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Liver X receptors: from cholesterol regulation
to neuroprotection—a new barrier against neurodegeneration
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Abstract Cholesterol plays a central role in numerous

nervous system functions. Cholesterol is the major con-

stituent of myelin sheaths, is essential for synapse and

dendrite formation, axon guidance as well as neurotrans-

mission. Among regulators of cholesterol homeostasis, liver

X receptors (LXRs), two members of the nuclear receptor

superfamily, play a determinant role. LXRs act as choles-

terol sensors and respond to high intracellular cholesterol

concentration by decreasing plasmatic and intracellular

cholesterol content. Beyond their cholesterol-lowering role,

LXRs have been proposed as regulators of immunity and

anti-inflammatory factors. Dysregulation of cholesterol

metabolism combined to neuroinflammatory context have

been described in neurodegenerative diseases, including

amyotrophic lateral sclerosis (ALS). ALS is characterized

by the progressive loss of motoneurons in the brain and

spinal cord, leading to severe paralytic condition and death

of patients in a median time of 3 years. Motoneuron

degeneration is accompanied by chronic neuroinflammatory

response, involving microglial and astrocytic activation,

infiltration of blood-derived immune cells and release of

pro-inflammatory factors. We propose to discuss here the

role of LXRs as a molecular link between the central ner-

vous system cholesterol metabolism, neuroinflammation,

motoneuron survival and their potential as promising ther-

apeutic candidates for ALS therapy.
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Structure and mechanism of action of LXRs

Liver X receptor alpha (LXRa) and beta (LXRb) are

inducible transcription factors belonging to the nuclear

receptor superfamily. Oxysterols, oxidized forms of

cholesterol, are natural ligands activating LXRs. The initial

discovery of LXRa [1] and LXRb [2] was the result of a

screening strategy based on the high sequence identity

among nuclear receptors DNA-binding domains. This

reverse endocrinology strategy [3], led to the identification

of various nuclear receptors before the identification of

their endogenous ligands, leading to the concepts of ‘‘or-

phan’’ (i.e., with no known endogenous ligand) and

‘‘adopted’’ (i.e., whose endogenous ligands were discov-

ered after their receptor) receptors [4]. Based on this

classification, LXRs can be considered adopted receptors.

LXRa and LXRb are encoded by two distinct genes:

NR1H3, located on chromosome 11 and NR1H2, located on

chromosome 19 in human, respectively. They are com-

posed of 447 and 460 amino acids [5] and encompass the

classical domains of nuclear receptors: an N-terminal reg-

ulatory domain, a DNA-binding domain, a hinge domain

and a ligand-binding domain. They share high sequence

identity within their DNA- and ligand-binding domains (75

and 78 %, respectively) [6].

In their canonical mode of action, LXRs form obligate

heterodimer with the nuclear receptors for 9-cis retinoic
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acid (RXRs). The RXR-LXR heterodimers are constitu-

tively bound to their response element the LXR responsive

elements (LXRE), within the promoter of their target genes

[7]. The unliganded receptors inhibit target genes expres-

sion by contacting co-repressors (e.g., histone deacetylase,

HDAC). The lipophilic nature of 9-cis retinoic acid and

oxysterol allows them to pass through the cellular mem-

branes and bind to the RXR–LXR heterodimer. Binding of

ligand to either RXR and/or LXR induces conformational

changes and the release of co-repressors and recruitment of

coactivators (Fig. 1a). More recently, a direct inhibitory

mechanism on several proinflammatory genes, including

inducible nitric oxide synthase (iNOS), interleukin (IL)-1b,
monocyte chemoattractant protein 1 (MCP-1) and tumor

necrosis factor alpha (TNFa) has been described. This

mechanism referred as transrepression implicates

SUMOylation of LXRs upon ligand binding and subse-

quent stabilisation of the LXR-co-repressor complex on

target gene promoter (Fig. 1b) [8]. These two distinct

mechanisms allow LXRs to act either as activators or

repressors, depending on the target gene.

The first attempt to identify putative ligands for LXRs

led to the discovery of some oxysterols as activators of

these nuclear receptors [9]. Oxysterols, which are oxidized

forms of cholesterol, can be either synthesized enzymati-

cally through an endogenous pathway from cholesterol or

they can originate directly from the alimentation [10]. The

nature of oxysterols in the organism may depend on the site

of synthesis, for instance 22(R)-hydroxycholesterol in

steroidogenic tissues, 24(S),25-epoxycholesterol in liver or

27-hydroxycholesterol in plasma and macrophages [11]. It

is interesting to notice the presence of high levels of 24(S)-

hydroxycholesterol, also named cerebrosterol, which act as

LXRs ligand, in the brain. The definite proof that oxysterol

are endogenous ligands for LXRs came in 2007. On one

hand, Wong et al. [12] showed a correlation between some

oxysterols concentrations and cholesterol concentrations.

On the other hand, Chen et al. [13] generated mice with

targeted deletions in three oxysterol biosynthetic enzyme

genes, cholesterol 24-hydroxylase, cholesterol 25-hydrox-

ylase and sterol 27-hydroxylase, unable to synthesize

24(S)-hydroxycholesterol, 25-hydroxycholesterol and

27-hydroxycholesterol. These mice totally lost their ability

to induce several LXRs target genes in response to dietary

cholesterol. Finally, beyond their well-known activation by

oxysterols, the LXRs are today considered as endogenous

cholesterol sensors. Over the last years intensive efforts

have been made to produce synthetic ligands for LXRs.

Among these ligands, T0901317 and GW3965 are widely

used in cell culture and animal studies (for a review, see

[11]). To date, only one agonist, LXR-623, has been pub-

lished in clinical trial, but the trial had to be stopped due to

neurologic- or psychiatric-related adverse events [14]. This

trial indirectly supported the putative role of LXRs in the

human central nervous system (CNS). The aim of many

pharmaceutic companies is now directed towards the

development of synthetic agonists of these nuclear recep-

tors, referred as selective liver X receptors modulators

Fig. 1 Schematic representation of LXRs mechanism of action. a. In
their canonical mode of action, the RXR-LXR heterodimer is

constitutively bound to its response elements (LXRE) in the target

gene promoter. Binding of RXR and/or LXR ligand induces

conformational changes resulting in the release of co-repressors and

recruitment of co-activators and subsequent activation of target genes.

b. Transrepression mechanism has been described for pro-inflamma-

tory factors encoding genes. Binding of LXR ligand induces its

SUMOylation, thus stabilizing co-repressors on NF-jB, resulting in a

down-regulation of the target gene
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(SLIMS) [11], that could be specific of an organ, a cell type

or an isoform of LXRs. One of these new modulators has

recently entered new clinical trials and could represent the

future for new LXR ligands development [15].

Role of LXRs in cholesterol metabolism

The discovery of oxysterols as ligands for LXRs implied

that they could control cholesterol metabolism. Indeed, a

functional LXRE has initially been discovered in cyp7a1

gene promoter [16]. This gene encodes a key enzyme in the

hepatic conversion of cholesterol into bile acid and its

subsequent elimination from the body. The generation of

Lxra-deficient mice then confirmed the link in vivo

between LXRa and CYP7a1. When fed with a high

cholesterol diet, these mice developed hepatic steatosis due

to the lack of bile acids into cholesterol conversion by

CYP7a1. Beside their role on bile acid synthesis [17, 18],

LXRs also control cholesterol de novo synthesis [19–21]

and reverse cholesterol transport to the liver [5, 22]. All

taken together, the LXRs, indirectly activated by dietary

cholesterol, work to lower intracellular and plasmatic

concentrations and can be considered today as real

endogenous cholesterol sensors.

LXRs and inflammation

The involvement of LXRs in immunity process has been

initially suggested as their activation reduces the expres-

sion of pro-inflammatory factors including

cyclooxygenase-2 (COX-2), iNOS, IL-1b and IL-6 [23]. A

wealth of studies further demonstrated that LXRs attenuate

inflammatory process through inhibition of iNOS, COX-2,

osteopontin, MCP-1 or interferon-gamma-dependent path-

ways (for review [24]). As the atherosclerotic lesion is

highly immunogenic and a high inflammatory status is a

risk factor for atherosclerosis [25, 26], the anti-inflamma-

tory role of LXRs makes them promising candidates for the

treatment of this disease. Indeed, their activation attenuates

atherosclerosis in animal models for this pathology. The

study of these nuclear receptors in other diseases involving

inflammation aspects has today become a milestone in the

research on inflammatory diseases [27].

LXRs in the CNS

The brain has the highest content of cholesterol in the body

as well as the highest metabolic rate with 95 % of brain

cholesterol content being synthetized de novo [28, 29].

Cholesterol is essential for the formation of myelin sheath

(where it represents approximately 70 % of brain content)

and is also a main actor promoting synaptogenesis, axonal

plasticity and neuroprotection [30]. Cholesterol has also

been suggested to be involved in neuronal regeneration

after injury [31]. LXRs, which are both expressed in the

brain, are the main regulators of cholesterol metabolism in

the CNS. One of their first described roles was the control

of brain cholesterol efflux [32]. Indeed, LXRs control

exchange of cholesterol between neurons and astrocytes,

the latter being the main source of cholesterol for neurons

[29]. The supply of cholesterol from astrocytes to neurons

is mediated by apolipoprotein-E (APOE), ATP binding

cassette A1 (ABCA1) and ABCG1 in a LXR-dependent

manner [33]. The neuronal content of cholesterol is also

regulated by LXRs that (1) regulate cholesterol uptake via

an indirect mechanism involving degradation of LDR

receptor (LDLR) by inducible degrader of LDLR (IDOL)

and (2) induce expression of APOE, ABCA1 and ABCG1,

promoting its efflux and avoiding therefore its accumula-

tion [34]. In the myelin sheath, the cholesterol is provided

by oligodendrocytes and Schwann cells, where LXRs

regulate cholesterol homeostasis, myelination and

remyelination [35, 36]. Another intriguing role of LXRs

can be depicted in microglia, where beside their role in

regulating cholesterol concentrations, they also control

neuroinflammation [37].

The role of LXRs in neuroinflammation

In the CNS, immune and inflammatory responses are

defense mechanisms that can be triggered by accumulation

of misfolded proteins, release of cell membrane compo-

nents resulting from neuronal damage, blood components

that result from blood–brain barrier disruption, or oxidative

stress following hypoxia [38]. If improperly regulated,

neuroinflammation can be one of the pathophysiologic

mechanisms underlying many neurodegenerative diseases.

The activation of microglial cells, considered as the resi-

dent immune cells of the CNS [39], is a hallmark of many

neurodegenerative diseases, such as Alzheimer [40] or

Parkinson diseases [41], multiple sclerosis [42] as well as

amyotrophic lateral sclerosis (ALS) [43]. The first evidence

that LXRs play a role in microglia came in 2006 with the

finding that LXRs agonists were able to inhibit iNOS and

COX-2 expression in LPS-activated microglia in vitro [44].

Zhang-Gandhi and Drew further showed that treatment of

microglial cells with a synthetic LXR agonist inhibited

nitric oxide (NO) production as well as LPS-induced

release of IL-1b and IL-6 cytokines and MCP-1 chemo-

kine. The same results were obtained in cultured astrocytes

[45]. The authors also showed that the agonist impaired the

LPS-induced IjB-NF-jB pathway, an important modulator
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of many cytokines and chemokines. Inhibitory action of

LXRs on iNOS expression, and the subsequent NO pro-

duction, and IL-1b production at both mRNA and protein

levels was recently confirmed on LPS-stimulated micro-

glial cells [46]. Interestingly, intraperitoneal injections of

LXR agonist in an experimental allergic encephalomyelitis

mouse model delayed the onset of symptoms [46]. A recent

study highlighted the neuroprotective and anti-inflamma-

tory role of LXRs in experimental intracerebral

hemorrhage (ICH) mouse model [47]. The authors showed

that both LXR isoforms were expressed in neurons and

microglia in the peri-ICH region. Interestingly, adminis-

tration of T0901317, a synthetic agonist of LXRs conferred

protective effects on behavioral and motor recovery fol-

lowing ICH. T0901317 reduced hemorrhagic injury

volume, brain edema and blood–brain barrier permeability.

It also decreased neutrophil infiltration, microglial activa-

tion, and macrophage infiltration. The ligand finally

reduced LPS- and thrombin-induced pro-inflammatory

responses in cultured microglial cells, including IL-1b, IL-
6 and p38 and JNK phosphorylation.

Taken together, these studies suggest a pivotal role for

LXRs in the regulation of microglial activation. Therefore,

the development of LXR ligands that could selectively

target microglia-dependent mechanisms (i.e. SLiMS) is an

appealing objective to modulate neuroinflammation in

several neurodegenerative diseases.

The contribution of LXRs in ALS pathogenesis

ALS is an adult-onset neurological disorder characterized

by the selective degeneration of both upper and lower

motoneurons. ALS leads to progressive paralysis and

eventual death of patients within 3–5 years after diagnosis

[48]. The incidence and prevalence of ALS are variable

among studies and are approximately 2/100,000 and

7/100,000, respectively [49]. The typical modes of pre-

sentation are schematically limb-onset (about 70 %),

bulbar-onset, mainly presenting speech or swallowing dif-

ficulties as firsts symptoms (about 25 %) or trunk or

respiratory onset (about 5 %) [50]. Depending on the site

of onset and the type of degenerated motoneuron (i.e.,

upper or lower motoneuron), the clinical features may vary,

including spasticity, weakness, tendinous reflexes anoma-

lies, fasciculations, wasting, dysarthria and dysphagia.

Independently on the onset site, the symptoms spread from

the initial onset site and progressive weakening of respi-

ratory muscles participates to the causes of death.

Several prognostic factors have been described for ALS,

including older age at onset, bulbar onset and shorter time

from first symptoms to diagnosis, weight loss or vital

capacity [50, 51]. Although not distinguishable from a

clinical point of view, familial forms (FALS) and sporadic

forms (SALS) co-exist. The FALS rate may vary among

the studies and is below 10 % [52]. Mutations in 4 major

independent genes: C9ORF72, superoxide dismutase-1

(SOD1), TAR DNA-binding protein (TARDBP) and fused

in sarcoma (FUS) occur in more than 70 % of FALS

patients. The recent efforts and the emergence of next-

generation sequencing technologies have led to the iden-

tification of dozens of new genes, although found mutated

in only few percent of patients (reviewed in [53]). Genetic

mutations are rarely found in SALS forms and mainly

involve C9ORF72 gene. The majority of ALS cases can

subsequently not be explained by genetic factors. It thus

appears likely that ALS is a multifactorial disease with a

tight interaction of genetic and environmental factors.

The pathophysiology of ALS is complex. Many cellular

and molecular mechanisms underlying the disease have

been described so far. They include nuclear transport

dysfunction, protein misfolding and aggregation and

altered RNA metabolism [54–56]. Interestingly, energetic

metabolism, especially lipid metabolism seems to partici-

pate to the natural history of ALS. Hypermetabolism has

been linked to ALS and resting energy expenditure has

been proposed as a prognostic factor for survival in ALS

patients [57]. Dyslipidemia is also often seen in ALS

patients [58]. In a cohort of 369 patients, it has been shown

that plasma levels of total cholesterol were twofold higher

than in the 286 healthy controls and that elevated LDL/

HDL ratio in ALS patients was associated with longer

survival [59]. However, these results remain debated. On

one hand, similar results in favor of a better ALS prognosis

in patients with dyslipidemia were presented in another

cohort of 498 patients. On the other hand, dyslipidemia was

not a factor associated independently with survival

[60, 61].

Neuroinflammation, typified by microglia and astrocyte

activation as well as infiltration of immune cells in the

CNS, is a hallmark of the disease [43, 62]. According to the

role of LXRs in lipid metabolism and in inflammatory

process, their implication in ALS pathogenesis represents a

new avenue to explore. Indeed, LXRs have also been

proposed to confer neuroprotection in neurological disor-

ders such as Alzheimer’s diseases [63]. An involvement of

these nuclear receptors in motoneuron function has first

been suggested in transgenic mice lacking LXRb. Mice

with a targeted deletion of Lxrb gene showed an impair-

ment of motor performance compared to wild-type

animals, starting from 7 months of age, that progresses to

hind limb paralysis [64]. This phenotype was associated

with a marked degeneration of large alpha-motoneurons in

the spinal cord, a decrease in the mean diameter of axons in

spinal ventral roots and astrocytic activation. Later, the

same team provided a more detailed analysis of Lxrb-/-
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mice and showed that motor defects appeared as early as 3

months of age and were associated with a dramatic loss of

neuromuscular junctions [65]. In addition, Lxrb-deficient
mice showed signs of neuroinflammation as revealed by

increased levels of IL-6, TNF, IL-1b and MCP-1 in spinal

cord. Interestingly, lxrb-deficient mice showed signs of

microglial and astrocytic activation and an increase in

spinal cord cholesterol content, associated with an up-

regulation of ApoE expression. Moreover, analysis of

spinal cord of Lxrb knockout mice also revealed the

presence of inclusions of ubiquitin and TDP-43 in the

cytoplasm of motoneurons [66]. All the pathological fea-

tures of mice with lxrb deletion were interestingly

reminiscent with those of ALS patients and mouse models.

A link between cholesterol metabolism and neurodegen-

eration has been made using Lxrb-deficient mice [67]. Based

on the finding that a b-sitosterol analog (b-sitosterol-b-D-
glucoside) had neurotoxic effects that caused ALS-like

symptoms in mice [68], the authors orally administrated b-
sitosterol to both wild-type and Lxrb-/- mice. This phy-

tosterol, is a well-known ligand for LXRs that is directly

excreted at the intestinal level by the sterol transporters

ABCG5 and ABCG8 [66, 69]. Interestingly, the adminis-

tration of bb-sitosterol exacerbated motor signs of Lxrb-
deficient mice and was associated with an increased loss of

spinal motoneurons, as well as activation of microglial cells.

However, these defects were not observed in wild-type

mice, suggesting that LXRb is neuroprotective. The oral

administration of bb-sitosterol induced an accumulation of

24-hydroxycholesterol in brains of transgenic mice but not

wild-type animals. 24-hydroxycholesterol is an oxysterol

produced from the hydroxylation of cholesterol by the

cholesterol 24-hydroxylase enzyme (encoded by CYP46A1)

and can cross the blood–brain barrier. This conversion of

cholesterol into 24-hydroxycholesterol represents the major

cholesterol excretion route in the brain [29]. These findings

suggested that the role of LXRb in maintaining cholesterol

homeostasis in CNS could participate to its neuroprotective

effects. However, the precise molecular link made by LXRs

between cholesterol metabolism and neuroprotection is still

unclear. It was indeed shown that specific cholestenoic

acids, intermediates in the conversion of cholesterol into bile

acids, can activate LXRs, thus promoting motoneurons

survival [70]. The endogenous ligands of LXRs and their

exact target genes thus represent an unexplored field of

investigation in the understanding of the molecular mecha-

nisms involving LXRs in motoneuron survival.

Although depletion of LXRb leads to motoneuron loss

in mice, the contribution of LXR pathway in ALS remains

to be explored. Recently, a cell type-specific translational

profiling study based on high throughput sequencing of

ribosome-bound RNA predicted LXRs as major transcrip-

tion coactivators in mutant SOD1-expressing astrocytes

[71]. Additional studies will be important to determine the

contribution of LXR pathway in disease process.

Single nucleotide polymorphisms (SNPs) within LXRa
and LXRb-encoding genes, NR1H3 and NR1H2, respec-

tively, have been associated with several metabolic

conditions in humans, including serum total, LDL and

HDL cholesterol concentrations [72–75] as well as obesity

[76]. Smith et al. [75] showed that an intronic SNP in

LXRa-encoding gene was strongly associated with HDL-C

levels. Moreover, SNPs in these genes have also been

linked to other pathologies associated with deregulation of

the immune system, such as preeclampsia [77]. Implication

of both LXRs in nervous system has also been suggested as

SNPs within both LXRs-encoding genes might contribute

to Alzheimer’s disease risk and its progression [78–81].

One LXRa SNP has also been associated with soluble

Ab42 in the temporal cortex of Alzheimer’s disease

patients. Such an involvement of LXRs in Alzheimer’s

disease is not surprising as APOE encoding gene, whose

implication in the pathology is well known, is a target gene

of these nuclear receptors (see [82] for a review). Alto-

gether, these studies could suggest an implication of both

LXRs in the natural history of neurologic diseases in which

neuroinflammation takes place.

Although no LXR genes mutation has been identified in

ALS patients so far, a recent work showed for the first time

that a nonsense mutation in LXRa gene could be respon-

sible for primary progressive multiple sclerosis (PPMS)

[83]. This study is the first report of a mutation in LXR

genes in a neurologic disease. This mutation

(p.Arg415Gln) has been shown to disrupt RXR-LXR

heterodimerisation and to counteract the transcriptional

activity of the heterodimer. The authors also showed that

one SNP within LXRa was associated with PPMS, sug-

gesting that the identified mutation was not isolated and

that additional LXRa mutation could be identified in PPMS

patients in the future. This disease is a progressive form of

multiple sclerosis associated with neuronal loss. This study

is the first to directly link one LXR-encoding gene to

neuronal degeneration and opens new perspectives in the

search for such mutation in ALS patients.

Conclusion

Over the last years, lipids, and especially cholesterol, have

been demonstrated to exert deleterious effects on the CNS

when imbalanced. The LXRs were initially identified as

cholesterol ‘‘safety valves’’, detecting cholesterol excess

(through its conversion to oxysterols) and thus lowering

cholesterol cellular content. With the goal to understand

the role of these intriguing nuclear receptors, they are now

recognized as central inflammatory regulators, especially in
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the CNS. LXRs act as neuroprotective factors, limiting

neuroinflammation as well as astrocytic and microglial

activation (Fig. 2). It is highly tempting to argue that LXRs

are central modulators of neuroinflammation by regulating

CNS cholesterol content, but this molecular link has still

yet to be explored. Besides, oxysterols have been shown to

cross the blood–brain barrier and to modulate several

actors of lipid metabolism as well as brain functions [84],

but the participation of LXRs to these mechanisms is still

unclear. The findings of motor impairment and ALS-like

symptoms in Lxr deficient animal models and the recent

discovery of a LXRa mutation causative of a disease in

which a neuronal degeneration occurs have opened a new

field of investigation to further understand the natural

history of neurodegenerative diseases, such as ALS. The

use of LXRs as pharmacologic targets in the management

of neurodegenerative diseases might not be a utopic project

anymore, and will probably arise with the development of

synthetic selective LXR modulators, specific of CNS.

Studying LXRs is still not over!
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