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Abstract Myofibroblasts are characterized by their

expression of a-smooth muscle actin, their enhanced con-

tractility when compared to normal fibroblasts and their

increased synthetic activity of extracellular matrix proteins.

Myofibroblasts play an important role in normal tissue repair

processes, particularly in the skin where they were first

described. During normal tissue repair, they appear tran-

siently and are then lost via apoptosis. However, the chronic

presence and continued activity of myofibroblasts charac-

terize many fibrotic pathologies, in the skin and internal

organs including the liver, kidney and lung. More recently, it

has become clear that myofibroblasts also play a role in

many types of cancer as stromal or cancer-associated

myofibroblast. The fact that myofibroblasts are now known

to be key players in many pathologies makes understanding

their functions, origin and the regulation of their differenti-

ation important to enable them to be regulated in normal

physiology and targeted in fibrosis, scarring and cancer.
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Abbreviations

ECM Extracellular matrix

SM Smooth muscle

EMT Epithelial mesenchymal transition

HSC Hepatic stellate cell

TGF Transforming growth factor

CTGF/CCN2 Connective tissue growth factor

PDGF Platelet-derived growth factor

ROS Reactive oxygen species

NOX NADPH oxidase

MMP Matrix metalloproteinase

LAP Latency-associated peptide

CGRP Calcitonin gene-related peptide

Introduction

The myofibroblast is a cell that appears during physiolog-

ical and pathological states and is responsible for both

tissue contraction and the secretion of extracellular matrix

(ECM) during wound healing and in numerous pathologies

that are characterized by fibrosis. Recruitment and activa-

tion of myofibroblasts and the control of their

differentiation, proliferation and death is thus of great

importance and central to our understanding of the physi-

ology of normal tissue repair [1] and the pathophysiology

of the response to injury and subsequent fibrosis in organs

such as the skin [2], liver [3], lung [4], kidney [5], heart [6],

skeletal muscle [7] and systemic sclerosis [8]. More

recently, it has also become apparent that myofibroblasts

play an important role as cancer-associated (myo)fibrob-

lasts in the stromal reaction present in several types of

tumours where their presence is also linked to poor prog-

nosis [9–11]. Therefore, understanding what regulates their
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behaviour will hopefully provide important clues to aid in

the discovery of agents with anti-fibrotic and potentially

anti-cancer properties.

The first description of myofibroblasts and the coining

of the name come from studies performed on wound repair

in the skin. The phenomenon of wound contraction has

been recognized now for over 100 years [12], though our

understanding of the cell responsible for this contraction

really only began in the 1950s. Publications from the 1950s

speculated on the nature of the driving force behind wound

contraction and variously attributed this to either the ECM

via shortening of collagen fibres, to cells at the wound

margin or to cells within the granulation tissue itself [13,

14, 15]. Later, it became clear that the source of the con-

tractile force was from cells within the granulation tissue

and specifically a wound fibroblast with a distinct pheno-

type compared to that of normal dermal fibroblasts. This

cell was then named the myofibroblast in the early 1970s

[16].

Early publications used morphological criteria to char-

acterize the myofibroblasts as different from normal,

quiescent dermal fibroblasts based on their smooth muscle

(SM) like accumulation of microfilament bundles which

were assumed to be contractile while later publications

sought to characterize cells based on biochemical charac-

teristics as discussed below.

Morphological and biochemical characteristics

of myofibroblast phenotype

The earliest descriptions of myofibroblasts identified

ultrastructural specializations which showed some simi-

larity to those of SM cells, in particular bundles of

cytoplasmic microfilaments [16]. Further ultrastructural

and molecular markers that define myofibroblasts were

identified later and include cell–cell and cell–matrix

adhesions (for review see [17], stress fibres and a-SM
actin expression [18] (Fig. 1). In vivo and in vitro,

fibroblasts are present that have prominent bundles of

microfilaments in their cytoplasm known as stress fibres,

but do not possess a-SM-positive microfilament bundles.

These fibroblasts can also be shown in vitro to secrete the

splice variant form of fibronectin, ED-A fibronectin. Such

cells, which have been termed proto-myofibroblasts exert

tractional force in connective tissue and may be induced

by mechanical stress, but undergo full differentiation into

myofibroblasts only when stimulated by TGF-b. Fully

differentiated myofibroblasts exert increased force due to

contraction [19, 20]. More recently, expression of the

cell–cell adhesion protein OB-cadherin has been shown

in vivo and in vitro on myofibroblasts [21]. The lack of

expression of late differentiation markers of SM cells has

also sometimes been used to define myofibroblasts,

though this is not without its problems. SM cells express

SM myosin heavy chain, smoothelin and h-caldesmon

[22–24] and in general myofibroblasts are negative for

these markers. The intermediate filament protein desmin,

which is normally expressed in muscle cells, has also been

used as a negative marker of myofibroblasts, since under

normal circumstances myofibroblasts present during

wound healing are desmin-negative. However, in some

pathological states of scarring, myofibroblasts have been

found to be desmin-positive [25]. Other markers that have

been reported to be specific for myofibroblasts are less

consistent in their staining, for example, the use of the

fibroblast marker FSP-1 (S100A4), though it has been

used extensively in studies of renal fibrosis [26]. There-

fore, it can be difficult in some situations to distinguish

myofibroblasts from other mesenchymal cells that possess

similar cytoskeletal features, particularly SM cells and

pericytes.

Fig. 1 Human hypertrophic scar tissue stained with a-SM actin

antibody. Myofibroblasts persist in nodules in the dermis shown in

a. The epidermis is indicated by E. Small vessels stain positively for

a-SM actin (short arrows), while myofibroblasts are also positive

(long arrow). In b myofibroblasts are seen as long spindle-shaped

cells, often aligned in groups (long arrow), while small vessels are

also a-SM actin-positive (short arrow). Bar 100 lm
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Cellular origins of myofibroblasts

The origin of myofibroblasts has also been a question that

has formed the basis for a considerable amount of research.

In most organs that show pathological fibrosis after injury

there is a local population of fibroblastic cells that can be

drawn on to recruit cells which then differentiate into

myofibroblasts. This is particularly so in the skin. In other

organs, a variety of cell types may act as sources for

recruitment and differentiation of myofibroblasts. In the

liver, both portal fibroblasts and hepatic stellate cells can

generate myofibroblasts, depending on the site and type of

injury that results in myofibroblast recruitment and acti-

vation. In the kidney, interstitial fibroblasts are a major

source of myofibroblast recruitment. However, other

mechanisms have been invoked, specifically epithelial

mesenchymal transition (EMT), particularly in the kidney

where tubular epithelial cells may, in response to injury

and growth factor stimulation, undergo EMT and may be a

source of myofibroblasts [27, 28]. In lung and cardiac

fibrosis, it has also been suggested that EMT may con-

tribute to the population of myofibroblasts [29]. In studies

using mouse models of renal fibrosis, some of the myofi-

broblasts present in the fibrotic areas were shown to derive

from tubular epithelial cells via EMT [30]. However, it

remains unclear how important EMT is as a source of

myofibroblasts in human pathologies and the proportion

derived from local EMT of epithelial cells (or endothelial

mesenchymal transition in some cases) may be relatively

low. In tumours, the contribution of epithelial cells to the

pool of cancer-associated stromal myofibroblasts via EMT

may be considerably more significant. In the liver, cell fate

studies have suggested that most of the myofibroblasts that

appear in the carbon tetrachloride model of liver fibrosis

are derived from hepatic stellate cells (HSC) and HSC can

be shown to quickly convert from a-SM-negative cells in

normal liver to a-SM-positive cells after injury. Though

portal fibroblasts would appear to be a likely source of

myofibroblasts in fibrotic liver in the case of blockage of

the bile duct (cholestasis), in fact cell fate studies again

suggest the majority of myofibroblasts in this case again

derive from HSC [31]. Lastly, pericytes have been sug-

gested in many cases to be a possible source of

myofibroblasts in a number of models of organ fibrosis and

cell fate studies in the kidney, for example, have shown

pericytes to be an important source of myofibroblasts, and

more important than epithelial cell conversion to myofi-

broblasts via EMT [7, 32].

Regulation of myofibroblast phenotype

The most powerful regulator of myofibroblast phenotype is

transforming growth factor (TGF)-b1 which under the right

conditions stimulates full conversion of fibroblasts from

quiescent a-SM-negative fibroblast or proto-myofibroblast

to a-SM-positive myofibroblast [33, 34]. The presence of a

splice variant of fibronectin, ED-A fibronectin is necessary

for full differentiation into myofibroblasts and the ED-A

splice variant which is not expressed by normal endothelial

cells or quiescent fibroblasts is also correlated with

increased fibrosis [35]. Stimulation of fibroblasts with

TGF-b1 induces the expression of a-SM actin and greatly

increases collagen synthesis and contractile force. Growth

factors that are involved in tissue repair or induced by

tissue injury and inflammation have also been shown to

have stimulatory effects on myofibroblast proliferation and

differentiation, with connective tissue growth factor

(CTGF/CCN2) capable of increasing myofibroblast num-

ber and matrix deposition, though the presence of TGF-b
may be required for full differentiation to a-SM-positive

myofibroblasts. Indeed, CTGF/CCN2 may potentiate the

effects of TGF-b but be incapable of inducing myofi-

broblast differentiation on its own [36]. Platelet-derived

growth factor (PDGF) is mitogenic for myofibroblasts but

does not seem able to induce myofibroblast phenotype on

its own either in vivo or in vitro [37, 38]. Blockade of

PDGF receptors is anti-fibrotic in the kidney [39, 40] and

lung [41] but this relates presumably more to inhibition of

proliferation than to blockade of differentiation. PDGF also

appears to be necessary for both appearance of pericytes

and also the presence of proto-myofibroblasts, giving

inhibition of PDGF the potential to reduce myofibroblast

appearance via recruitment of pericytes or by blockade of

fibroblast to proto-myofibroblast differentiation, thus

reducing the population of cells that can undergo full dif-

ferentiation to myofibroblasts [42, 43]. Both endothelin-1

and angiotensin II have been shown to increase myofi-

broblast activity and differentiation, probably by induction

of TGF-b or by acting in synergy with TGF-b [44, 45].

Similarly, granulocyte macrophage colony stimulating

factor has been shown to increase myofibroblasts in vivo,

but this is likely due to recruitment and activation of

macrophages and again through a concomitant increase in

TGF-b availability [38]. The enzyme thrombin can activate

myofibroblast phenotype via cleavage of the protease

activated receptor. Reactive oxygen species (ROS) have

been shown to be a stimulus for myofibroblast activation,

with production of ROS through NADPH oxidase (NOX)4,

the predominant NOX isoform expressed in myofibrob-

lasts. NOX involvement in myofibroblast activation has

been shown in renal, cardiac and lung fibrosis models [46–

48]. In vitro, fibroblasts exposed to endoplasmic reticulum

stress have recently been shown to increase expression of

a-SM actin [49]. It is not clear yet whether this mechanism

is active in vivo. Lastly, microRNAs (miRNAs) have also

been shown to be involved in myofibroblast induction in
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fibrosis and cancer. In particular, miR-21 has been shown

to be highly expressed in lung fibrosis and in breast cancer

[50, 51]. miR-21 expression appears to correlate with high

levels of TGF-b stimulation of myofibroblast phenotype

and it has recently been reported that the mechanism for

this may be via effects on TGF-b inhibitory pathways, in

particular the (inhibitory) Smad7 and phosphatase and

tensin homolog [52]. Additionally, other miRNAs may be

down-regulated during fibrosis as has been shown for miR-

29 in liver fibrosis models, where miR-29 is expressed in

hepatic stellate cells but down-regulated during the

development of fibrosis [53]. The developing understand-

ing of the role of miRNAs in regulating fibrosis via effects

on myofibroblast differentiation and activity makes them a

tempting therapeutic target for inhibiting fibrosis.

Effects of mechanical tension

Fibroblasts and myofibroblasts, because of their contractile

properties and close relationship with the ECM, can modify

their activity depending on the messages received from the

mechanical environment [54]. For example, features of

myofibroblastic differentiation, such as stress fibres, ED-A

fibronectin or a-SM actin expression, appear earlier in

granulation tissue that is subjected to an increase in

mechanical tension by splinting a full-thickness wound

with a plastic frame as compared to normally healing

wounds [55]. In aged skin, it is suggested that ‘old’

fibroblasts have an age-dependent reduction in the capacity

for collagen synthesis and therefore simultaneously expe-

rience a loss of mechanical stimulation resulting from the

decrease in intact collagen fibres and consequent decreased

stiffness of the ECM [56, 57].

Fibroblasts cultured on substrates of variable stiffness

have also been shown to possess different phenotypes [58].

Cultured fibroblasts do not express stress fibres on soft or

compliant surfaces; however, when the stiffness of the

substrate increases, a sudden change in cell morphology

occurs and stress fibres appear [59]. Other mechanical

signals such as shear forces exerted by flow of fluids are

able to induce TGF-b1 production and thus differentiation

of fibroblasts cultured in collagen gels in the absence of

other exterior stimuli such as cytokine treatment [60]. In

addition, pre-straining the ECM regulates the bioavail-

ability of TGF-b1 [61]. Thus, the stiff matrix found either

in 3D cultures using stiffer (higher concentration) collagen

matrix or in vivo in granulation tissue and fibrotic tissues is

able to induce full myofibroblast differentiation in concert

with TGF-b1 stimulation [62].

The role of mechanical stress in stimulating myofi-

broblast activity has also been shown in experiments where

dermal wounds in mice are mechanically stressed by

stretching or splinting the wound; this mechanical load

increased myofibroblast activity resulting in increased scar

formation, and mimics to some extent the scarring seen in

human hypertrophic scars [63]. Conversely, releasing

mechanical stress or reducing stiffness has been shown to

induce both apoptosis and a reduction in a-SM actin

expression and contractility in myofibroblasts [64, 65].

In cancer biology, it is well known that malignant

tumours are often stiffer than normal tissue and benign

tumours and data suggest that the ECM stiffening correlates

with experimental mammary malignancy and likely drives

tumour invasion and metastasis. For example, in breast

cancer, progression and aggressiveness, collagen lineariza-

tion and stromal stiffening are all linked and may result from

chronic activation of inflammatory pathways and increased

TGF-b signalling [66]. Another potentially important dele-

terious effect of increased numbers of myofibroblasts in

tumour stroma is that they have been shown to secrete

proteins that increase matrix stiffness, for example, tenascins

[67], but also proteins that alter matrix compliance and in

addition stimulate cell proliferation and attachment via

integrin binding sites, as has been shown for the matricel-

lular protein periostin [68, 69]. Periostin has also been

shown to protect cells from apoptosis in a hypoxic envi-

ronment, as is often the case in tumours. Again, periostin is

induced by TGF-b, and may also play a role in establishing a

microenvironment that allows establishment of metastatic

tumours; the metastatic niche [70]. Thus, myofibroblasts in

the stroma of tumours become a target for therapy that might

reduce the progression and growth of primary tumours, but

also potentially inhibit spread to distant sites and establish-

ment of metastases (Fig. 2).

Both mechanical signalling and stress may modulate

myofibroblast differentiation via a number of pathways and

mechanisms. Stress may directly activate transcription of

the a-SM actin gene, since application of force across

integrin binding sites has been shown to up-regulate a-SM
actin promoter activity [71].

As mentioned above, mechanical force alone is not

generally sufficient to induce myofibroblast differentiation

and other factors are needed to act in concert, specifically

TGF-b1. Both mechanical signalling and TGF-b1 stimu-

lation increase collagen gene expression by fibroblasts,

emphasizing the role that these factors play in stimulating

the pro-fibrotic phenotype as is shown by activated

myofibroblasts. TGF-b1 also favours the deposition rather

than degradation of ECM proteins by up-regulating inhi-

bitors of matrix degradation including tissue inhibitor of

metalloproteinases while decreasing the expression of the

matrix metalloproteinases (MMP) themselves [72]. Stim-

ulation of myofibroblasts by TGF-b1 itself is also affected

by mechanical forces within the damaged or fibrotic tissue.

TGF-b1 released from a variety of inflammatory cells and

platelets in the microenvironment of damaged or fibrotic
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tissue is present in a latent form. Indeed, myofibroblasts

themselves release latent TGF-b1 complexed with latency-

associated peptide (LAP). Together with a binding protein,

TGF-b1 is bound to ECM proteins, providing a reservoir of

latent TGF-b1 that can be activated as healing and scar

formation progress [73, 74]. Latent TGF-b1 can be acti-

vated by proteases such as MMP-2 and MMP-9 and by

thrombospondin-1 [75, 76]. In addition, myofibroblasts

express integrins that can bind to the LAP and mechanical

stress applied to the integrins either through mechanical

stress on the matrix and/or via myofibroblast contraction

can effectively activate TGF-b1 without cleaving the LAP

and allow its binding to cell membrane receptors [77].

Thus, both increased mechanical stress and contraction can

further increase myofibroblast contractility and matrix

protein synthesis. Lastly, it has been shown in vitro that

fibroblasts with stress fibres present in their cytoplasm that

are a-SM negative can produce tractional forces sufficient

to result in contraction of free-floating collagen lattices, but

expression of a-SM actin increases contractile force. The

evidence that contractile forces can be generated in vivo by

fibroblasts that do not express a-SM actin is shown by a

recent publication where experimental wounds show some

degree of wound contraction in the absence of a-SM actin

in a-SM-actin-deficient mice [78].

Effect of innervation and mechanoreceptors

In this section, only skin innervation and its roles during

healing, particularly during granulation tissue formation

and myofibroblastic differentiation will be discussed.

Indeed, the role of innervation in organ repair is poorly

known. Sensory as well as autonomic (essentially sympa-

thetic) nerves are present within the skin and influence a

variety of physiological and pathophysiological cutaneous

functions [79]. In unstimulated nerves, neuromediators are

barely detectable within the skin tissues. Upon direct

stimulation by physical or chemical means, or during

pathological situations such as inflammation or trauma, a

significant increase in levels of neuromediators is observed.

Thus, mediators derived from sensory or autonomic nerves

may play an important regulatory role in the skin under

many physiological and pathophysiological conditions,

particularly during wound healing.

a b

c d

Fig. 2 Myofibroblasts are found in many pathological situations in

response to chronic injury or present in the stroma in and around

several types of tumour. Myofibroblasts can also be induced by injury

such as bile duct ligation or cholestasis in the liver (a). Stromal

staining of myofibroblasts (indicated by arrows) in tumours such as

colorectal cancer (b) and liver cancer (cholangiocarcinoma) (c). In
c the intimate relationship between tumour cells and myofibroblasts is

seen. In many cases, stromal staining of myofibroblasts is a marker of

poor prognosis. In addition to their contractile role, myofibroblasts

secrete ECM molecules that influence mechanical signalling and cell

adhesion. The matricellular protein periostin is secreted by myofi-

broblasts (positive staining indicated by arrows) and has been shown

to be important in tumour growth and in establishment of a metastatic

niche (d). Bar 100 lm
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Cutaneous sensory nerve fibres are endings of dorsal

root ganglia (DRG or spinal ganglia) neurons that carry

signals from sensory organs toward the appropriate inte-

gration centre of the brain via the spinal cord. In the skin,

autonomic nerve fibres almost completely derive from

sympathetic (cholinergic) neurons. The skin is a highly

sensitive organ which is densely innervated with different

types of nerve endings that are associated with specific

receptors, which discriminate between pain, thermal and

tactile sensations [80]. When deep skin damage occurs,

cutaneous nerves (sensory and sympathetic nerves) and

sensory receptors are destroyed while the sensory and

sympathetic neuron cell bodies persist in the ganglia along

the spinal cord (respectively, dorsal root ganglia and par-

avertebral sympathetic ganglia).

Mechanical stimuli are detected via mechanoreceptors

associated with sensory corpuscles through Ab fibres or

with Ad free nerve endings, temperature via the thermo-

receptors through Ad and C fibres, and pain via the noci-

ceptors through Ad and C fibres (for more details, see

review [79]).

Overall, little is known about the role of sensory and

autonomic fibres on myofibroblast differentiation and

activity. Neurotrophins such as nerve growth factor, neu-

rotrophin-3, brain-derived neurotrophic factor and their

receptors are expressed by keratinocytes and melanocytes

but also by fibroblasts and myofibroblasts, promoting their

proliferation and differentiation [81, 82]. As mentioned

above, MMPs secreted by different cells but particularly by

(myo)fibroblasts play a major role during the remodelling

of the granulation tissue and in scar tissue formation. A

recent study has shown that substance P, calcitonin gene-

related peptide (CGRP) and vasoactive intestinal peptide

can modulate MMP-2 and MMP-9 activities; these neu-

ropeptides also affect collagen I and collagen III

production during skin wound healing [83]. Thus, neu-

ropeptides such as substance P, CGRP and vasoactive

intestinal peptide could have effects on fibroblast to

myofibroblast differentiation via effects on both the

extracellular matrix composition and mechanical signalling

and also via modulation of MMPs and subsequent MMP

activation of latent TGF-b1.
Skin lesions and peripheral nerve damage cause resident

and infiltrating immune cells, and also the sensory nerve

terminals themselves, to release inflammatory mediators

including interleukin-1b, tumour necrosis factor-a, brady-
kinin, substance P, CGRP, nerve growth factor, and

prostaglandins, contributing to the ‘‘inflammatory soup’’

[84].

Substance P induces inflammation and mediates angio-

genesis, keratinocyte proliferation, and fibrogenesis.

Topical application of substance P enhances healing of

open excisional wounds in rats [85]. Interestingly, altered

substance P levels may contribute to impaired cutaneous

healing responses associated with diabetes mellitus or

hypertrophic scar formation. In aged rats, application of

topical substance P and CGRP were shown to improve

wound healing and denervation using capsaicin was shown

to inhibit healing [86]. Topical application of exogenous

substance P enhances wound closure kinetics in strepto-

zotocin-induced diabetic rats [87] suggesting that diabetic

wounds have insufficient substance P levels to promote a

neuroinflammatory response necessary for normal wound

repair. Conversely, increased nerve numbers and neu-

ropeptide levels with reduced neutral endopeptidase (a

membrane-bound metallopeptidase that degrades substance

P at the cell membrane) levels in human and porcine

hypertrophic scar samples suggest that excessive neu-

ropeptide activity induces exuberant inflammation and

ECM deposition with a persistent activation of myofi-

broblasts in hypertrophic scars [88, 89]. Further to this,

Chéret et al. [83] report that the adhesion of human dermal

fibroblasts and their differentiation into myofibroblasts are

promoted after incubation with vasoactive intestinal pep-

tide, CGRP, and substance P.

It has been shown that wound myofibroblasts may be a

target of peripheral nerves, and that delayed wound closure

in mature rats is associated with deficiencies in both

myofibroblasts and innervation [90]. More recently, Fiji-

wara et al. demonstrated that direct contact of fibroblasts

with neuronal processes is important for differentiation into

myofibroblasts and induction of collagen gel contraction,

important processes to promote wound healing; the

molecular mechanism of fibroblast differentiation by direct

contact with neuronal processes was not identified in this

study [91].

In addition, oxidopamine (6-OHDA)-induced sympa-

thectomy modifies wound healing with an increase found

in wound contraction, a reduction of mast cell migration

and a delay of the reepithelialisation; these modifications

were associated with a decrease in neurogenic inflamma-

tion [92]. It has also been shown that b1- and b2-
adrenoceptor blockade impairs cutaneous wound healing

[93]. In the liver, in an experimental model of fibrosis using

carbon tetrachloride treatment, 6-OHDA-induced dener-

vation significantly reduces matrix deposition and

myofibroblast differentiation [94] and acetylcholine pro-

motes both proliferation and collagen gene expression of

myofibroblastic hepatic stellate cells [95]. Additionally,

cholinergic denervation, obtained via hepatic branch

vagotomy or atropine administration, decreases TGF-b1
expression and the proportion of a-SM actin-expressing

hepatic stellate cells in carbon tetrachloride-induced liver

fibrosis [96].

In clinical research, it has been shown that a-SM actin is

detected in hypertrophic scars (see Fig. 1 above) but not in
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keloids [97]. Indeed, it seems that a-SM in these both types

of excessive scarring is detected [98]. In addition, symp-

toms of itch and pain, abnormal thermosensory thresholds

to warmth as well as cold and heat pain are present in

excessive scarring suggesting that these pathological situ-

ations are closely associated with small nerve fibres [99].

Moreover, the number of nerve fibres in excessive

scarring is significantly higher than in the normal skin

samples [100]. Interestingly, in burn patients presenting

chronic pain, abnormal cutaneous innervation is observed

[101] and very often, in burn patients, hypertrophic scars

appear. Finally, in patients with hypertrophic scars, the

density of neuropeptide containing nerves was greater in

the dermis, compared with normal skin [102].

Inhibition of myofibroblast activity

Since myofibroblasts play a destructive or deleterious role

in many fibrotic diseases and in some cancers, there is

much interest in blocking myofibroblast activity, reversing

or blocking fibroblast phenotypic change or inducing

myofibroblast apoptosis. For many years, it was assumed

that myofibroblasts could not revert to a normal fibroblast

phenotype or at least evidence of this was lacking. It was

thus considered most likely that myofibroblasts were per-

haps terminally differentiated and if they disappeared, that

they did so by apoptosis. It is now becoming apparent,

however, that myofibroblasts may in some situations

become de-activated and revert to a more normal pheno-

type [103–105]. Many attempts have been made to target

myofibroblasts to develop anti-fibrotic therapies. However,

to date no clinically effective compound has been identi-

fied, though several are under investigation in the

laboratory. Approaches that have been used to inhibit or

counteract the action of myofibroblasts are discussed below

(Fig. 3).

The presence of myofibroblasts correlates with

increased matrix synthesis as mentioned above, and matrix

stiffening further stimulates myofibroblast activity by

mechanical signalling. It is therefore possible that inhibit-

ing collagen cross-linking and thus increasing ECM

compliance may have anti-fibrotic activity by reducing the

mechanical signalling to the myofibroblast. One possible

means of achieving this is via inhibition of the enzymes

involved in collagen cross-linking, specifically lysyl oxi-

dase and lysyl hydroxylases [106].

Several cytokines that partly or fully stimulate myofi-

broblast differentiation have been described, as discussed

above. Additionally, there are some cytokines that have

shown inhibition of the myofibroblast phenotype by

inhibiting a-SM expression. Interferon-c has been shown to
have beneficial effects on hypertrophic scars and Dupuyt-

ren’s contracture through inhibition of myofibroblast

phenotype [107]. The interferon-c inducible protein

CXCL10 has also been shown to be anti-fibrotic in a mouse

model of pulmonary fibrosis and that this action is through

inhibition of fibroblast recruitment [108].

Since TGF-b1 is the most important pro-fibrotic growth

factor, blockade of TGF-b or TGF-b signalling is another

approach that has been used [109]. Inhibition of the TGF-b
type I receptor kinase (ALK5) has been shown to reduce

fibrosis in several animal models by blocking TGF-b1/
Smad signalling and also via an effect on ROS signalling

[110]. Similarly, the drug pirfenidone has been shown to

reduce fibrosis in several models including the kidney and

lung via effects on myofibroblast activity [111]. Pir-

fenidone has been reported to reduce TGF-b levels, but

also inhibits TGF-b-induced phosphorylation of Smad3,

p38 and Akt thus reducing TGF-b activation of matrix

synthesis and induction of myofibroblast phenotype [112].

The other growth factor that is commonly found to be

increased in fibrosis, CTGF/CCN2, can be targeted to

reduce fibrosis and CTGF/CCN2-deficient mice show

reduced fibrosis in a model of skin fibrosis, for example,

[113], making inhibition of CTGF/CCN2 an attractive

target for reducing fibrosis.

Another approach has been to inhibit co-factors that are

important in the Smad signalling pathway, an example

being inhibition of guanosine monophosphate-specific

phosphodiesterase 5 (PDE5) which reduces CREB-binding

proteins 1 (CBP1) recruitment to Smad transcriptional

complexes and thus down-regulates Smad signalling [114,

115]. The pregnancy hormone relaxin has also been

reported to inhibit myofibroblast differentiation by

inhibiting Smad signalling via Notch1 inhibition of Smad3

and also has a potential anti-fibrotic effect through induc-

tion of MMPs [116, 117]. Inhibition of TGF-b-induced
serum response factor (SRF) activation, which is required

for myofibroblast differentiation, has also been shown to

reduce pulmonary fibrosis [118].

Since much of the secreted TGF-b is present in tissue

bound to other proteins (such as decorin) and thus in a

latent inactive form, one approach to inhibition of TGF-b
activity and thus myofibroblast differentiation and activity

has been to block activation of latent TGF-b. Blocking
integrin binding that is involved in activation of latent

TGF-b is one such approach [77, 119, 120]. Inhibition of

integrins may also affect attachment of myofibroblasts,

mechanical signalling and beta-catenin and Smad sig-

nalling thus blockade of several integrin binding sites has

been shown to reduce myofibroblast differentiation and

activity, for example, blocking of a3b1 integrins [121],

a11b1 integrins [122] and avb6 integrins [123].

Other pathways that are involved in attachment and

mechanical signalling such as focal adhesion kinase have

also been targeted and shown to reduce myofibroblast
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differentiation in the commonly used bleomycin model of

lung fibrosis in mice [124].

Tyrosine kinase inhibition may be able to inhibit fibrosis

through down-regulating myofibroblast activation, and the

tyrosine kinase inhibitor nintedanib has been shown to

reduce the appearance of myofibroblasts in lung fibrosis

through reducing tyrosine phosphorylation of the type II

TGF-b receptor and thus reducing signalling through

Smad3 and p38 mitogen-activated protein kinase [41, 125].

As has been mentioned previously, myofibroblasts in nor-

mal wound healing disappear by apoptosis [18, 126]

though the mechanism remains unclear. Inducing myofi-

broblast apoptosis is an attractive prospect for reducing

fibrosis and some mediators have been discovered that may

accomplish this [127]. Interleukin-1b has been shown to

induce apoptosis in myofibroblasts by suppressing induci-

ble nitric oxide synthase (iNOS) expression [128] which

may have implications for tissues or organs where mac-

rophage polarization to the M1 pro-inflammatory

phenotype means there is high iNOS expression. The other

important molecules that are involved in attachment, force

transduction and mechanical signalling, are proteins from

the actin family and those which interact with the actin

cytoskeleton. Molecules that regulate actin assembly could

be targeted to modify the cytoskeleton and reduce

mechanical signalling and the mammalian Diaphanous-

related formins (mDia) is one such molecule [129]. Simi-

larly, inhibition of incorporation of a-SM actin into stress

fibres could reduce the tension exerted by fibroblasts on

their substratum. This has been achieved though adminis-

tration of the N-terminal actin sequence NH2-EEED to

fibroblasts and produced a reduction in collagen I synthe-

sis. The same N-terminal sequence, administered as a

fusion peptide with a cell-penetrating sequence, signifi-

cantly inhibited the endothelin-induced contractile activity

of strips of granulation tissue and delayed the contraction

of rat wounds that had been splinted for 10 days [130].

Conclusion and perspectives

The presence and activity of fibroblasts for normal skin

homeostasis, and the presence of myofibroblasts for tissue

repair is crucial and has evolved to speed normal tissue

repair. The importance of fibroblast activity in normal

repair has been particularly well documented using

in vitro models of dermal substitutes. For example, a

living dermal equivalent (containing fibroblasts) applied

to skin graft beds was found to reduce pain, to improve

hemostasis, and to improve the mechanical and cosmetic

properties of the graft; particularly, a normal undulating

dermal–epidermal junction reappeared 3–4 months after

grafting and elastic fibres were detectable 6–9 months

after grafting [131]. Thus, tissue engineering approaches

to normal repair require fibroblasts and myofibroblasts to

be successful.

Fig. 3 Myofibroblasts can be derived from various cellular origins,

including local fibroblasts, epithelial cells (via EMT), hepatic stellate

cells and pericytes. Understanding the regulation of myofibroblast

differentiation and survival provides strategies for down-regulating

myofibroblast activity and possibly either inducing apoptosis of

myofibroblasts or stimulating their dedifferentiation
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However, it is very important to realize that many dif-

ferent populations of (myo)fibroblasts exist and have

different properties. For example, interestingly, it has been

shown that gingival fibroblasts seem more efficient for

remodelling of the connective tissue than dermal fibrob-

lasts [132] and it should be noted that even within organs

there is heterogeneity of fibroblasts, for example, fibrob-

lasts from different levels of the skin also show different

activities [133].

In addition, it has been shown that, in adults, different

mesenchymal stromal/stem cells are able to acquire a

(myo)fibroblastic phenotype; including bone marrow-

derived mesenchymal stromal/stem cells, but also adipose

tissue-derived mesenchymal stromal/stem cells and the

cells present in Wharton’s jelly around vessels of the

umbilical cord. These discoveries offer new perspectives

for skin and tissue engineering.

Taking into account the major roles of myofibroblasts in

tissue repair, and particularly their contractile properties,

the exact mechanisms leading to contraction in a myofi-

broblast-containing tissue also needs to be clearly

identified. By assessing spontaneous intracellular Ca2?

oscillations, Follonier et al. have shown that intracellular

Ca2? oscillations are coordinated between contacting

myofibroblasts via adherens junctions, but randomly

between fibroblasts and non-contacting cells [134]. They

propose the following model of mechanical coupling for

myofibroblasts: individual cell contraction is transmitted

via adherens junctions and leads to opening of

mechanosensitive ion channels in adjacent cells. The

resulting Ca2? influx induces a contraction that can feed

back on the first cell and/or stimulate other contacting cells

working like a syncytium. This mechanism could improve

the remodelling of cell-dense tissue by coordinating the

activity of myofibroblasts [135].

Moreover, cancer-associated myofibroblasts, i.e. ECM

secreting and contracting stromal cells exhibit a-SM actin-

positive stress fibres, play a central role in the detrimental

cross-talk between tumour and stroma and almost certainly

play a role in tumour metastasis by becoming involved in

the metastatic niche for some tumour types. Hence, anti-

cancer strategies are now conceivable with the aim being to

specifically target myofibroblasts in the tumour stroma

[136, 137].

Despite many areas still requiring clarification in

myofibroblast biology, it seems clear that myofibroblasts

are pivotal cells for the control of ECM deposition and

remodelling during normal repair and in pathological sit-

uations such as fibrotic scarring and tumour stroma and are

definitively an essential target to take into account when

developing new therapeutic strategies.
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