in cell growth and division, various transcription

factors and a number of components of the Shh pathway

itself presumably for positive and negative feedback (e.g.,

Gli1 and Ptch1). This list continues to grow as research

progresses [15, 53–57].

Distinct functions of Shh during cerebellar
development

During neurulation, Shh is produced by the ventral midline

mesoderm as well as by the ventral neural tube. Its activity

is required for the determination of ventral characteristics

along the anterior–posterior neuraxis [58]. At successive

stages of development, Shh signaling sustains the proper

formation of several CNS regions, including the cerebel-

lum, where it critically influences the initial phases of

territorial determination and regulates cerebellar progenitor

maturation in both primary and secondary germinal zones.
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Cerebellar territory and germinal zones

The cerebellum arises from a specialized area at the mid-

brain/hindbrain boundary [59–61]. Here, at embryonic day

8.5 (E8.5), the interaction between homeobox genes Otx2

and Gbx2 defines the isthmic organizer region (IO; [62,

63]). The IO orchestrates the development of cerebellar and

mesencephalic structures through the morphogenic activity

of the secreted factors Fgf8 and Wnt1 [64–67]. At this early

stage, Shh expressed in the ventral midline of the midbrain

also promotes FgF8 expression by the IO (from E8.5 to

E12; [9, 68]). In line with an early action of Shh at the

onset of cerebellar morphogenesis, Hoxb.7-Cre-driven

conditional knock-out of the Shh inhibitor SuFu leads to

Fig. 1 Shh signaling pathway in vertebrates. A1 Shh is translated as a

45-kDa precursor protein (Shh) and becomes an active signaling

protein (Shh-N) after the addition of a cholesterol and a palmitate

lipophilic moiety at its N-terminus. Shh is then trafficked to the cell

surface and released from cells as a multimer (M-Shh-N). A2

Interactions with both megalin and glypicans regulate long-range Shh

signaling. Binding to the transmembrane protein megalin promotes

Shh internalization, resulting in either degradation or subsequent

exocytosis. The Shh affinity for megalin is increased by glypicans. B1

Primary cilia are key organelles at which Shh signaling takes place.

On their membranes, both receptors (Ptch1) and co-receptors (Cdo/

Boc) are exposed. These structures also contain regulatory micro-

tubule-associated complexes composed by Sufu, Kif7, PKA, GSK3,

CK1, and Gli. In the absence of Shh, Ptch1 prevents membrane

localization and activation of Smo, retaining it on intracellular

vesicles. In this context, Gli2 and 3 (simply referred as Gli) proteins

are held in the microtubule-associated complex, which induces their

phosphorylation (red P). Upon phosphorylation, Gli leaves the

complex and reaches the cytoplasm as a transcriptional repressor

form (Gli repressor). B2 When Shh interacts with Ptch1 and Cdo/Boc,

Smo is shuttled from an endocytic vesicle to the cilium, while the

hedgehog–patched complex is internalized and degraded by lyso-

somes. B3 The de-repression of Smo, together with its

phosphorylation, induces the dissociation of the Sufu–Gli-kinases

complex, promoting the formation of the Gli activator form (Gli

activator), which, after nuclear translocation, activates transcription of

downstream targets
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abnormal midbrain–hindbrain morphology and FgF8 mis-

expression, followed by delayed differentiation and

atypical migration of different cerebellar cellular popula-

tions [69]. Similarly, as a confirmation of this early role of

Shh, retrovirus-mediated misexpression of Shh in the early

chick neural tube disrupts midbrain–hindbrain boundary

formation, leading to later defects in the cerebellar pri-

mordia [58].

After territorial specification, cerebellar histogenesis

starts at E9 in the mouse. At this age, the cerebellar anlage

comprises two separate protuberances that during the fol-

lowing days grow and fuse together. This gives rise to the

unitary cerebellar plate, consisting of the vermis and the

two hemispheres [70].

During the initial phases of cerebellar histogenesis, Shh

is secreted by the choroid plexus [71]. Later, from E17.5, it

is released by PCs [72–74]. Whichever the source, Shh is a

key regulator of the cerebellar progenitors residing in the

two cerebellar germinative compartments: the rhombic lip

(RL), located at the outer aspect of the cerebellar plate,

adjacent to the roof-plate, and the ventricular zone (VZ),

lining the fourth ventricle. These germinative zones are

defined by the region-specific expression of two basic

helix-loop-helix transcription factors: pancreas transcrip-

tion factor 1a (Ptf1a), expressed in the VZ [75] and the

mouse homolog of Drosophila atonal (Atoh1), present in

the RL [76]. This spatially restricted expression pattern

determines the neurochemical compartmentalization of

cerebellar precursors. All GABAergic neurons [PCs,

nucleo-olivary projection neurons of the cerebellar nuclei

(CN), and all inhibitory interneurons—basket, stellate,

Golgi, and Lugaro cells] originate from Ptf1a? precursors

[75, 77, 78], while the glutamatergic lineages (large pro-

jection neurons of the CN, unipolar brush cells (UBCs),

and granule cells) derive from Atoh1? progenitors [78–84].

The two primary germinal epithelia disappear at birth.

Dividing VZ precursors migrate into the cerebellar

prospective white matter (PWM), whereas those of the RL

move along the cerebellar pial surface and form the

external granular layer (EGL). Neurogenesis is active in

secondary epithelia (PWM and EGL) up to the third

postnatal week to generate appropriate numbers of

GABAergic and glutamatergic interneurons, respectively

[67, 70, 85].

It is well established that Shh actively regulates the

amplification of cerebellar progenitors in both embryonic

and postnatal germinal zones [71, 72, 86]. This morphogen

controls the production of appropriate numbers of excita-

tory and inhibitory interneurons (see ‘‘Shh and granule

cells’’, ‘‘Shh and GABAergic interneurons’’ sections;

Fig. 2). Moreover, it modulates the correct generation and

development of glial progenitors (see ‘‘Shh and cerebellar

glia’’ section) and has specific functions in different phases

of granule cell development, both in normal and patho-

logical conditions, such as MB (see ‘‘Shh and cerebellar

pathology: evidence from medulloblastoma’’ section). Shh

also actively orchestrates the major dynamics of cerebellar

foliation, sustaining normal processes of cerebellar growth

and maturation (see ‘‘Shh orchestrates normal cerebellar

foliation’’ section).

Shh and granule cells

Granule cells (GCs) represent the most abundant neuron

type in the brain (there are about 108 granule cells in the

adult murine cerebellum [87, 88]). GCs derive from Ato-

h1? progenitors that migrate from the RL to the EGL. The

entire process of GC production lasts from E12.5 to P14

and is fundamental for the acquisition of normal cerebellar

size and foliation [70]. It has been observed that reduction

in GC number leads to the formation of smaller cerebella

[89–91] and abnormal foliation, such as the persistence of

just the five cerebellar cardinal lobules at P14 in rats ([92,

93], see ‘‘Shh orchestrates normal cerebellar foliation’’

section). In addition, abnormal proliferation of GCPs is at

the basis of pathological conditions such as MB, the most

common form of malignant brain tumor in children (for

review see [94, 95]; see ‘‘Shh and cerebellar pathology:

evidence from medulloblastoma’’ section).

Numerous studies have analyzed the mechanisms

underlying the initial phases of GCP proliferation and

migration from the mitogenic niche of the EGL [74, 96,

97]. It has been demonstrated that these stages are actively

controlled by mitogenic factors secreted by PCs, in par-

ticular Shh. Indeed, the relative number of granule cells is

reduced in animal models characterized by primary PC

degeneration [98–100], as a consequence of both the loss of

mitogenic Shh and the degeneration of their targets (the

PCs). Conversely, if loss of PCs occurs later in the post-

natal period (as in the pcd mutant mouse) the Shh

mitogenic effect is preserved and consequently the granule

cell layer appears nearly normal [100, 101].

Treatment of GCPs with Shh prevents differentiation

and induces a long-lasting proliferative response, while

inhibition of Shh signaling dramatically reduces their

mitotic activity [72, 74, 102–104]. The pathway activated

involves the upregulation of the target genes Patched, Gli1,

and Gli2 [53, 93, 102]. For example, the activation of a

Gli2-mediated pathway is important to ensure the correct

expansion of GCPs in the EGL and the consequent normal

patterning of cortical folia ([93], see ‘‘Shh orchestrates

normal cerebellar foliation’’ section). Other important

mediators of Shh-induced proliferation are N-myc, cyclin

D1, and cyclin D2, which directly promote the entry of

precursors into the cell-cycle and DNA replication [53,

105, 106]. Overexpression of these molecules is sufficient
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to boost GCP proliferation, but the amplitude of the elicited

response is strictly dependent upon the particular molecule

involved [53].

Notably, a negative regulatory action of GCPs on the

production of Shh by PCs has been proposed based on the

evidence that PCs produce increased quantities of Shh in

the Kif3a mutant mouse, characterized by defective GCP

cilia and reduced GCP numbers [39].

The decreased expression of Gli1 in the innermost part

of the EGL indicates that the response to the Shh signal is

progressively switched off in GCs [93, 96]. How exactly do

GCPs modify their response to Shh and become insensitive

to its mitogenic effect? Both intrinsic and extrinsic factors

may contribute to this process. In parallel with the loss of

Gli1 expression, the Shh effector cyclin-D1 is not detected

in GCPs of the deepest part of EGL. The same is observed

in GCs of the granular layer (GL), indicating their status as

non-proliferating cells [107–109]. In addition, the GCPs

located in the deeper EGL start the expression of cyclin-

dependent kinase inhibitors such as p27. This molecule

arrests proliferation and induces the differentiation pro-

gramme both in vitro and in vivo [110, 111]. However, in

p27 knockout mice GCPs are still able to leave the cell-

cycle and differentiate into mature granule cells, indicating

that p27 is not the sole factor responsible for this effect

[97]. This switch in GCP sensitivity and response to Shh

has been suggested to depend on extracellular matrix

(ECM) glycoproteins. Both laminin and vitronectin can

Fig. 2 Shh functions during cerebellar development. a During

embryonic development, Shh is first secreted by the choroid plexus

(ChP) and is essential to radial glial cell proliferation and the

expansion of Ptf1a? progenitors of GABAergic neurons. Purkinje

cells start Shh secretion by E17.5, modulating the correct differen-

tiation of glial progenitors into mature BG. b Postnatally, Shh acts as

a mitogen on both granule and oligodendrocyte precursor cells (GCPs

and OPCs), in the EGL and PWM, respectively. In the PWM, Shh

also exerts a proliferative function on the neural stem cell-like

progenitors (Tnc?CD133?) that generate both intermediate astrocyte

precursors (Tnc?CD15?) and GABAergic transient amplifying cells

(Ptf1a?). PCP Purkinje cell progenitor, ChP choroid plexus, PWM

prospective white matter, GL granular layer, PCL Purkinje cell layer,

EGL external granular layer
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modulate GPC responses to Shh [112]. GCPs actively

proliferate in the presence of Shh when cultured on lami-

nin, which is present in vivo in the outer EGL, but not on

vitronectin, which is normally contacted by granule cells in

the deepest EGL and GL [73, 112]. Therefore, the same

molecular elements may regulate proliferation of GCPs,

depending on the pattern of ECM molecules and receptors

expressed in different parts of the EGL.

Overall, these data highlight the reciprocal interactions

between GCPs and PCs mediated by Shh and the dynamic

changes in the pathway due to different molecules in the

local environment.

Shh and GABAergic interneurons

GABAergic interneurons comprise multiple subsets of

morphologically and neurochemically distinct phenotypes

integrated in the cerebellar cortex and CN. These cells are

produced from late embryonic life to the second postnatal

week; the peak is around P5 and the production of 75 % of

all inhibitory interneurons occurs prior to P7 [113]. Mari-

cich and Herrup [114] identified the progenitors of

inhibitory interneurons as a population of Pax-2? cells that

arise in the VZ around E12 and later migrate into the

cerebellar parenchyma. Inhibitory interneuron precursors

continue to proliferate during their migration in the PWM

[113, 115–117] and generate the various interneuron phe-

notypes according to an inside-out progression. CN

interneurons are the first to be born during embryonic and

early postnatal life, followed by GL interneurons (Golgi

and Lugaro cells) and lastly the interneurons residing in the

molecular layer (ML, basket and stellate cells; [113, 114,

116, 118]). Interestingly, transplantation experiments have

demonstrated that all these different interneuron subsets

derive from a single population of Pax-2? immature

interneurons that acquire mature phenotypic traits under

the influence of local instructive cues provided by the

PWM microenvironment [67, 116, 117].

During embryonic development Shh is secreted from the

choroid plexus and transventricularly delivered by the

embryonic cerebrospinal fluid to the target niches. Here it

induces the expansion of the early generated subset of

GABAergic interneurons, as shown both in vivo [71] and

after exogenous administration of the recombinant amino-

terminal active fragment Shh-N to embryonic explants

[119]. Interestingly, the observation of double-im-

munopositive Gli1/Pax-2 cells in the VZ/SVZ regions or

scattered in the cerebellar parenchyma shows that during

embryonic development, the Shh pathway is already active

in young Pax-2? interneurons located in germinal and

migratory sites [119].

Although from E17.5 onward Shh is produced by a

different source (i.e., PCs), it continues to control the

generation of GABAergic interneurons by regulating the

activity of PWM neural stem-cell-like primary progenitors.

These generate both interneurons and parenchymal astro-

cytes and are characterized by the expression of prominin

and low levels of tenascin [86]. This idea is supported by

the observation that blockade of Shh signaling in these

cells disrupts the proliferative activity of intermediate

precursors, consequently decreasing the final numbers of

both interneurons and parenchymal astrocytes [86]. This

specific effect of Shh is independent of its classical role in

regulating GCP proliferation [74], as direct perturbation of

GCP expansion does not alter GABAergic progenitor

production [86].

In line with these observations, the exogenous admin-

istration of Shh-N to cerebellar slices from P2 mice induces

an amplification of Pax-2? cells [119]. This effect is sig-

nificant both at day 1 and day 2 in vitro, whereas in the

presence of the Shh inhibitor cyclopamine, the effect is lost

[119]. In addition, the mitogenic effect of Shh on newborn

Pax-2? cells disappears at later postnatal stages such as P7,

by which time the bulk of GABAergic interneurons has

been already produced [113, 120].

Gene expression analysis of sorted GFP? cells from

Pax-2-GFP transgenic mice revealed that the Shh pathway

is active not only in stem cell-like progenitors and inter-

mediate precursors but also in immature early postmitotic

Pax-2? interneurons, which express both the Shh receptor

Ptch1 and the Shh target gene Gli1. These results were

confirmed by in situ hybridization [119]. However, the role

of Shh during interneuron maturation remains to be

clarified.

Taken together, these recent studies highlight the fun-

damental roles of Shh in regulating the interneuron

population by maintaining the embryonic and postnatal

niches in which these cells are produced.

Shh and cerebellar glia

Cerebellar astrocytes and oligodendrocytes are morpho-

logically distinct cell types located at different sites in the

cerebellar cortex and white matter [121–123].

Experimental evidence indicates that astrocytes [com-

prising Bergman glia (BG) and parenchymal astrocytes]

derive from the VZ [118, 121, 124–126], whereas oligo-

dendrocyte precursors (OPCs) appear to originate mainly

from exogenous sources and populate the cerebellar par-

enchyma at later embryonic stages [127–129].

A few studies have investigated the action of Shh sig-

naling on both astrocytes [130–132] and oligodendrocytes

[133–138] in the developing and mature brain. In the

cerebellum, Shh has been reported to act directly on both

BG and oligodendrocytes, regulating their differentiation

and proliferation, respectively. Moreover, this ligand
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critically maintains the VZ, controlling the proliferation of

radial glia cells via their cilia [39, 71], and the PWM niche,

controlling the amplification of Tnc?CD15? intermediate

progenitors of parenchymal astrocytes ([71, 86]; see pre-

vious section). It is not clear whether Shh also has effects

on mature parenchymal astrocytes.

Wallace [102] and Traiffort et al. [139] observed high

expression levels of Ptch and Gli1 in small cells in the PC

layer, presumably BG, suggesting that the Shh signaling

pathway is active in these cells. Confirmation of a direct

action of Shh came shortly after, when Dahmane and Ruiz-

I-Altaba [72] first demonstrated the role of this ligand in

BG differentiation but, intriguingly, not in BG progenitor

proliferation [72]. Given the PC origin of Shh, these results

confirmed previous data revealing a key role for PCs in the

control of BG maturation [66, 140]. However, BG persist

in both Gli2 mutant embryos [73] and Gli2-En1 conditional

knock-out mutants, in which Gli2 deletion is restricted to

cerebellar precursors [93], thus demonstrating that Shh

signaling through Gli2 is not essential for BG specification.

However, the latter mutant model did show an abnormal

glial morphology, characterized by a disorganization and

deformity of the glial fibers. This phenotype was explained

as a secondary effect of the abnormal PC morphology [93].

Lewis et al. [74], using transgenic mice models specifically

developed to prevent Shh production by PCs at different

ages, observed alterations in BG only after P5, while BG

morphology was normal at previous developmental stages.

In this case, the results were interpreted as a secondary

effect of PC disorganization and absence of parallel fibers

and not as a direct consequence of Shh absence on BG

differentiation. In contrast, Mecklenburg et al. [141] pro-

posed a direct role for Shh in the regulation of BG

maturation, suggesting that the altered glial morphology

observed in conditional Shh mutants [73] was not subor-

dinate to defective PCs. In this study, conditional ablation

of Shh in the developing cerebellum led to a rapid reduc-

tion of Gdf10, which is a member of the transforming

growth factor beta (TGF-b)-superfamily strongly expressed

in BG cells from E15. The rapid down-regulation of this

glial-specific gene in the absence of Shh suggested that it

may have a direct role in BG specification, although the

exact mechanisms still need to be clarified.

Shh has also been shown to affect the proliferation of

cerebellar oligodendrocytes, the glia responsible for myelin

synthesis. Bouslama-Oueghlani et al. [142] used cerebellar

organotypic cultures to investigate the influence of PCs

(the only type of cerebellar neuron to be myelinated) on the

timing of oligodendrocyte differentiation. In particular, by

using cerebellar slice cultures in which numbers of PCs

were significantly different, these authors found that sol-

uble factors produced by PCs were able to affect the OPC

population. Among these factors, Shh was shown to be

downregulated during PC postnatal maturation, whereas

vitronectin was upregulated. Importantly, either Shh or

vitronectin when administrated to postnatal organotypic

slices, had opposite effects on OPCs, stimulating either

their proliferation or differentiation [142]. These effects

were reversed by Shh or vitronectin antagonists.

In summary, these results highlight that both neuronal

and glial development is highly synchronized in the cere-

bellum [142], as it is in other CNS regions [143–145].

Shh orchestrates normal cerebellar foliation

A prominent feature of cerebellar morphology is its folded

appearance, whereby fissures divide its anterior–posterior

extent into lobules [67, 146]. By E18.5, four principal

fissures are evident in midsagittal sections of the mouse

cerebellar vermis, allowing the distinction of five cardinal

lobes (the anterobasal, anterodorsal, central, posterior, and

inferior lobes [146]). Subsequently, additional (non-prin-

cipal) fissures further divide the cardinal lobes into lobules,

resulting in a total of ten lobules identifiable in the adult

murine cerebellum [146]. The process of fissure formation

strictly depends on GCP proliferation [73, 93]. Therefore

Shh, acting as a mitogen on GCPs, indirectly plays a role in

cerebellar foliation.

In particular, it has been shown that Shh signaling

spatially and temporally correlates with fissure formation.

Gli2 is the principal activator of Shh-induced GCP pro-

liferation, which in turn is the driving force for the initial

establishment of the fissures [73]. Indeed, Gli2-null

mutants show decreased foliation at birth and reduced

numbers of GCPs, whereas Shh overexpression in wild-

type cerebella leads to normal cerebellar foliation but also

to an increased cerebellar size, a consequence of pro-

longed GCP proliferation [73]. Other experiments have

clarified that the level of Shh signaling regulates the

extent and complexity of cerebellar foliation, but not its

typical pattern [93]. In the absence of Gli2, foliation

proceeds but the process of lobulation is delayed and

prematurely arrested and further reduction in foliation

occurs in double Gli2 and Gli1 null mutant mice.

Whereas, when the entire Shh signaling is removed,

foliation is totally inhibited because of a rapid exhaustion

of GCPs after E17.5 [93]. Collectively, these findings

suggest that Shh is not necessary to initiate foliation, nor

does it determine the position of the fissures, but is a

regulator of the extent and complexity of foliation. This

interpretation implies that at embryonic stages even in the

absence of Shh, some GPCs should be able to start

mitosis, allowing the first sulci to form. However, at both

late prenatal and postnatal stages, Shh becomes necessary

to sustain the expansion of the EGL [73].

Sonic hedgehog patterning during cerebellar development 297

123



Shh and cerebellar pathology: evidence
from medulloblastoma

MB is the most common form of neuroectodermal tumor of

childhood, with an estimated lethality of 30 % and high

clinical heterogeneity. It is widely accepted that MB

originates from GCPs and four different subtypes of MBs

have been identified and classified according to their

transcriptional profiles: (1) WNT MBs; (2) Shh MBs; (3)

Group C, frequently associated with TGF1 beta pathway

abnormalities; (4) Group D, often related to tandem

duplication of a-synuclein-interacting protein (SNCAIP)

[67, 147–151].

Shh-MBs represent one-third of the total number of MB

cases occurring both in childhood and adulthood [152,

153]. It has been demonstrated that infant and adult MBs

exhibit different transcriptional and genetic profiles.

Northcott et al. [149] identified a number of homeobox

family members as the genes most strongly up-regulated in

adult forms of Shh-MBs. Alternatively, infant MBs express

high levels of transcriptional regulators participating in

brain development, such as ZIC2 and ZIC5. These dis-

similarities lead to large variability in clinical and

prognostic aspects of the disease at different ages—one

reason why the targeting of signaling molecules might be a

fundamental step in developing new therapeutic

approaches.

It has been demonstrated that Shh-MBs are caused by

aberrations in various components of Shh pathway, such as

Ptch1 [103, 154], Sufu [155, 156], Gli transcription factors

[157] and Smo [158]. Studies in mice lacking Ptch function

demonstrated that abnormal activation of the Shh pathway

through repression of its inhibitors leads to the formation of

MBs [159, 160]. Similar mutations have also been descri-

bed in patients with nevoid basal cell carcinoma

syndrome—also known as Gorin syndrome—often asso-

ciated with childhood MB [161]. According to Kim et al.

[162], Shh pathway alteration via Ptch in heterozygous

mice induces a subset of GCPs to maintain their prolifer-

ative activity with consequent deregulation of

developmental gene expression, rather than a global

increase of GCPs proliferation during postnatal develop-

ment or an interruption in programmed cell death.

However, given the complexity of the Shh pathway, it is

not possible to attribute MB formation to abnormalities of

just one element of the network, as demonstrated by the

fact that only a fraction of Ptch mutant mice develop MB.

Taylor et al. [155] identified Sufu as a tumor-suppressor

gene in a subset of desmoplastic MBs. They created a

model in which several mutations in Sufu encoded trun-

cated proteins that are unable to export the Gli transcription

factor from nucleus to cytoplasm, with the subsequent

activation of Shh signaling. More recently, it has been also

demonstrated that nevoid basal cell carcinoma syndrome,

traditionally associated with Ptch mutations, could be

caused by heterozygous loss-of-function germline muta-

tions in Sufu as well. These studies contributed to the

redefinition of the risk of MB in Gorlin syndrome on the

basis of the related gene: in Ptch-related forms, the risk of

MB has been reduced from 5 to 2 % with a probability

approximately 20 times higher in Sufu-related forms [163,

164].

Other studies specifically focused on the role of Gli1

expression in MB. Yoon et al. [165] identified the subset of

Gli1 target genes responsible for cell transformation and

specifically expressed in MBs. Moreover, the expression of

the Shh signaling components was investigated in relation

to prognosis, suggesting that Gli1 or Gli2 expression in

pediatric MB might confer a worse outcome [166]. How-

ever, recently, new intriguing findings partly modified this

classical view of Shh-dependent proliferation of GCPs. Li

et al. [167] discovered a new population of progenitors

cells in the EGL identified by the expression of the neural

stem cells marker Nestin. Surprisingly, Nestin? cells do not

express Atoh1 and are not responsive to Shh in vivo, even

if they express the signaling-associated machinery.

Although they account for only 3–5 % of EGL cells, they

display enhanced tumorigenic potential and chromosomal

aberrations following loss of the Shh receptor Ptch1 com-

pared to Atoh1? GCPs [167], thus questioning the cellular

origin of MB [168].

Concluding remarks

The role of Shh in the development of the CNS has been

extensively investigated, leading to an expanded under-

standing of the extrinsic and intrinsic molecular

machineries of its signaling pathway. Beyond its role in

patterning, hedgehog signaling is now known to have

multiple roles throughout development, favoring the pro-

cesses of fate specification, oligodendrogenesis, stem cell

maintenance, and axon path finding. In the cerebellum, the

Shh pathway has been principally studied for many years in

the context of GCP proliferation. However (as described

above), the Shh ligand exerts additional roles on distinct

cell populations throughout cerebellar development. In

particular, Shh crucially sustains the expansion of neuronal

and glial precursors within embryonic and postnatal niches,

by means of different mechanisms that involve both cere-

bellar and extracerebellar strategies (Fig. 2). Shh also

induces BG maturation and oligodendrocyte amplification.

As described above, Shh signaling is a complex network

involving distinct players that modulate Shh function at
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different levels and in a cell-context-dependent manner.

Intriguingly, the sole source of Shh during the late

embryonic and postnatal development is PCs. These

strategically orchestrate postnatal cerebellar morphogene-

sis through the modulated secretion of Shh and vitronectin.

Despite extensive data in these areas, a deeper knowledge

of the processes regulating the timing and balance of Shh/

vitronectin production by PCs will certainly shed further

light on the mechanisms of cerebellar development.
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