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Abstract There has long been discussion regarding the

positive effects of physical exercise on brain activity.

However, physical exercise has only recently begun to

receive the attention of the scientific community, with

major interest in its effects on the cognitive functions,

spatial learning and memory, as a non-drug method of

maintaining brain health and treating neurodegenerative

and/or psychiatric conditions. In humans, several studies

have shown the beneficial effects of aerobic and resistance

exercises in adult and geriatric populations. More recently,

studies employing animal models have attempted to elu-

cidate the mechanisms underlying neuroplasticity related to

physical exercise-induced spatial learning and memory

improvement, even under neurodegenerative conditions. In

an attempt to clarify these issues, the present review aims

to discuss the role of physical exercise in the improvement

of spatial learning and memory and the cellular and

molecular mechanisms involved in neuroplasticity.
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Introduction

Higher organisms have an exceptional ability to adapt to

the environment using modifications in behavior resulting

from new learning and past experiences. This ability, called

memory, and the process of acquiring new information,

called learning, became vital throughout species evolution.

There are distinct types of memory, which can be briefly

classified in accordance with either retention time (short-

and long-term memories) or the nature of the memory

(working memory and declarative or non-declarative

memories). Over the decades, our knowledge regarding the

neuronal and molecular basis of memory has advanced

greatly. Such knowledge has made it possible to understand

future therapies for neurodegenerative diseases that affect

learning and memory and the cognitive decline related to

aging in humans. Several conditions may influence the

consolidation process and memory retention, modulating

their outcomes as attention, mood, the sleep–wake cycle

and physical exercise.

A large amount of data has suggested that physical

exercise can reduce the risk for cardiovascular diseases,

obesity, type 2 diabetes, cognitive decline and other dis-

eases and chronic conditions [1]. To improve health, the

American College of Sports and Exercise recommends the

practice of aerobic and resistance exercises most days of

each week. Studies on these types of physical exercise

(aerobic and resistance) and their relationship to cerebral

health have been gaining the attention of the scientific

community. In fact, evidence showing the benefits of

practicing physical exercise for health, regardless of age,
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has grown in recent years [2]. In addition, majority of

evidence has indicated that physical exercise can be an

efficient way of preserving brain health and cognitive

function under normal or disease conditions, even pro-

tecting against cognitive decline and neurodegenerative

diseases [3, 4]. Recent studies have linked physical exer-

cise to spatial learning and memory, which critically rely

on the hippocampus. For instance, a number of studies

have detected an association between cardiovascular con-

ditioning and performance on relational binding [5, 6]. In

another study, a positive association between physical

exercise and performance in the Virtual Morris Water

Maze task was reported in adolescents. Moreover, these

studies have also reported a positive association between

associative memory and hippocampal volume [6, 7]. Cas-

silhas et al. have found that physical exercises (both

aerobic and resistance) were able to improve spatial

learning and memory both humans [8] and rodents [9].

Despite the quantity of literature suggesting the beneficial

effects of physical exercise on the brain, only a few studies

have specifically targeted the effects of aerobic and resis-

tance physical exercise on spatial learning and memory and

the cellular and molecular mechanisms underlying such

effects. The present review aims to discuss the role of

physical exercise in the improvement of spatial learning

and memory and the cellular and molecular mechanisms

involved.

Spatial learning and memory, the hippocampus
and physical exercise

In past years, the scientific community believed that the

mammalian central nervous system (CNS) became struc-

turally stable soon after birth and that only a few

modifications could occur throughout life. As techniques

improved over the decades, this paradigm began to change.

Currently, it is believed that the mammalian brain exhibits

persistent plasticity throughout all stages of life [10].

Neuronal plasticity allows the CNS to learn new skills, to

consolidate and retrieve memories, to reorganize neuronal

networks in response to environmental stimuli and to

recover after lesions [11]. Neuronal plasticity may occur

using neurogenesis, cellular apoptosis, synaptic-dependent

activity and the reorganization of neuronal networks [12,

13]. Changes in the frequency of synaptic activation may

lead to an increase or decrease in the long-term efficiency

of these synapses through phenomena known as long-term

potentiation (LTP) and depression (LTD) [13]. Activity-

dependent alterations may occur at all excitatory synapses

where glutamate is the neurotransmitter and in some of the

inhibitory gamma-aminobutyric acid (GABA)ergic synap-

ses [13].

The hippocampus is a highly plastic region (even in

adulthood) located in the medial temporal lobe of the CNS

[10]. The hippocampus is also one of the most studied

neurological structures associated with spatial memory. In

addition, this region is central to declarative memory

consolidation [14]. Two main areas form the hippocampus:

the cornus ammonis (CA1, CA2, CA3) and the dentate

gyrus (DG) [15]. Each area exhibits neuroplasticity and

harbors specific cell types that may respond distinctly to

physical exercise, contributing separately to spatial learn-

ing and memory processes in the hippocampus [16]. The

DG is the only hippocampal region able to generate new

neurons; the DG can double or triple in size after physical

exercise in rodents [17, 18]. The DG and some areas of

CA3 are considered vital for the pattern of dissociation or

the differential storage of associations between stimuli and

experience [19]). In mice, it was verified that voluntary

exercise had better performance on pattern separation

capacity (measured on a touchscreen-based spatial dis-

crimination task) compared to sedentary animals; these

results suggested that the spatial discrimination improve-

ment was due to exercise-induced neurogenesis [20].

In health young adults, better performance was

demonstrated on visual pattern separation task for those

who were submitted to chronic aerobic exercise [21].

Cassilhas et al. reported short- and long-term spatial

memory improvements (among other cognitive functions)

in elderly subjects subjected to 6 months of resistance

training [8]. Using aerobic exercise, Erickson et al. [22]

demonstrated that short-term spatial memory improved

with greater cardiovascular conditioning. These results

were associated with an enlarged volume of the left hip-

pocampus that was proportional to the cognitive findings.

Measures of aerobic conditioning, cerebral flow, and

analogous paradigms for evaluating hippocampal function,

along with virtual navigation and pattern separation tasks,

may allow researchers to begin bridging studies in animal

and human models. Future studies should focus on exam-

ining the neuronal networks underlying spatial memory

and the effects of physical exercise throughout life in dif-

ferent species.

Physical exercise-induced improvements
in learning and memory: the role of neurotrophins

Various events, such as physical exercise, may induce

hippocampal plasticity [11]. Evidence has demonstrated

that both forced (treadmill) and non-forced (activity wheel)

physical exercise increase hippocampal neurogenesis, cell

proliferation [23–25] and dendritic branching [26, 27].

Modulation of the release and utilization of neurotrans-

mitters, such as monoamines [3, 28], may also be related to
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physical exercise-induced neuroplasticity. Other possible

mechanisms include the neurotrophic action of brain-

derived neurotrophic factor (BDNF) [25, 29, 30] and

growth factors that can act in the CNS, such as insulin-like

growth factor-1 (IGF-1) [31, 32].

BDNF is one of the major modulators of brain plasticity

[33, 34]. Apart from its action on the CNS, BDNF may also

influence peripheral systems, such as reduced food intake,

increased glucose oxidation rate, decreased blood glucose

level and increased insulin sensitivity [35, 36]. Together,

this evidence indicates that BDNF is not only critical for

the nervous system but also interconnects central and

peripheral processes related to metabolism regulation and

homeostasis [11]. Thus, it is proposed that peripheral levels

of this neurotrophin are associated with cognition, meta-

bolic diseases and psychiatric disorders [37–40].

BDNF cellular signaling is triggered by the activation of

the tropomyosin-related kinase B (TrKB) receptor, a

member of the tyrosine kinase receptor family [41]. The

interaction of BDNF with the receptor leads to phospho-

rylation of the tyrosine residues in the tyrosine kinase

domain, facilitating adaptor protein binding. For example,

phosphorylation of the tyrosine domain at position 515

activates Shc or FRS2 adaptor molecules that may compete

for binding at this site [41]. Subsequently, these adaptor

molecules activate the Ras-protein kinase pathway via Ras-

mitogen-activated protein kinase (Ras-MAPK), thus pro-

moting neuronal differentiation and proliferation [41].

Alternatively, TrKB phosphorylation may activate the

phosphoinositide 3-kinase (PI3K) pathway and stimulate

neuronal proliferation and survival [41]. Phosphorylation at

position 816 of the C-terminal portion leads to activation of

phospholipase Cc (PLCc), which induces the production of

inositol-1,4,5-trisphosphate Ins(1,4,5P3) and diacylglyc-

erol (DAG) [41]. DAG stimulates protein kinase C (PKC)

isoforms, and Ins(1,4,5P3) leads to Ca2? release and sub-

sequent activation of Ca2?/calmodulin-dependent protein

kinases (CaMKII, CaMKK and CAMKIV) [41]. These

proteins in turn activate cyclic AMP response element-

binding protein (CREB), which can lead to LTP and/or

other types of synaptic plasticity [41]. PI3K may also

activate the serine–threonine kinase (AKT) pathway, pro-

moting cellular survival [41]. In addition to TrKB, pro-

BDNF (an immature form of the neurotrophin) may bind to

another type of receptor, the pan-neurotrophin receptor

(P75ntr). Such binding triggers a signaling cascade that

leads to caspase 3 activation-mediated apoptosis [42]. Cell

death induced by pro-BDNF/p75ntr signaling occurs only

when the BDNF/TrkB pathway is inhibited or absent [43].

In 1995, Neeper et al. [44] reported that voluntary

exercise on the activity wheel for 7 days could enhance

BDNF gene expression in the hippocampus and the caudal

region of the neocortex in rodents. This study was

pioneering in demonstrating that physical exercise could

influence neurotrophic factors. Among all of the neu-

rotrophins, BDNF seems to be the most sensitive to the

effects of physical exercise; however, other trophic factors

may be influenced by physical exercise, even if only

transiently [45–48], such as nerve growth factor (NGF),

vascular endothelial growth factor (VEGF) and fibroblast

growth factor 2 (FGF-2). Vayman et al. [49] have shown

that blocking TrKB in the brain abolished the effects of

physical exercise on the activity wheel for 5 days on spatial

memory, synapsin-1, CaMKII and MAPKII. Similar results

have been obtained in other studies that subjected mice and

rats to aerobic physical exercise [29, 50–52]. Some studies

have suggested that peripheral BDNF can be enhanced by

aerobic physical exercise in humans [47, 48, 53, 54].

IGF-1 and molecular aspects on learning
and memory

IGFs are peptides that can be stimulated by growth hor-

mone (GH) or act independent of GH. These peptides may

promote growth, differentiation and cellular survival [55].

Among these peptides, IGF-1 can be highlighted due to its

central and peripheral physiological effects [56]. The

expression of IGF-1 mRNA occurs in specific regions of

the adult brain, such as the hippocampus [57]; however,

insulin-like growth factor 1 receptor (IGF-1R), a tyrosine

kinase type receptor, is distributed throughout the CNS

[58]. IGF-1/IGF-1R activation is vital for various biologi-

cal processes because it is the main antiapoptotic pathway,

inhibiting the death of neurons, fibroblasts and other cells

[59, 60]. When these peptides are phosphorylated, the IGF-

1R intracellular beta domains interact with adaptor proteins

called insulin receptor substrates (IRSs), activating the

Ras-MAPK pathway [61]. There are three isoforms of IRSs

(IRS1, IRS2 and IRS4). All of the isoforms are found in the

CNS and may have distinct roles in neuronal function and

development [62]. IRS binding activates the PI3K/AKT

[61] pathway. AKT mediates cellular survival by inhibiting

glycogen synthase kinase 3 (GSK3) and consequently

preventing apoptotic signaling. AKT can also stimulate

master regulator of muscle differentiation (MyoD), which

controls cellular differentiation, especially in striated

skeletal muscle [63]. MyoD is a mammalian target of

rapamycin (mTOR) and P70 S6K, proteins that can trigger

protein synthesis during cellular proliferation and hyper-

trophy [61, 63].

IGF-1 can be considered a molecule that acts as a

neurotrophic factor in the CNS, as it is responsible for the

maintenance of brain cells and is involved in differentia-

tion, proliferation, synaptic plasticity and neurogenesis.

IGF-1 is directly and indirectly involved in spatial learning
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and memory [31, 61, 62, 64]. Because of the involvement

of IGF-1 in neurogenesis, studies that aimed to correlate its

peripheral levels with cognitive function were conducted in

humans. Positive correlations have been reported between

increased blood IGF-1 levels and cognitive function

improvement [65–71].

Physical exercise-induced improvements
in learning and memory: the role of synaptic
plasticity

Improvements in spatial learning and memory are closely

related to adaptations at the synapses of hippocampal

neurons or in neurons that make synapses with hip-

pocampal neurons. LTP was observed in the young rodent

DG after running. Similarly, a reduction in aging-associ-

ated LTP loss was detected in running old rodents [72].

Exercise-induced LTP seems to be related to neurogenesis

observed after physical exercise. In accordance with LTP

induction, upregulated N-methyl D-aspartate receptor sub-

type 2B (NMDAR2B) gene expression in the DG has been

reported in running rats [73]. Previous studies demon-

strated that this receptor is able to increase the capacity of

cells to exhibit LTP. In addition, the expression of the

glutamate receptor 5 (GluR5)-linked gene is also higher in

the DG of running rats.

LTD is considered a model of forgetting due to its

property of reducing the synapse’s capacity to potentiate

responses [74]. This form of plasticity is associated with

spatial memory improvement. Although physical exercise

does not seem to alter LTD, it has been reported that LTD

induction depends on the activation of NR2A-containing

NMDA receptors in running (but not sedentary) mice.

These data suggest that physical exercise may modify the

role of NMDA receptor subunits in LTD [75].

After physical exercise, considering both LTP and LTD,

there are changes in synapse morphology (spine density) in

the entorhinal cortex, CA1 pyramidal cells and the DG

[26]. Granule cells from the DG of runners exhibited

increased length, spine density, volume and complexity of

their dendrites. Synaptic density of new neurons was not

significantly different in young and old mice [76].

Although there is no method to directly evaluate

synaptic activity in humans, indirect measures of acquisi-

tion between neuronal populations can be employed as

tools for measuring synaptic activity, such as the physio-

logical approach called paired associative stimulation

(PAS) [77]. Elderly subjects displayed reduced responses

following paired-pulse training relative to younger sub-

jects. Additionally, there is an aging-dependent decrease in

synaptic plasticity [78].

BDNF, IGF-1, spatial learning and memory
and physical exercise

Studies using humans or animal models suggest relation-

ships between memory, physical exercise and IGF-1 and

BDNF pathways [79, 80]. Evidence has shown that rodents

subjected to physical exercise on the treadmill or activity

wheel performed better in the Morris water maze (a task

that evaluates hippocampus-dependent spatial memory)

and had higher levels of BDNF in the hippocampus,

cerebellum and spinal cord [48, 81].

Ang et al. [82] subjected rodents to aerobic physical

exercise on the treadmill for 12 weeks. After training,

running rats performed better than the sedentary group in

the Morris water maze, indicating improvements in spatial

learning and memory among rats forced to perform aerobic

training on the treadmill.

Ding et al. [31] subjected rats to 5 days of voluntary

physical exercise. Afterward, they observed higher levels

of hippocampal BDNF and IGF-1 in the rats. In the same

study, a group of rats was trained, but hippocampal IGF-1R

was blocked. The authors demonstrated that IGF-1R is

critical for memory formation because blocking it com-

promised performance in the Morris water maze relative to

mice that exercised and did not have their receptors

blocked.

There is still a lack of evidence regarding the effects of

resistance training on BDNF levels. In humans, data are

restricted to evaluations at the systemic level. In recent

studies, Correia et al. [83] and Goekint et al. [84] failed to

find alterations in peripheral BDNF levels among individ-

uals exposed to a single session of resistance training.

Additionally, studies have shown that resistance training

increases blood levels of IGF-1 [8, 85–87]. In contrast,

aerobic physical exercise seems to have little or no influ-

ence on the blood levels of this growth factor [85, 88–90].

Peripheral IGF-1 is involved in processes occurring in the

CNS [32] because IGF-1 is transported across the blood–

brain barrier, activating its signaling cascade via the hip-

pocampal IGF-1R receptor [31, 80, 91]. Such effects can be

abolished by peripheral blockade of IGF-1 [31, 32, 80].

Neurogenesis, learning and memory

Neurogenesis in the adult hippocampal DG is well docu-

mented, and it seems to contribute to spatial learning and

memory [92]. Although aging or stress may hamper neu-

rogenesis [93], physical exercise seems to potentiate new

neuronal generation [17, 24, 25]. In spite of the relation-

ships among neurogenesis, physical exercise and memory,

the mechanisms underlying exercise-elicited neurogenesis
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are still unclear. Molecules such as BDNF, VEGF and IGF-

1 have been proposed to promote exercise-induced neuro-

genesis [94]. Additionally, immunological cells (e.g.,

macrophages and microglia) are reputed to induce this

process [95, 96], as there is evidence that neurogenesis was

abolished after local ablation of microglia [97].

Neurotransmitter systems, such as the cannabinoid sys-

tem, have been associated with exercise-elicited

neurogenesis. In fact, blockade of the cannabinoid system

abolished new neuronal formation in the DG [98]. Tryp-

tophan hydroxylase (TPH), an enzyme involved in

synthesis in the serotonergic system, may be relevant for

cell proliferation but not neurogenesis. Indeed, although

(TPH)2-deficient mice did not display altered hippocampal

neurogenesis, they presented worse activity-induced pro-

liferation [99]. Antidepressant drugs, such as reuptake

inhibitors, can also induce neurogenesis in the DG at a

lesser intensity compared to physical exercise [99]. The

positive effects of physical exercise are found in animal

models of aging, Alzheimer’s disease (AD) and Down

syndrome [100–102]. These findings corroborate clinical

data describing exercise-induced cognitive improvement in

normal subjects or with dementia [8, 103, 104].

A study using birds have demonstrated that hipocampal

neurogenesis was involved with learning. In rats, it was

noted a relationship between hippocampus-dependent

learning and the neurogenesis, suggesting a function for

these new neurons in certain types of learning and memory.

The DG functions as a pattern separator stems from early

computational modelling work, with CA3 serving as epi-

sodic memories storage [19]. For this reason, it has been

investigated a specific role for neurogenesis in pattern

separation. Using knock down adult mice, was found

specific impairments in spatial discrimination on a spatial

navigation radial arm maze task and a spatial, but non-

navigable, task in the mouse touch screen. Mice with

ablated neurogenesis were impaired when stimuli were

presented with little spatial separation, but not when

stimuli were more widely separated in space [105]. In other

study, using the same touchscreen task, voluntary exercise

enhanced performance on pattern separation (only for the

more difficult condition). In addition, aged mice had

impaired pattern separation and low neurogenesis, showing

that exercise alone does not induce improvements in pat-

tern separation [20].

So, it is suggested that neurogenesis is involved to

classical learning and memory tests and can be influenced

by some factors such age of neurons, phase of memory

addressed and the type of chosen test (for reviews, see

[106, 107]). Although there is much evidence to demon-

strate that hipocampal neurogenesis can be increased by

physical exercise, remains unclear the link and causation of

this phenomenon. The neurotrophic factor and/or plastic-

related factor such as BDNF, increased by exercise, may

acting as a causal determinant of both neurogenesis and

learning and memory [106].

Angiogenesis and learning and memory

Physical exercise, similarly to injury, is a compelling

stimulant of new vessels (angiogenesis) during develop-

ment or in the adult brain [25, 45, 108]. Apart from

stimulating angiogenesis and endothelial cell proliferation,

physical exercise may robustly maintain these effects for

long periods [109]. These effects appear to be mediated by

IGF-1, BDNF and VEGF. Previous studies have found that

resistance training and aerobic exercise may enhance hip-

pocampal levels of IGF-1 and BDNF [9]. In addition,

exercise is also able to increase the expression levels of

IGF-1 [31, 110].

Using arterial spin labeling (ASL) with MRI in humans,

an increase in the cortical hippocampal flow was verified in

elderly individuals exposed to 4 months of aerobic exercise

[111]. Cerebral blood volume (CBV) in the DG was also

increased in young subjects after 3 months of aerobic

training. In addition, correlations between cognitive

improvement, aerobic training and CBV were also found

[112]. Physical conditioning was positively associated with

the number of small vessels (radius[0.5 mm) in elderly

individuals subjected to magnetic resonance angiography

(MRA), indicating angiogenesis. In contrast, sedentary

individuals displayed increased numbers of vessel tortuosity

(changes in direction) in both brain hemispheres [113].

Future directions and conclusions

Herein, we reiterated that both animal and human studies

have reported positive effects of physical exercise on spatial

learning andmemory.When physical exercise is categorized

according to type, such as aerobic and resistance training, it

should be noted that muchwork remains to clarify the effects

on hippocampal-dependent memory. The vast majority of

studies have systematically approached the positive effects

of aerobic exercise. However, studies tailored to investigate

the effects of resistance exercise (such as the vertical ladder

apparatus) are still needed.

Regarding the mechanisms underlying the positive

effects on exercise-elicited spatial learning and memory,

hippocampal plasticity can be emphasized as critical,

inviting further investigation. Studies have focused on

trophic mechanisms (BDNF, IGF-1 and VEGF), synaptic

activity improvement (LTD and LTD), neurogenesis and

angiogenesis. Although there are different mechanisms

behind positive effects of exercise on brain health, it should
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be noted that more studies need to be conducted to clarify

if trophic activation would be a causation of enhancement

of hipocampal activity and learning and memory, or just a

related phenomenon. It is appear that BDNF could be

crucial for exercise effects on learning memory improve-

ment. Previous studies verified that voluntary exercise

enhanced spatial learning and Memory and was associated

with an increase in the mRNA levels of BDNF and TrkB

receptor, suggesting that exercise predominately employed

the action of BDNF to these improvements [114]. Thus, the

exercise may use the BDNF to exert changes in synaptic

plasticity and justify the improvement on learning and

memory [52]. In addition to that, Studies also proposed that

BDNF is also required for pattern separation, having a link

between exercise, neurogenesis and learning and memory,

in which the BDNF could be a causal determinant of both

neurogenesis and learning and memory [106, 107].

Knowing that exercise use BDNF to exert changes in

brain plasticity is encouraging for developing therapies to

treating cognitive disturbances. This result also brings

insight critical for investigations of exercise and causal

effects of IGF-1 and VEGF on learning and memory and

neurogenesis. In this scenario, animal models for patho-

logical conditions and aging are interesting tools to explore

and generalize the effects of physical exercise on memory

and neuroplasticity in distinct populations. Even though

animal models aim to shed light on neurobiological

mechanisms involving memory and physical exercise,

studies approaching peripheral biomarkers related to CNS

activity are vital for considering the possible use in

humans. Among these biomarkers, circulating growth

factors, such as IGF-1 and BDNF, which possess central

and peripheral actions, have been associated with cogni-

tion. Indeed, these factors have been related to altered

mood, as observed in neurological and psychiatric

disorders.
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