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Abstract Neurotrophins and their receptors act as

important proliferative and pro-survival factors in a variety

of cell types. Neurotrophins are produced by multiple cell

types in both pro- and mature forms, and can act in an

autocrine or paracrine fashion. The p75NTR and Trk

receptors can elicit signalling in response to the presence or

absence of their corresponding neurotrophin ligands. This

signalling, along with neurotrophin and receptor expres-

sion, varies between different cell types. Neurotrophins and

their receptors have been shown to be expressed by and

elicit signalling in B lymphocytes. In general, most neu-

rotrophins are expressed by activated B-cells and memory

B-cells. Likewise, the TrkB95 receptor is seen on activated

B-cells, while TrkA and p75NTR are expressed by both

resting and active B-cells as well as memory B-cells. Nerve

growth factor stimulates B-cell proliferation, memory

B-cell survival, antibody production and CD40 expression.

Brain-derived neurotrophic factor is involved in B-cell

maturation in the bone marrow through TrkB95. Overall

neurotrophins and their receptors have been shown to be

involved in B-cell proliferation, development, differentia-

tion, antibody secretion and survival. As well as expression

and activity in healthy B-cells, the neurotrophins and their

receptors can contribute to B-cell malignancies including

acute lymphoblastic leukaemia, diffuse large B-cell lym-

phoma, Burkitt’s lymphoma and multiple myeloma. They

are involved in B-cell malignancy survival and potentially

in drug resistance.
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Introduction

B lymphocytes are one of the key types of immune cells.

Their main role as antibody-producing and memory cells is

vital for the proper functioning of the adaptive immune

response. Apart from antibody-dependent B-cell receptor

signalling to stimulate antibody production, B-cells are also

responsive to a variety of cytokines and other growth

factors. Neurotrophins are a small family of secreted pro-

teins which are vital for the development, survival and

functioning of neurons. Although they were originally

discovered for these functions, they have since been shown

to affect many other organs and tissues in both health and

disease. In particular, neurotrophins are thought to con-

tribute to the survival, growth and metastasis of several

types of cancer. There is a growing body of evidence

showing that neurotrophins play a role in the normal

growth and development of B lymphocytes and that they

may also contribute to the development of B lymphoid

malignancies and subsequent drug resistance. Here, we

review the literature on the role of neurotrophins in B

lymphocytes including what is known concerning their role

in B-cell malignancies.

B lymphocytes

B lymphocytes are a key component of the immune system

and arise from common pluripotent stem cells in the bone

marrow. They are distinguished from other lymphocytes by
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cell surface expression of an antigen-binding protein

receptor called the B-cell receptor (BCR). The principal

functions of B-cells are to make antibodies in response to

antigens, to perform the role of antigen-presenting cells

(APCs) and to develop into memory B-cells following

activation by antigen interaction. B-cells also release

cytokines, which are used for signalling immune regulatory

functions [1].

The first steps in B-cell maturation are the assembly of

immunoglobulin heavy (IGH) and light chain (IGL) loci,

respectively, via V(D)J recombination [2]. Various stages

of B-cell maturation are recognised according to how

advanced this process is and include Pro-B cells, Pre-B

cells, immature and mature B cells. This distinction can be

important in correct classification of certain B-cell leu-

kaemias and lymphomas. For example, Pre-B cells express

pan B-cell antigens and the immunoglobulin heavy chain is

rearranged, but the immunoglobulin light chain is not yet

rearranged [3]. Cells with a fully functional BCR are

positively selected to migrate into the peripheral lymphoid

organs as mature, naı̈ve B cells, whereas cells lacking a

functional BCR undergo apoptosis within the bone marrow

[4]. For most B-cells, subsequent maturation occurs within

the germinal centre of the lymphoid organs following

exposure to a foreign antigen, which cross links the BCR,

followed by a second co-stimulatory signal from CD4-

positive T (follicular helper T cells or Th2 cells) and

antigen-presenting cells [5]. Binding of an antigen by the

BCR leads to its internalisation, and fragments of the

antigen are presented to the T cells by Class II major his-

tocompatibility complex (MHC) [6].

Following exposure to a T-cell-dependent antigen,

B-cells become proliferating centroblasts in the germinal

centre of lymphoid tissues and eventually mature into cen-

trocytes [7]. While in the germinal centre the processes of

somatic hypermutation (SHM) and class switch recombi-

nation (CSR) are activated. Centroblasts use SHM to modify

the variable regions of their immunoglobulin variable genes

producing BCR’s higher affinity for antigen [8]. Following

differentiation into centrocytes, B-cells are re-challenged

with antigen via interaction with CD4 positive T cells and

follicular dendritic cells. Only those B-cells with the highest

affinity for antigen are selected to exit the germinal centre

and further differentiate into memory B-cells or antibody

secreting plasma cells, with the remainder being eliminated

by apoptosis [9, 10]. Survival of B-cells with high affinity

BCRs results from a variety of microenvironmental signals

such as BCR engagement and activation of the CD40

receptor following engagement with CD40 ligand, expres-

sed on CD4 positive cells [11]. These signals induce

activation of the NF kappa B pathway which downregulates

BCL6, thus turning off proliferation, allowing differentia-

tion with expression of the transcription factor BLIMP1

leading to differentiation [9]. Genetic lesions within these

survival pathways are frequently seen in B-cell neoplasms.

Centrocytes subsequently undergo CSR, which results in the

formation of the different isotypes of antibodies, IgG, IgA,

etc. Both SHM and CSR are dependent on the activity of the

activation-induced cytidine deaminase (AID) enzyme, and

result in B-cell specific genomic modifications via the gen-

eration of single and double strand breaks with subsequent

repair [12]. Mistakes in these processes are frequent onco-

genic events in B-cell neoplasms, such as lymphoma.

Importantly, B-cells are tested for self-reactivity before

leaving the bone marrow, and undergo apoptosis, receptor

editing or anergy if they bind to host antigens [13]. Defects

in this latter process can lead to autoimmunity.

Memory B-cells remain in circulation to enable a rapid

immune response if the same antigen is encountered again.

CD20 is a marker of mature B-cells, present on naı̈ve B-cells

and memory B-cells, but not on plasma cells [14]. B-cells

interact with T cells, macrophages and dendritic cells, as

well as their soluble factors, to patrol the circulatory system

for invading pathogens and danger signals [15]. Circulating

plasma cells require colony-stimulating factors for survival.

On effective removal of a pathogen, these factors are no

longer secreted and the clonally expanded population of

circulating plasma cells undergo apoptosis [1].

B-cell malignancies

B-cell malignancies are usually classified based on cell

surface expression of various clusters of differentiation

molecules, which in turn is usually determined by the stage

of maturation/differentiation of the cell of origin. The two

main types of B-cell leukaemia are as follows: acute

lymphoblastic leukaemia (ALL) and chronic lymphocytic

leukaemia (CLL). These diseases differ in terms of the

speed of disease progression (acute vs. chronic), though

both originate in the lymphoid cells in the bone marrow

[16]. Other B-cell leukaemias include prolymphocytic

leukaemia (PLL, which also originates in the bone mar-

row), pre-B lymphoblastic leukaemia and hairy cell

leukaemia (originating in post-germinal centre B-cells).

Other types of B-cell cancers include marginal-zone lym-

phoma, follicular lymphoma, mantle-cell lymphoma

(originating in the lymph node primary follicle), diffuse

large B-cell lymphoma (DLBCL; originating in the ger-

minal centre), multiple myeloma (MM; originating in post-

germinal centre B-cells) and Burkitt’s lymphoma (origi-

nating in the germinal centre) [17, 18].

B-cell cancers are largely heterogeneous, making it dif-

ficult to find common molecular targets and widely

suitable therapies [18]. Treatments and prognoses for

patients with B-cell cancers differ vastly, not only based on
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the type of B-cell cancer and speed of diagnosis, but also on

subtype within each cancer [16, 19]. Classical therapy relies

on chemotherapeutic agents such as fludarabine and

cyclophosphamide, which interfere with DNA replication

[20, 21]. The most effective targeted therapy to date is

rituximab, a chimeric monoclonal antibody which binds to

CD20. Binding of this antibody leads to apoptosis induc-

tion, BCR downregulation [22], activation of complement

and enhanced B-cell death by natural killer cells [23].

Although rituximab targets all CD20? B-cells, the absence

of normal B-cells during treatment does not appear to cause

any long-term effects [24]. Overcoming rituximab resis-

tance is one of the major goals of upcoming therapies.

Resistance can emerge through reduced CD20 expression,

altered BCR signalling, reduced activation of complement

or natural killer cells, or resistance to apoptosis [25]. For

example, CLL is known for expression of low levels of

CD20 and high levels of the anti-apoptotic protein Bcl-2,

and these patients are generally resistant to rituximab as a

single agent [24]. In light of this resistance, research into

new therapies has focused on the downstream mediators of

BCR signalling. BCR signalling leads to the activation of

Bruton’s tyrosine kinase (Btk) and PI3K, among others

[26]. Ibrutinib is a Btk inhibitor recently approved for the

treatment of CLL [27]. By inhibiting Btk, there is reduced

ERK and NF-jB signalling, in turn leading to reduced

proliferation and migration [28]. Idelalisib is a PI3Kd
inhibitor, also recently approved for the treatment of CLL.

By inhibiting PI3K, there is reduced Akt and mammalian

target of rapamycin (mTOR) activation, leading to reduced

migration, proliferation and survival [29]. Another

promising approach is to target Bcl-2 directly. In this con-

text, ABT-199, a so-called BH3 mimetic, is a potent and

selective inhibitor for Bcl-2 with anti-tumour activity in

several B-cell malignancies [30]. A further line of research

is the use of cytotoxic T cells genetically engineered to

express chimeric antigen receptors on their surface [31].

These receptors combine single-chain variable fragments

(scFv) for antigen recognition with transmembrane and

intracytoplasmic domains (e.g. CD3-zeta), which induce T

cell activation and cytotoxicity on binding to their corre-

sponding antigen (e.g. CD19 on B-cells) [32]. Future

research will also focus on the importance of the microen-

vironment for B-cell malignancies. Despite these advances,

relapse and resistance to therapy is an ongoing issue, and

new druggable targets are always worthy of investigation.

Neurotrophins and neurotrophin receptors

Neurotrophins are a class of growth factor proteins.

Although originally described for their role in the devel-

opment, survival and functioning of neurons, they have

since been shown to have roles in many other systems.

They can regulate sodium channels in skeletal muscle cells

and are important for ovulation [33, 34]. In particular, there

is interplay between neurotrophins and the immune system.

The prototypical member of the neurotrophins is nerve

growth factor (NGF), discovered by Levi-Montalcini in the

1950s [35, 36]. Other members include brain-derived

neurotrophic factor (BDNF), neurotrophin (NT)-3 and NT-

4/5 [37–41]. A common characteristic of the neurotrophins

is that they are produced in a pro-form, requiring cleavage

to the mature form [42]. This occurs either intracellularly

(e.g. by furin) or extracellularly (e.g. by matrix metallo-

proteinases) [43]. They may be secreted from cells in either

form [44–46]. Neurotrophins all share a similar structure,

with a cysteine knot between beta sheets which are linked

by disulphide bridges [47]. Neurotrophins naturally form

homo-dimers and have been shown to form hetero-dimers

experimentally, though the functionality of hetero-dimers

is somewhat in question [48, 49].

Mature neurotrophins bind to two main types of recep-

tor—the high affinity tropomyosin-related kinases (Trk

receptors) and the so-called low affinity p75NTR receptor

[50]. A third type of receptor, known as sortilin, is also to

known to bind to pro-neurotrophins in association with

p75NTR [51, 52]. All of the mature and pro-neurotrophins

can bind to the p75NTR receptor. Each neurotrophin binds

specifically to a different Trk receptor—NGF to TrkA,

BDNF and NT4/5 to TrkB, and NT-3 to TrkC [53]. In the

absence of p75NTR, NT-3 can also bind to TrkA and TrkB,

albeit with lower affinity [54]. Low affinity binding of pro-

neurotrophins to the Trk receptors has also been described

[55]. Normally proNGF binding requires processing to

mature NGF to activate Trk signalling [56]. However,

proNGF may mediate signalling through TrkA, albeit at

lower levels of activity than mature NGF, while also

inhibiting NGF-TrkA binding [57]. In the case of breast

cancer, proNGF has been shown to directly stimulate

cancer cell proliferation/invasion through a sortilin-TrkA

heterodimer, although direct proNGF-TrkA binding was

not shown [58]. To date, this pathway has not been

demonstrated in other malignancies and in melanoma for

example, proNGF mediates cell proliferation and migration

through p75NTR and sortilin [59]. ProBDNF has also been

shown to be able to bind TrkB and elicit signalling [60].

The neurotrophins and the receptors they bind to are

depicted in Fig. 1.

The Trk receptors are typical receptor tyrosine kinases

which consist of highly conserved extracellular domains,

with varying cytoplasmic domains [61]. Full-length Trk

receptors homodimerize and trans-autophosphorylate upon

ligand binding. This leads to the induction of three signalling

pathways—the Ras/mitogen-activated protein kinase path-

way (MAPK), the phosphatidylinositol 3-kinase (PI3K)/Akt
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pathway and the phospholipase Cc (PLCc) pathway [62,

63], outlined in Fig. 2. Trk signalling is important for neu-

ronal cell growth, survival and differentiation [64]. It is also

linked to survival, proliferation and invasion in several types

of cancer including breast, neuroblastoma, lung, pancreatic,

and colorectal cancers [65–71]. Truncated Trk receptors can

also be produced, by alternative splicing. These receptors

lack the intracellular kinase domain and so cannot signal in

the same way as the full-length receptors [53]. Truncated

Trk receptors have been shown to bind to neurotrophins,

particularly truncated TrkB (TrkB95) to BDNF. TrkB has

two truncated splice variants, TrkB95 (also known as

TrkB.T1) and TrkB.T2. It was initially thought that these

receptors functioned purely as dominant negative receptors,

through hetero-dimerisation with full-length TrkB in neu-

rons [72, 73]. However, TrkB.T2 does not appear to have

signalling ability and has not been found in humans [74].

TrkB95, though lacking the catalytic kinase domain, still

retains some signalling ability of its own [75]. For example,

BDNF has been shown to induce inositol 1,4,5-trisphosphate

(IP3)-dependent calcium release in glia cells through TrkB95

[73]. In addition, BDNF can induce the release of Rho GDP-

dissociation inhibitor (GDI)1 from TrkB95 in glial cells,

leading to a decrease in signalling by extracellular signal-

regulated kinase (ERK). This signalling system has been

shown to alter cell morphology [76]. A novel 61 kDa pro-

tein, labelled ‘Truncated TrkB Interacting Protein’ (TTIP),

has also been shown to bind the intracellular region of

TrkB95 in a ligand-independent manner in neuroblastoma

cells [77]. However, TrkB95-TTIP signalling has so far not

been elucidated.

p75NTR is a member of the tumour necrosis factor (TNF)

receptor superfamily, and is also known as TNFRSF16 or

CD271 [78]. Its structure, as determined independently by

three groups, contains a cysteine-rich cytoplasmic domain,

a single-pass transmembrane domain and an intracellular

death domain [79–81]. It can signal in either monomeric or

dimeric form upon ligand binding [82]. Unlike TrkA,

p75NTR requires the recruitment of intracellular adaptor

proteins to induce signalling [78]. It has been shown to

recruit a number of proteins, such as TRAF6, to initiate

signal transduction [83]. p75NTR can elicit a variety of

responses based on the binding of pro- or mature neu-

rotrophins, co-receptor expression and availability of

adaptors [84]. Even upon binding of mature neurotrophins,

p75NTR can stimulate nuclear factor kappa-light-chain-en-

hancer of activated B-cells (NF-jB) activation, promoting

cell survival, or c-Jun N-terminal kinase (JNK) activation,

promoting apoptosis, depending on cell type [85]. Pro-

neurotrophins can bind p75NTR in combination with the co-

receptor sortilin, inducing apoptosis in neural cells [51]. In

cancer, p75NTR can act as either an oncogene or a tumour

suppressor, depending on cell type. For example, increased

p75NTR expression is seen in triple-negative breast cancer

[86], while reduced p75NTR expression is seen in prostate

cancer [87].

Interestingly, the neurotrophin receptors, p75NTR, TrkA

and TrkC, have all been proposed as ‘dependence recep-

tors’. The dependence receptor concept asserts that cells

rely on signalling induced by ligand binding to the

receptor in order to survive. In the absence of ligand

binding, the receptor does not cease signalling, but

actively induces pro-apoptotic signalling [88]. p75NTR was

described as the first ‘dependence receptor’ [88]. This

p75NTR pro-apoptotic signalling is thought to be different

from the pro-apoptotic signalling induced by ligand

binding in some cell types. It utilizes the ‘addiction/de-

pendence domain’ described by Dale Bredesen [89], and

later identified as the ‘Chopper’ domain [90], rather than

the death domain (DD) which binds to adaptors on ligand

binding. Furthermore, p75NTR is known to enhance ligand

binding to the Trk receptors, increasing their affinity for

neurotrophins by tenfold [91]. TrkA has also recently been

proposed as a dependence receptor, causing neuronal

death during NGF depletion [92]. Both p75NTR and TrkA

are atypical dependence receptors as they are not cleaved

by caspases to induce pro-apoptotic signalling [93].

However, they may still be cleaved by other proteases

leading to a similar pro-apoptotic signalling initiation

mechanism [94]. TrkC is known to have caspase cleavage

sites in the intracellular domain, making it a more typical

dependence receptor [95].

Sortilin is a member of the vesicular sorting proteins

(Vsps) and is involved in protein secretion. It was later

discovered to also play a role in neurotrophin signalling

[96]. Sortilin cannot induce intracellular signalling alone as

it lacks a cytoplasmic catalytic domain. It therefore acts as

a co-receptor, in combination with p75NTR. It is known to

promote apoptosis upon binding of pro-neurotrophins [51],

but is not known to bind to mature neurotrophins.

Neurotrophins in B lymphocytes

Neurotrophins are known to affect many cells of the

immune system [97]. The interactions between the immune

and nervous systems have undergone much study, includ-

ing investigation into the expression and secretion of

neurotrophins by cells of the immune system (comprising

both cells of the lymphoid organs and circulating

immunocompetent cells). NGF is known to enhance sur-

vival, activation and differentiation of B and T

lymphocytes, monocytes, eosinophils, neutrophils, baso-

phils and mast cells [98]. Dendritic cells have been shown
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to express both TrkA and p75NTR [99], while T lympho-

cytes produce NGF and express p75NTR [100]. Monocytes

express TrkA, which is lost upon differentiation into

macrophages [101]. Macrophages do however secrete

NGF, BDNF and NT-4/5 [102–104]. As for B

lymphocytes, neurotrophins have been shown to be

involved in proliferation, development, differentiation,

antibody secretion and survival. An overview of neu-

rotrophin expression, receptor expression and signalling

activities in B lymphocytes is shown in Table 1.

Fig. 1 Structure of the neurotrophin receptors found in humans and

their ligand-receptor affinities. Tropomyosin-related kinase (Trk)

receptors are typical tyrosine kinase receptors. The three Trk

receptors bind neurotrophins with different affinities. NGF binds to

TrkA, BDNF and NT-4/5 to TrkB, with NT-3 able to bind to all of the

Trk receptors (though preferentially to TrkC). Alternative splicing can

lead to truncated Trk receptors, which may still retain some signalling

ability. p75NTR is a member of the TNF receptor superfamily. It

contains an intracellular death domain which can recruit adaptor

molecules to propagate signalling. All of the neurotrophins can bind

to p75NTR, as well as the pro-neurotrophins. p75NTR can also signal in

the absence of a ligand. Sortilin is a vesicular sorting protein which

acts as a co-receptor for p75NTR-pro-neurotrophin binding. It lacks a

catalytic domain only allowing signalling through p75NTR
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Fig. 2 Ligand-induced signalling through neurotrophin receptors.

Mature neurotrophins bind the receptors in dimeric form, inducing

receptor dimerization. Ligand binding to Trk receptors induces

autophosphorylation and three downstream pathways: the Ras/MAPK

pathway resulting in differentiation/survival; the PLCc pathway

inducing synaptic plasticity in neurons and the PI3K/Akt pathway

resulting in cell survival. Signalling downstream of the truncated

TrkB (TrkB95) receptor is not well characterised and requires further

investigation. Ligand binding to the p75NTR receptor induces receptor

dimerization and recruitment of adaptor molecules such as RIP2 and

NADE to the death domain which mediate pro-survival NF-jB

signalling or pro-apoptotic JNK signalling, respectively
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Expression of neurotrophins and their receptors

in B lymphocytes

Examination of the expression of neurotrophins in B-cells

has revealed basal NGF expression in both resting and

activated human B-cells [105]. Memory B-cells have been

shown to produce eight times more NGF than virgin B

lymphocytes, while levels of the neurotrophin receptors

were similar [105]. High levels of basal NGF expression

and production are also seen in the memory B-cell-like cell

line CESS, and it has been suggested that NGF production

is restricted to long-lived B-cells [106]. BDNF has been

shown to be secreted from activated human B-cells [103].

NT-3 mRNA expression has been reported from activated

human B-cells [103, 107]. Expression of NT-4/5 has not

been examined in B lymphocytes or cell lines.

Expression of all three Trk receptors has been shown in

human B-cells [108]. TrkA is expressed in both resting and

activated B-cells [105] as well as in the CESS cell line

[106]. Cells from murine spleen and bone marrow have

been shown to express TrkB95, but full-length TrkB was

not detected [109]. Expression of TrkB95 has also been

reported in Epstein–Barr virus (EBV)-transformed lym-

phoblastoid B-cell lines, but only after cell activation

[103]. Expression of full-length TrkB has also been

observed in unstimulated EBV-transformed B-cells, but

with very low levels at the cell surface [110]. It is worth

noting that EBV can act as a mitogen for B lymphocytes

[111], and may induce TrkB expression. It has been sug-

gested that TrkB may be cytoplasmically sequestered in

resting B-cells, and relocated to the cell surface upon

B-cell stimulation [107]. Relatively little is known about

TrkC expression in B lymphocytes, but mRNA expression

has been seen in human B-cells [108]. In general, it is

agreed that B-cells express at least the TrkB95 receptor,

with TrkA also expressed by memory B-cells. This sug-

gests that activated B-cells are responsive to BDNF and

NT-3, with memory B-cells also responsive to NGF. The

intracellular signalling pathways activated following neu-

rotrophin binding to B-cells are proposed to be similar to

Table 1 Expression and activity of neurotrophins and their receptors in healthy B-cells

Gene/

protein

Expression Activity

NGF Resting and activated human B-cells [105]

Higher in memory B-cells [105] and memory-like B-cell line [106]

Proliferation of memory-like B-cell line (CESS)

and B lymphocytes in vitro [106, 118]

Survival of memory B lymphocytes in vitro and

memory-like B-cell line (CESS) [105, 106]

Differentiation/IgM production of B lymphocytes

in vitro [105, 119]

IgG and IgA production from resting and activated

B lymphocytes in vitro [119]

IL-2R expression by activated B lymphocytes

in vitro [120]

CD40 expression by B lymphocytes in vitro [120]

IgE inhibition in B lymphocytes in vitro [122]

BDNF Activated human B-cells [105]

B-cell lines [107]

Maturation of B-cells in vivo from Pre-BII stage in

murine bone marrow [109]

Survival of B lymphocytes in vitro with serum

deprivation [107]

Apoptosis induction (by proBDNF) in a mature

B-cell line (BL2) in vitro [107]

NT-3 Activated human B-cells [105] No data

NT-4/5 No data No data

TrkA Resting and activated human B-cells [105] No data

TrkB145 B-cell lines [111] No data

TrkB95 Murine spleen and bone marrow [109] activated B-cell lines [105] Maturation of B-cells in vivo from Pre-BII stage in

murine bone marrow [109]

TrkC No data No data

p75NTR Murine spleen and bone marrow [109] resting and activated human B-cells [105]

memory-like B-cell line [106]

Apoptosis induction (by proBDNF) in a mature

B-cell line (BL2) in vitro [107]

Sortilin B-cell lines [107] Apoptosis induction of a mature B-cell line

(BL20) [107]
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those activated in other cell types. NGF binding has been

shown to induce tyrosine phosphorylation and activation of

MAPK and p90rsk in lymphoblastoid B-cell lines [112].

This was followed by confirmation of Ras activation by

Trk signalling in B-cells [113]. It was later shown that

NGF-mediated inhibition of apoptosis is through the acti-

vation of protein kinase C zeta (PKCf) (via TrkA

signalling activating the PI3K pathway) in an EBV-nega-

tive Burkitt’s lymphoma B-cell line, which expresses

surface proteins characteristic of normal early B-cells

[114]. In terms of TrkB95 signalling, the kinase domain is

absent so activation of classical Trk signalling does not

occur. However, it may be the case that TrkB95 induces

calcium release or ERK signalling, as seen in glial cells

[73, 76], or may interact with adaptor proteins, e.g. TTIP

[77].

There are conflicting reports as to whether normal

B-cells express the p75 NTR receptor. p75NTR has been

shown to be expressed by both resting and activated human

B lymphocytes, [105] and by the CESS cell line [106].

p75NTR mRNA expression was observed in human B-cells,

but could not be detected at the protein level [108]. p75NTR

expression has also been shown in B-cells derived from

murine spleen and bone marrow [109]. Expression of the

p75NTR co-receptor sortilin has been shown in B-cell lines

representing several stages of B-cell maturation and in

primary B-cells [107]. Together these findings indicate that

B-cells have the potential to respond to both neurotrophins

and pro-neurotrophins through p75NTR. p75NTR signalling

in B-cells has not been well studied. However, signalling is

likely to be similar to that seen in non-immune cells, i.e. by

adaptor recruitment leading to a pro-survival or pro-death

response through the NF-jB or JNK signalling pathways,

respectively [78, 85].

Both expression of neurotrophins and their receptors, by

both T and B lymphocytes, can be induced/enhanced by

cell activation, usually by stress but theoretically also by

danger-associated molecular pattern/pathogen-associated

molecular pattern (DAMP/PAMP) recognition. This is an

important consideration to be taken into account when

studying the effect of neurotrophins on these immune cells.

Effect of neurotrophin signalling on B-cells

As neurotrophins are secreted by numerous immune cell

types, they may act in an autocrine or paracrine fashion on

B lymphocytes. Bone marrow stromal cells have been

shown to produce neurotrophins [115] potentially leading

to paracrine signalling towards developing and mature

B-cells present in the bone marrow. Both BDNF and NGF

have been shown to affect B-cell function; however, in

contrast, the effects of NT-3 and NT-4/5 on B-cells have

not been well characterised.

BDNF has been shown to be involved in B lymphocyte

development, through the use of BDNF knockout mice.

These mice showed reduced B-cell numbers and a block in

B-cell maturation at the pre-B II stage, with no disruption

seen in T cell number/development. BDNF from stromal

cells promoted pre-B cell maturation through TrkB sig-

nalling by immature B-cells [109]. BDNF has been shown

to be able to reduce the level of apoptosis in mature B-cell

lines during serum starvation [108]. It has also been sug-

gested that the BDNF-mediated anti-apoptotic signalling

may be linked to the upregulation of FLICE-inhibitory

protein (FLIP), as shown in neural cells [116]. In experi-

mental allergic encephalomyelitis, used as a model for

multiple sclerosis, BDNF has been shown to be upregu-

lated to provide neuroprotection, though it is unclear

whether this is due to increased local expression or

expression by the infiltrating Breg cells [117].

NGF has been shown to increase the rate of proliferation

of the CESS cell line and primary B lymphocytes, by

binding to a high affinity receptor [106, 118], most likely

TrkA. NGF can act as an autocrine pro-survival factor for

memory B lymphocytes (which produce high levels of

NGF), by maintaining high levels of the anti-apoptotic

protein B-cell lymphoma 2 (Bcl-2) [105]. Use of anti-NGF

antibodies, or Trk inhibitors, has been shown to reduce

Bcl-2 levels in CESS cells. In these studies, the absence of

neurotrophin signalling caused activation of p38 MAPK,

leading to phosphorylation of Bcl-2, caspase activation and

subsequent apoptosis [106]. It has been suggested that early

claims of NGF as a proliferative factor for B lymphocytes

need to be re-examined, to consider that the relatively

higher numbers of B lymphocytes seen in the presence of

NGF may be due to a reduction in B lymphocyte death,

leading to an accumulation of cells rather than mitogenic

stimulation per se [105]. NGF can induce IgM production

from B lymphocytes in vitro, indicating that NGF can

induce differentiation into antibody-producing B-cells

[118]. However, it has been shown that endogenous NGF is

not involved in the antibody constant region class switch

that converts virgin B-cells to antigen-targeting and

memory B-cells [105]. NGF has been shown to promote

IgG production by resting B lymphocytes, while enhancing

production of IgG, IgM and IgA by activated B lympho-

cytes in vitro [119]. NGF and interleukin-2 (IL-2) have

been shown to enhance B-cell progression synergistically,

with NGF causing an increase in IL-2 receptor expression

and IL-2 causing an increase in p75NTR expression in B

lymphocytes [120, 121]. NGF has also been shown to

increase expression of CD40 (a co-stimulatory protein that

binds T cells) on B-cell lines [120]. However, p75NTR and

CD40 have opposing effects on IgE production by B

lymphocytes, with NGF inhibiting IL-4-mediated IgE

production [122]. In allergic airway inflammation, NGF
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and NT-3 act as pro-survival factors for pulmonary plasma

cells, through increased expression of the anti-apoptotic

Bcl-2 protein. NGF and NT-3 also enhance IgE production

from pulmonary plasma cells in allergic airway inflam-

mation by causing increased expression of the transcription

factors X-box binding protein 1 and NF-jB [123].

Neurotrophins and neurotrophin receptors
in B-cell malignancies

Considerably more studies have been carried out regarding

the levels of expression and activities of neurotrophins and

their receptors in healthy B lymphocytes compared with B

lymphocyte cancers. However, many of these ‘healthy’

B-cell studies use non-normal B-cell models, particularly

cell lines derived from EBV-transformed Burkitt’s lym-

phoma or DLBCL cells. Therefore, it is reasonable to

suggest that many of the functions of neurotrophins and

their receptors as described above also apply to B-cell

malignancies. An overview of neurotrophin expression,

receptor expression and signalling activities in B lympho-

cyte cancers is provided in Table 2.

Acute leukaemias

A study in 2005 examined the expression of p75NTR in

acute leukaemias using flow cytometry and qPCR, and in

two different cohorts of patients, they found expression in

22 and 38 % of ALL samples [124]. They also found that

p75NTR was preferentially expressed in ALL patients with

the BCR/ABL translocation, suggesting that the BCR/ABL

translocation and p75NTR expression are not interdepen-

dent, as p75NTR expression was not observed in chronic

myelogenous leukaemia which also expresses the BCR/

ABL mutation [124]. Sortilin expression has also been

observed in the Nalm6 ALL cell line, at both the mRNA

and protein levels. Levels of sortilin seen at the cell

membrane were very low, but increased significantly on

serum starvation, and was shown to inhibit apoptosis due to

serum starvation in these cells [125]. This suggests that

sortilin, in particular, may be involved in acute leukaemia

resistance to chemotherapeutics aimed at apoptosis

induction.

DLBCL

Neurotrophin and neurotrophin receptor expression has

been examined further in DLBCL cell lines. SUDHL4 and

SUDHL6 DLBCL cell lines have been shown to express

proNGF and proBDNF intracellularly, while secreting only

low levels of pro- and mature BDNF and not NGF in

normal culture conditions [126]. OCI-LY3 (activated

B-cell subtype) and OCI-LY19 (germinal centre origin)

DLBCL cell lines express proNGF, proBDNF and proNT-

3, but only secrete NT-3 at detectable levels [127]. These

cells also express p75NTR, TrkB95 and sortilin (SUDHL4/6

cells; [126]; TrkA, TrkB95 and TrkC (OCI-LY19); or

TrkB95 and TrkC (OCI-LY3; [127]). In none of these lines

was full-length TrkB detected. This suggests that these

cells may have some basal BDNF-TrkB95 signalling.

Constitutive PI3K/Akt signalling was also observed in

SUDHL cells [126]; however, the involvement of BDNF/

TrkB in this would need to be confirmed by inhibiting

BDNF signalling. TrkA was largely not expressed, con-

sistent with a lack of NGF secretion [126].

Further to looking at basal expression of the neu-

rotrophins and their receptors, Bellanger et al. also

examined changes in expression on cellular stress (induced

by serum deprivation). Upon stress, the cells upregulated

expression of the receptors (p75NTR and TrkB95) while

downregulating BDNF production. They also underwent

constitutive processing of p75NTR, indicating activation of

this receptor. A large increase in TrkB95 on the cell

membrane suggests that cellular stress leads to transloca-

tion of this receptor. These data suggest that DLBCL cells

respond to stress by altering the neurotrophin:receptor

ratio. This may allow them to better survive the tumour

microenvironment, such as the lymph nodes, or to increase

resistance to therapy. In response to the therapeutically

relevant anti-CD20 monoclonal antibody rituximab, the

cell lines increased expression and secretion of NGF, pre-

sumably leading to NGF-p75NTR pro-survival signalling, as

TrkA was not observed [126]. In contrast, no effect was

seen on BDNF, TrkB95, p75NTR or sortilin expression.

Finally, this group also showed that inhibition of Trk

receptor signalling, with the kinase inhibitor K252a,

induced apoptosis in the SUDHL4 DLBCL cell line, sug-

gesting an important role for Trk signalling in DLBCL

survival. It is noted however that K252a may also be

inhibiting other kinases at the concentration used [126].

Similar experiments were carried out by Sniderhan et al. in

OCI-LY3 and OCI-LY19 DLBCL cell lines [127]. They

found that K252a reduced proliferation of OCI-LY3 and

OCI-LY19 cells, but could only induce apoptosis in the

OCI-LY3 cell line (up to 70 % at 200 nM), suggesting a

preferential effect on the activated B-cell subtype of

DLBCL. They suggest that the OCI-LY19 cells are resis-

tant to K252a-induced apoptosis due to high basal levels of

X-linked inhibitor of apoptosis protein (XIAP). They also

found that K252a treatment of OCI-LY3 cells resulted in

inhibition of NF-jB transcriptional activity with a con-

comitant decrease in IL-6 production, which may act as an

autocrine/paracrine pro-survival signal [127]. It is likely

that K252a is targeting TrkC signalling in these cells as it is

unable to fully inhibit TrkB95 [128]. This signifies a
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possible avenue of investigation into new targeted thera-

pies for DLBCL.

Multiple myeloma

In contrast to DLBCL cells, several multiple myeloma

(MM) cell lines (including RPMI-8226) were found to

produce functional BDNF (as shown by PC12 neurite

outgrowth; [129]). However, BDNF expression and secre-

tion from these cells are controversial, as a more recent

report did not find BDNF expression in the RPMI-8226

MM cell line. This group also found low-intermediate

levels of Trk expression, though Trk type was not deter-

mined [127]. This confirmed earlier reports where full-

length TrkB mRNA and protein were seen in RPMI-8226

[129]. Constitutive TrkB expression was seen in KMS11,

RPMI-8226 and LP1 cells, with low TrkB levels increasing

on dexamethasone exposure in OPM1, U266, JJN3, H929

and UTMC2 cell lines. BDNF-TrkB signalling was

examined and shown to be functional, resulting in

increased phosphorylation of Akt and MAPK p42/44. In

contrast, p75NTR was not detected in any of the MM cell

lines used. Following on from the increased TrkB expres-

sion after dexamethasone exposure, cell survival was

examined, and BDNF was shown to protect RPMI-8226

cells from dexamethasone-induced apoptosis [129]. As

expected, in the absence of its receptors, NGF had no effect

on survival. BDNF could also delay bortezomib-induced

apoptosis in JJN3 cells, but not prevent it. This is thought

to be partly due to activation of PI3K signalling [129].

As well as cell lines, Pearse et al. also examined BDNF-

TrkB expression and signalling in MM patient samples.

They found that MM patients produced pro- and mature

BNDF mRNA, and increased BDNF in one marrow sample

from MM patients in comparison to control (though the

cellular source of BDNF was undetermined; [129]). Full-

length TrkB was found in 24/25 patients samples tested,

with no p75NTR detected at either mRNA or protein levels.

Consistent with their cell line findings, BDNF led to an

increase in Akt phosphorylation in primary samples.

Finally, they tested the effect of BDNF on primary MM

cell survival, with and without stromal cell co-culture, and

saw prolonged survival in culture conditions in both cases.

NGF also aided MM cell survival in co-culture, presum-

ably by acting on the stromal cells which then stimulate

plasma cell survival [129].

These data contribute to the hypothesis that neu-

rotrophins have a pro-survival role, in both an autocrine

and paracrine manner, in MM. Sortilin expression has also

been examined in MM cell lines, with mRNA and protein

expression seen in all cases. This expression was mainly

intracellular, increasing upon serum deprivation [125].

Apoptosis induction in myeloma-derived cell lines has

been shown by proBDNF binding to sortilin (and pre-

sumably p75NTR), while mature BDNF reduced apoptosis,

presumably through TrkB activation [107]. However, sor-

tilin, as a component of the secretory pathway, has been

shown to be required for BDNF secretion [107]. This

identifies a potential indirect role for sortilin in pro-survival

signalling, through promotion of mature BDNF secretion

and subsequent BDNF-TrkB signalling, which has previ-

ously not been reported. Overall this may indicate a dual

role for sortilin in both pro- and anti-death signalling in

B-cell malignancies.

Burkitt’s lymphoma

Analysis of the expression of neurotrophins and receptors

in some Burkitt’s lymphoma (Ramos, Raji, Daudi) cell

lines revealed low-intermediate levels of Trk receptors (of

undetermined type), with no NGF or BDNF expression

[127]. In line with this, none of the cell lines exhibited an

anti-proliferative or apoptotic response to K252a exposure

[127]. In contrast to this, knockdown of BDNF in the

Ramos/Raji cell lines has been reported to induce cell cycle

arrest and apoptosis [130]. This was shown to occur

through downregulation of Bcl-2, upregulation of Bax and

activation of caspase -3 and -9 [130]. This suggests a

constitutively active BDNF signalling pathway, as seen in

DLBCL cell lines. BDNF knockdown could also sensitise

the cells to 5-Fluorouracil (a chemotherapeutic pyrimidine

analogue; [130]).

Sortilin expression has been shown in Burkitt’s lym-

phoma cell lines at both the mRNA and protein levels.

Expression was mainly intracellular, with basal plasma

membrane expression lower than that observed in MM cell

lines. However, plasma membrane expression greatly

increased in BL41 cells on serum deprivation [125]. This

highlights sortilin translocation to the membrane as a

response to stress in Burkitt’s lymphoma and potential

mediator of cell survival through its dual role in pro- and

anti-death signalling, as previously mentioned.

Other B-cell malignancies

Less is known about neurotrophins in other B-cell malig-

nancies. As well as investigating neurotrophins and their

receptors in DLBCL cell lines, Sniderhan et al. also

investigated their role in cells derived from patients with

non-Hodgkin’s lymphomas (i.e. follicular and small lym-

phocytic lymphomas). They found TrkA to be expressed in

all of the patient samples, along with production of NGF

and NT-3 mRNA. However, they did not examine TrkB95

expression and only found BDNF mRNA in 1 of 8 patients

tested. Further to their cell line results with K252a, a

reduced number of cells in S phase were seen in primary
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samples treated with K252a. Although they showed

induction of low levels of apoptosis in normal resting

B-cells exposed to K252a, and slightly higher levels in

activated B-cells, they failed to examine K252a-induced

apoptosis in their patient samples [127].

Significance of neurotrophin signalling in B-cell
malignancies and future perspectives

Neurotrophin and neurotrophin receptor expression and

signalling is now known to occur in many cell types

beyond the nervous system. It constitutes part of the pro-

survival mechanism of many cells, both transformed and

not. This signalling has been shown to be involved in many

cellular activities of normal B-cells, including, but not

limited to, proliferation, survival and maturation. Further

research has shown that neurotrophin signalling plays an

equally important role in B-cell malignancies. In particular,

expression of neurotrophins and their receptors is generally

upregulated on stress indicating a pro-survival response.

Knockdown of BDNF was shown to enhance apoptosis and

chemosensitivity in Burkitt’s lymphoma cell lines [130].

Similarly, BDNF protected MM cell lines from apoptosis

and chemotherapeutic agents [107, 129]. Trk inhibition

induced apoptosis in an activated B-cell DLBCL cell line

[127], the subtype known to have the worse prognosis.

These studies indicate potential value for neurotrophin-

targeting as either a mono- or an adjuvant therapy in these

diseases. As well as the potential for inhibition of sig-

nalling by mature neurotrophins, enhanced pro-

neurotrophin signalling through sortilin could be a poten-

tial new avenue of therapy. In combination with Bcl-2

inhibition, pro-neurotrophins could lead to significant

levels of apoptosis in these malignancies. Neurotrophins

are also known to be expressed and secreted by cells of the

microenvironment, such as bone marrow stromal cells

[131, 132]. Targeting neurotrophins could significantly

decrease the proliferative and pro-survival effects of the

microenvironment as well as affecting the B-cells directly.
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