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Abstract tau, a microtubule-associated protein, directly

binds with microtubules to dynamically regulate the orga-

nization of cellular cytoskeletons, and is especially

abundant in neurons of the central nervous system. Under

disease conditions such as Pick’s disease, progressive

supranuclear palsy, frontotemporal dementia, parkinsonism

linked to chromosome 17 and Alzheimer’s disease, tau

proteins can self-assemble to paired helical filaments pro-

gressing to neurofibrillary tangles. In these diseases,

collectively referred to as ‘‘tauopathies’’, alterations of

diverse tau modifications including phosphorylation, metal

ion binding, glycosylation, as well as structural changes of

tau proteins have all been observed, indicating the com-

plexity and variability of factors in the regulation of tau

toxicity. Here, we review our current knowledge and

hypotheses from relevant studies on tau toxicity, empha-

sizing the roles of phosphorylations, metal ions, folding

and clearance control underlining tau etiology and their

regulations. A summary of clinical efforts and associated

findings of drug candidates under development is also

presented. It is hoped that a more comprehensive under-

standing of tau regulation will provide us with a better

blueprint of tau networking in neuronal cells and offer hints

for the design of more efficient strategies to tackle tau-

related diseases in the future.
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Abbreviations

Ab b-Amyloid

AD Alzheimer’s disease

BBB Blood–brain barrier

CHIP Carboxyl terminus of Hsc70

interacting protein

CMA Chaperone-mediated autophagy

CNS Central nervous system

CQ Clioquinol

FKBP51 and FKBP52 FK506-binding protein

51 and 52

FTDP-17 Frontotemporal dementia and

parkinsonism linked to

chromosome 17

LTP Long-term potentiation

MAP Microtubule-associated protein

MAPT Microtubule-associated protein

tau

MARK Microtubule/MAP-affinity

regulating kinase

MT Microtubule

NFTs Neurofibrillary tangles

NMNAT2 Nicotinamide mononucleotide

adenylyltransferase 2

PHFs Paired helical filaments

PP2A Protein phosphatase-2A

PSP Progressive supranuclear palsy

PTP1B Protein tyrosine phosphatase 1B

TMAO Trimethylamine N-oxide

3-MA 3-Methylamphetamine
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Introduction

tau protein

During a search for factors promoting microtubule (MT)

assembly, tau was first purified from porcine brains by

taking advantage of its thermal stability and was charac-

terized as a member of the Microtubule-associated protein

family (MAP) [1, 2]. tau proteins are broadly distributed in

the neurons of the central nervous system, but are also

expressed at low levels in astrocytes and oligodendrocytes

[3]. Under physiological conditions, tau proteins predom-

inantly localize in the distal portions of axons, whereas

MAP6s, another member of MAPs, distribute in the prox-

imal portions of axons and MAP2s mainly localize in the

dendritic compartments [4]. This restriction of distribution

indicates that a possible barrier may exist to confine the

diffusion of these MAP members (please see review from

Mandelkow [2] for a summary of this).

In humans, tau has six isoforms that are the products

of alternative spicing from a single gene (MAPT or

microtubule-associated protein tau) which is localized on

chromosome 17q21, and contains 16 exons [5]. The

differences among these six isoforms are due to alter-

native splicing of exons 2, 3 and 10 [6]. Both exons 2

and 3 encode 29-amino acid fragments, and alternative

splicing can generate the 2N (contains exons 2 and 3),

1N (contains only exon 3), and 0N (contains neither)

forms of tau. Exon 10 encodes a 31-amino acid fragment

of the second microtubule-binding domain (R2) in the C

terminal of the protein; its alternative splicing creates 4R

(contains 4 microtubule-binding domains) or 3R forms

(contains 3 microtubule-binding domains) of tau [7, 8].

Altogether, MAPT alternative splicing creates six iso-

forms of tau proteins: 0N3R, 1N3R, 2N3R, 0N4R, 1N4R

and 2N4R. A relatively constant 1:1 ratio of 3R/4R

isoforms in the adult brain is maintained; however, can

be shifted under certain pathological conditions [9]. The

exact physiological roles of the various tau forms are not

well elucidated.

The primary known function of tau is its ability to bind

to microtubules. It is known that the binding domains of

tau proteins contain positively charged amino acid resi-

dues, allowing them to bind to the negatively charged

microtubules and resulting in better microtubule stabiliza-

tion of 4R isoforms compared to 3R isoforms [10, 11]. In

addition to alternative splicing, tau is also subject to several

kinds of post-translational modification including phos-

phorylation and glycosylation. Phosphorylation in

particular is a highly complex event: tau contains 85

potential serine (Ser, S) threonine (Thr, T) and tyrosine

(Tyr, Y) sites on the longest isoform, and it has been shown

that phosphorylation can happen on approximately 30 of

them [12] (for details, see review from Iqbal [13]). In

addition, the phosphorylation of tau is highly dynamic

during development. For example, the embryonic central

nervous system (CNS) expresses more highly phosphory-

lated tau proteins than the adult CNS does [14], and the

degree of phosphorylation of tau proteins (in all 6 iso-

forms) decreases during aging [15]. The biological

significance of tau variations and phosphorylation during

neurogenesis remains unknown, especially while consid-

ering that tau knock-out mice do not present obvious

abnormalities in the brain development, likely due to

compensatory effects from other MAPs [16]. Phosphory-

lation levels of tau can change dramatically under certain

disease conditions. In post-developmental brain tissues, the

phosphate to tau protein ratio is on average 2–3:1, whereas

under certain pathological conditions it can rise to a 7–8:1

ratio, which is recognized as ‘‘hyperphosphorylation’’ [17,

18]. This process will be discussed in detail later.

tau is considered a prototypical ‘‘natively unfolded’’

protein or ‘‘intrinsically unstructured protein’’ based on

observations in biophysical studies [19]. The dynamic

structure of human tau (441 residues) has been recently

described at single residue resolution using nuclear mag-

netic resonance (NMR) spectroscopy [20]. The data

revealed that tau has a highly dynamic structure with a

distinct domain in the aqueous phase and an internal net-

work of transient long-range interactions that are important

for pathogenic aggregation. Although limited information

has been obtained regarding how phosphorylation might

change tau structure, biochemical studies have revealed

that phosphorylation can reduce the binding affinity

between tau and microtubules, an event which is greatly

affected by the protein conformation [21].

Tauopathy diseases

Although MAPs have irreplaceable functions in neuroge-

nesis, tau protein is not known for its normal biological

functions, but rather its pathogenic potential in a series of

human neurodegenerative diseases, including Alzheimer’s

disease (AD) [22], the most severe and common form of

dementia worldwide. Tauopathy is a term used to classify a

collection of neurodegenerative diseases with abnormal

aggregations of tau proteins [22]. In AD, for example, in

addition to the extracellular plaques composed of b-amy-

loid aggregates, tau was found to form intracellular

neurofibrillary tangles (NFTs) accompanied by abnormal

phosphorylation [23]. These pathogeneses always correlate

with phenotypic symptoms such as progressive memory

loss and cognitive impairment in AD patients [24]. The

abnormally phosphorylated and aggregated tau also can be

found in other types of neurodegenerative diseases, such as

Down syndrome, Pick’s disease, progressive supranuclear
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palsy, corticobasal degeneration, frontotemporal dementia,

amyotrophic lateral sclerosis/parkinsonism–dementia

complex, and frontotemporal dementia and parkinsonism

linked to chromosome 17 (FTDP-17) [25]. Mutations in the

tau gene itself (Fig. 1) are considered to be the pathogenic

cause for some of the cases, such as FTDP-17 [26], an

autosomal dominant neurodegenerative disorder with sev-

ere degeneration in the patients’ frontal and temporal lobes

and also parietal cortical atrophy [27–31]. Autopsies from

FTDP-17 patients have revealed abundant NFTs similar to

those found in AD, but without b-amyloid plaques. The

kinds of tau mutations in FTDP-17 are diverse, including

missense mutations, small deletions in the exons, and

intronic mutations that are close to the splice-donor site of

exon 10 [32–34]. Missense mutations such as P301L/S,

V337M and G272V can impair the MT binding ability of

tau and these mutants are prone to the formation of paired

helical filaments (PHFs), progressing to NFTs. Notably,

different mutations may induce distinct patterns of neu-

ronal or glial pathology [35]. The tau intronic mutations

can influence the alternative splicing of exon 10, and the

resultant ratio change of 4R/3R tau isoforms leads to

consequent protein aggregation [34, 35]. A significant

observation is that FTDP-17 mutants, when compared to

wild-type tau, can elicit more severe neuropathology in

transgenic animal models independent of Ab, indicating

that tau alone can explain the etiology of tauopathies

[35–37].

Fig. 1 The multiple layers of modifications on tau proteins. The

major domain composition of tau protein (the longest isoform, 441

amino acid), including the N-terminus, proline-rich region, micro-

tubule-binding repeat (microtubule-binding domain), and the

C-terminus, is illustrated here. Modifying events such as phospho-

rylation, acetylation, metal binding, truncations and disease-related

mutations are listed above or below the schematic tau protein. These

represent only a partial list of tau modifications. Some other

modifications such as glycosylation, glycation, prolyl-isomerization,

nitration and sumoylation, which could also affect the function and

toxicity of tau, are not shown. Specifically, acting sites of kinases

(MARK, GSK3 and CDK5) and the metal binding sites of tau are

marked; several tau mutations such as K257T, G272V, DK280,

P301L/S, K369I, V337M, G389R and R406W have been widely used

in model organism studies and are listed; some known acetylation

sites as well as the cleavage on D421 and E391 are also drawn in this

schematic presentation (it is found that caspase-3 mediates D421

cleavage, but the mechanism of E391 cleavage remains unclear)
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Animal models of tauopathies

Animal modeling is widely used in the study of tauopathy

and is our main source for the mechanistic understanding

of tau toxicity. Both tau knock-out and knock-in models

have been generated. Some of the model organisms that

have been used include invertebrates Caenorhabditis ele-

gans and Drosophila melanogaster, and vertebrates such as

mouse, rat, and, to a lesser extent, primates.

Caenorhabditis elegans and Drosophila are endowed

with certain distinct advantages such as small body size,

rapid propagation, and short life span. Most importantly,

many biological processes and neuronal cellular functions

are evolutionarily conserved from these organisms to ver-

tebrates or human. Using the aex-3 promoter, a C. elegans

tauopathy model was established expressing human P301L

or V337M forms of tau [38]. These animals displayed some

of the same important phenotypes observed in humans such

as severe neurodegeneration and tau pathology, including

abnormal tau phosphorylation and accumulation. P301L

and V337M had strikingly more pronounced phenotypes,

consistent with the idea that these mutations may exacer-

bate tau toxicity. Genetic screening in C. elegans identified

some potential tau suppressors and enhancers, and fur-

thered our understanding of tau pathology. Pan-neuronal

expression of the wild-type tau and pseudo-hyperphos-

phorylated tau using the rgef-1 promoter revealed that C.

elegans was capable of phosphorylating tau and caused

similar conformational changes to tau as in AD patients

[39, 40].

Both the wild-type and mutant tau have also been

introduced into Drosophila to generate tauopathy models.

Compared with C. elegans and other model animals, the

UAS/Gal4 system routinely used in fruit flies facilitates the

construction of Drosophila models. Once UAS-tau is

introduced, various Gal4 lines like elav-gal4 (pan-neuron

expression), gmr-gal4 (expression in fly eyes) and cha-gal4

(cholinergic neuron expression) can be combined to gen-

erate tau expression in all or specific subsets of neurons or

other types of cells [41]. Drosophila expression of both

wild-type and FTDP-17 mutant tau displayed some similar

aspects of tau pathology found in humans, specifically the

adult onset progressive neurodegeneration and the accu-

mulation of abnormal tau. In addition, the FTDP-17 mutant

tau was found to be more toxic than the wild-type tau [37].

tau expression in Drosophila also causes neuronal dys-

functions, exemplified by abnormal axonal transport,

synaptic dysfunctions and learning and memory defects

[42, 43]. tau mutations on critical phosphorylation sites

such as Ser262 and Ser356 lead to a reduction in both

phosphorylation and toxicity in Drosophila [44]. Using fly

tauopathy models, suppressors and enhancers of tau toxi-

city have been isolated. These include some previously

known factors such as par-1 and PP2A, as well as some

novel factors including Glypican, Filamin, MAP1b,

cytoskeleton proteins, and metal ion homeostasis-related

genes [45–48]. Moreover, Ab and tau co-expression leads

to more severe neurodegeneration and tau pathology in

Drosophila, accompanied with higher tau hyperphospho-

rylation [49]. Compared with vertebrate models, C. elegans

and Drosophila models provide more rapid screening of tau

modifiers, and provide insights into disease mechanisms

that enhance studies of tauopathy research in higher ani-

mals [39, 41].

Mice are widely used as vertebrate models in tauopathy

studies. tau knock-out mice were viable and were initially

reported to display no obvious abnormalities, except with

increased MAP1A expression, likely a result of some

compensatory effects [50]. Notably, additional detailed

analyses revealed some deleterious effects in axons from

tau null animals, including decreased microtubule stability

and altered microtubule organization, which might underlie

the motor and cognitive deficits observed in some aged

cases [16, 51]. The introduction of an artificial chromo-

some expressing the six human tau forms into tau null mice

resulted in the accumulation and aggregation of hyper-

phosphorylated tau, and also caused memory and behavior

defects in aged animals [52, 53]. The FTDP-17-related tau

mutants caused more severe tau pathology in mouse

models in terms of filament formation [54], memory

defects [55], behavioral disturbances and neurodegenera-

tion [56]. Mouse studies have helped to clarify the roles of

tau kinases and phosphatases (like GSK3b, CDK5 and

PP2A), the truncated form of tau [57], and the abnormal

modification of tau in tauopathy [58]. Overall, results from

mouse models have greatly improved our understanding of

the mechanism of tau toxicity, and drug testing on these

animals also facilitated relevant drug development.

Besides mouse models, other vertebrates were also used

in the study of tauopathy. The zebrafish is a small verte-

brate that is sometimes adopted for rapid drug screening

[59]. Using the zebrafish model, effects of drugs could be

readily evaluated [59]. In rats, expressing the truncated tau

form generated neurofibrillary tangles composed of

endogenous rat tau and exogenic tau [60, 61], accompanied

with tau hyperphosphorylation, behavior impairments, and

decreased lifespan [62]. Recently, it was reported in rats

that traumatic brain injury induced oligomerization and

hyperphosphorylation of rat tau, mimicking some pathol-

ogy features observed in TBI-related dementia [63].

Primates such as monkeys are evolutionarily closest to

humans. Although no experimental transgenic tauopathy

models of primates have been reported so far, some other

related efforts have been undertaken. Immunocytochem-

istry studies of aged brains of cynomolgus monkeys

revealed Ab deposition in the blood vessels, and diffused
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and compacted plaques similar to those in human brains

[64]. Injection of fibrillar Ab into the rhesus monkeys

caused tau phosphorylation [65]. In aged rhesus monkeys,

hyperphosphorylated tau was found in the hippocampus

and entorhinal cortex, which is also one of the earlier

affected regions for tangle spreading in Alzheimer’s

patients [66]. In 20-year-old cynomolgus monkeys, accu-

mulation of phosphorylated tau was reported, and tau

tangles were found in 36-year-old animals [67]. Notably, in

baboons, age-dependent tau accumulation was reported.

Among animals aged from 26 to 30 years, 91 % of them

developed abnormal tau accumulations [68]; in addition, in

a 41-year-old pan troglodyte, humanlike paired helical

filaments tau pathology was reported [69]. The findings

from non-human primates indicate that these animals,

without transgenic human tau, could also potentially be

used towards understanding the mechanisms of tauopathy

and developing treatment therapies [70].

tau toxicities and their regulations

tau toxicities: what damages does tau cause?

In tauopathies, the disorganized tau proteins first lose their

normal functions through release from the MT and mislo-

calization to other organelles. The potential damage

accrues as the proteins begin to form aggregates. Thus,

toxicity can arise from either or both of the two events: loss

of normal functions and/or gain of new functions. tau

aggregation/oligomerization-related toxicities, which will

be discussed later, are accepted by many researchers in the

field as the cause of tauopathy [71, 72]. We will start our

discussion with the known early events of tauopathy.

At the initial stage, when tau gets hyperphosphorylated,

especially on Ser262 and Thr231, its microtubule-binding

affinity significantly declines [73, 74]. Subsequently, the

tau proteins disassociate from the microtubules and the

microtubules become depolymerized due to destabilization

from the loss of MAPs [12, 75]. This destabilization of

microtubules can distinctly inhibit the axonal anterograde

and retrograde transport between the soma and synapse,

which is vital to maintain the normal function and survival

of mature neurons [76]. In the tauopathy mouse model,

compounds that stabilize microtubules can, to some extent,

counteract tau toxicities such as reversing synapse loss and

improving cognition, without affecting the aggregation of

NFTs [77, 78]. However, there are also reports showing

that tau phosphorylation on Thr50 can promote the

assembly of microtubules. It has also been observed that in

the presence of TMAO (trimethylamine N-oxide), a natural

occurring osmolyte, PKA and Gsk mediated tau phospho-

rylations can similarly promote the assembly process [79,

80]. Furthermore, it has been shown that tau phosphory-

lation can enhance the cargo trafficking in cultured cells

and axons, while normal tau can inhibit cargo trafficking

by blocking kinesin movement [81, 82]. These paradoxical

observations demonstrate the complexity of the regulation

and consequence of tau phosphorylation. The phosphory-

lation events vary not only in magnitude but can also lead

to drastically different or even opposite outcomes.

When tau is released from the microtubule, it may

missort to other subcellular compartments. In a tau trans-

genic mouse model, excessively phosphorylated tau

proteins can be found in the somatodendritic compartment

in the cerebral cortex, in contrast to normal tau protein,

which should only localize in the axon [83]. This obser-

vation is consistent with symptoms found in human AD

patients where abnormal tau proteins are also found to

aggregate to NFTs in the somatodendritic compartment

[84, 85]. Under normal physiological conditions, tau pro-

teins are retained in the axon mainly due to the high affinity

for axonal MT and low affinity for dendritic MT [86].

However, the phosphorylation status of tau can reverse this

affinity [87]. tau proteins also become more diffusible

under disease conditions where barriers of protein diffusion

have been disrupted [88].

Intriguingly, mutations causing FTDP-17 may also

induce tau missorting and lead to the development of

diverse pathologies in different cell types. For example, the

P301L/S mutation causes both neuronal and glial damage,

while V337M and R406W mainly induce neuronal tau

pathology in the somatodendritic compartment, similar to

AD cases [89–91]. These observations have been recapit-

ulated in rodent models as well. The P301L mutation

increases tau levels in the dendritical spine and eventually

causes spine loss [92]. Furthermore, a double mutation

(K257T/P301S) reproduces human symptoms of FTDP-17

including tau missorting and protein aggregation [93]. Why

different mutations can endow tau with different sorting

abilities during pathogenesis is still a mystery. Phospho-

rylation differences are one possible reason, though others

likely exist [34]. For example, mutations may produce

additional binding sites on tau for new partner proteins,

potentially leading to tau translocation and harmful

consequences.

Pathological appearance of tau protein in the soma and

dendrites is deleterious. A small quantity of missorted tau

protein may induce more tau proteins to release from the

microtubules, mislocalize and aggregate. This harmful

positive feedback indicates a spreading mechanism of

tauopathy, which can eventually and irreversibly kill the

neurons [94]. Missorted tau can also interfere with other

processes, including mitochondrial functions, mitochondria

trafficking [95], motor-mediated cargo transport [96], and

the trafficking of receptors in the post-synapses and the
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synaptic transmission [97, 98]. tau can also interact with

Fyn kinase and result in the alteration of post-synapse

components like PSD-95 and NR2b. A similar process is

also thought to be involved in Ab-induced neuron excito-

toxicity [99, 100]. These factors are thought to contribute

to the pathogenesis and abnormalities caused by tau.

Although it is widely accepted that hyperphosphoryla-

tion corresponds to neuron loss in tauopathies, the precise

mechanism of cell death in neurodegenerative diseases like

AD has not yet been fully explained and might be more

complicated than originally thought. Hyperphosphorylated

truncated protein tau is found to induce a caspase-3 inde-

pendent apoptosis-like pathway in the Alzheimer’s disease

cellular model [101]. However, in P301S mice, abundant

tau hyperphosphorylation and NFTs, but no apoptosis, are

detected [56]. The latter is consistent with the observation

that in AD brains little apoptotic cell death is found. This

implies that tau phosphorylation might connect with certain

pathways, such as the nuclear, ER and mitochondrial

pathways, to prevent neuronal apoptosis [102].

tau toxicities: an effect of the oligomer form

or the NFT?

Whether or not tau aggregates are toxic is still debated.

Numerous correlative evidence suggests that NFTs might

be damaging. An abundance of NFTs has been observed in

AD brains, together with tau hyperphosphorylation, and the

severity of NFT accumulation correlates with the neu-

rodegeneration progression in AD patients. In addition, in

the P301L mouse model, NFT bearing neurons undergo

synapse loss and synaptic functional impairment [103–

108]. Nevertheless, neurons with NFTs can survive for

20–30 years [109, 110], indicating that NFTs might not be

the major toxic species in tauopathies [72]. Studies in

animal models also argue against the possibility that NFTs

are the major toxicity source. For example, in the fly tau

model, severe neuronal loss and short lifespan were

observed, but without NFTs accumulating in the brain [37].

In addition, in the P301L transgenic mouse, memory

impairment was observed at 2.5 months, however, NFTs

did not appear until 10 months [111]. Furthermore, in the

same study, turning off P301L expression reduced memory

impairment and neuron loss but not NFT formation. These

studies suggest that NFTs may be an accompanying phe-

nomenon or a protective mechanism insulating the cell

from tau toxicities. Indeed, the current body of data implies

that oligomerized forms of tau might be the true source of

tau toxicity [72]. As discussed previously, studies in Dro-

sophila and rodent models indicate that soluble forms of

tau may behave as the toxic species [37, 111], due to the

observation that no NFTs were detected in these animals,

yet severe phenotypes still developed. Consistently, in a

methylene blue treatment study, soluble tau levels corre-

lated well with memory and other performance indexes of

the tau mouse, while NFT levels were not changed during

the treatment [112].

Using a plethora of antibodies generated against dif-

ferent forms and epitopes of tau, distinct tau species could

be identified at different stages of tauopathy. tau antibody

TOC1 (antibody against tau oligomers and aggregation

intermediates, but not NFTs) staining revealed that tau

oligomers appeared at early stages of AD, far before the

formation of NFTs [113]. T22 (antibody against tau oli-

gomers) staining confirmed this result in early stage

tauopathy autopsy samples [114]. More importantly, tau

oligomers were found to be much more toxic than fibrous

forms in both in vivo and in vitro experiments [115, 116].

Blocking oligomer formation by expressing chaperone

protein Hsp70 could restore the impaired axonal transport

in isolated axon membranes [117]. Consistent with this,

inhibiting oligomerization by curcumin could significantly

improve the behavioral defects and rescue synaptic

abnormalities in tau mouse models [118]. Notably, it was

shown that external human tau oligomers, when infused

into naı̈ve mice, could work as a seed and propagate

through release and aggregation of the endogenous tau

protein, so that both human tau and murine tau could be

found in the protein deposits [119].

Altogether, many aspects of tau abnormalities including

disrupted MT equilibrium, tau missortment, hyperphos-

phorylation, oligomerization and fibrillization were found

in tauopathy. Many of these can be damaging and, there-

fore, contribute to tau’s toxicity. However, the relative

importance of these aspects to tauopathy development has

not yet been fully elucidated and further studies are clearly

necessary.

tau toxicity: what are the regulators?

Apart from phosphorylation, various other types of tau

post-translational modifications have been reported

(Fig. 1). Some post-translational modifications such as

glycosylation, O-GlcNAcylation, acetylation and abnormal

truncations [120–123] will not be covered in details here.

This is not meant to imply that these aspects of tau mod-

ifications are unimportant. For example, O-GlcNAcylation,

a recently discovered tau modification, shows cross-talk

with phosphorylation in vitro. It competes with and nega-

tively regulates tau phosphorylation, and irregular

O-GlcNAcylation has been observed in AD brains [123,

124]. It has even been shown that upregulating

O-GlcNAcylation level by small-molecule inhibitors like

thiamet-G can efficiently mitigate tau toxicity in mouse

models [124]. Nevertheless, these processes are not as well

studied and understood. In this work, we will focus on
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discussions of tau phosphorylation, the role of metals ions,

folding and clearance control in tauopathy development

(refer to Figs. 1, 2).

Hyperphosphorylation and tau toxicity

Phosphorylation of tau proteins is tightly regulated under

both physiological and pathological conditions. In the pre-

neurofibrillary tangle stage, tau is excessively phosphory-

lated on sites Ser262 and Thr231. However, in the post-

neurofibrillary tangle stage, phosphorylation is prominent

on sites Ser396, Ser404 and Ser422 [125]. This indicates a

series of phosphorylating and dephosphorylating events

occurring during neurofibrillary tangle formation.

Although the eventual outcome of hyperphosphorylation is

not completely understood, there is evidence implicating

direct links between tau function and phosphorylation

status. For example, phosphorylation at Ser262 and Ser214

sites greatly weakens the MT binding affinity of tau and

causes the release of tau proteins into the cytosol, a factor

that is thought to be an early event in tau pathology [73, 75,

87, 125]. As discussed previously, studies in animal models

including C. elegans [40], Drosophila [126] and mice [127]

indicate that hyperphosphorylation events correlate well

with vesicular motion in axons, neurohormone release,

synaptic loss, neural activity inhibition and lifespan

reduction. Ser to Ala mutations at significant phosphory-

lation sites such as S262A and S356A can greatly reduce

Fig. 2 A model showing some of the mechanisms regulating tau

toxicity. The physiological binding of tau to MTs (microtubules) is

regulated by kinases (GSK3, CDK5 and MARK) and phosphatases

(like PP2A). Under pathological conditions, tau is misregulated (such

as abnormal phosphorylation and mutation) and dissociates from

MTs, ‘‘freeing’’ tau and destabilizing the MTs (leading to MT

depolymerization and cargo transporting defects). Abnormal modifi-

cations (hyperphosphorylation, metal ion, acetylation, glycosylation,

glycation, prolyl-isomerization, cleavage or truncation, nitration and

sumoylation) also result in tau aggregation, oligomer formation

progressing to more advanced aggregates (like NFTs or

neurofibrillary tangles). Metal ions, though also possibly affecting

hyperphosphorylation, largely act to bind tau and work in parallel

with phosphorylation to facilitate tau aggregation. The abnormally

modified tau and tau aggregates can interfere with neuronal functions

and lead to neuronal toxicity. To combat tau toxicity, molecular

chaperons like Hsp70/Hsc70 can refold the abnormal tau, the

proteasome system can degrade the abnormal tau species, and the

autophagy apparatus can eliminate tau oligomers and higher order or

insoluble aggregates. Dysfunction of these refolding and clearance

systems can exacerbate tau pathology
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tau toxicity [44]. In addition, inhibition of tau phosphory-

lation by kinase inhibitor K252a can prevent the movement

impairment observed in tau moue models [128]. Con-

versely, the pseudo-hyperphosphorylated tau proteins

(S198E, S199E, S202E, T231E, S235E, S396E, S404E,

S409E and S413E, which mimic the hyperphosphorylation

modifications in AD brains) can induce axonal abnormal-

ities in C. elegans [40]. These mutations, as well as S422E,

can also reduce the binding capability of tau and destabi-

lize the MT network [129]. In addition, it has been shown

that S396E and S404E tau show an increased propensity to

form aggregates and fibrils [130], and these sites are

exceedingly phosphorylated in AD [131, 132].

Among various kinases and phosphatases reportedly

involved in AD-like tau hyperphosphorylation, MARK,

GSK-3b, CDK5 and protein phosphatase-2A (PP2A) are the

most important ones. MARK kinase is critical in initiating a

phosphorylation cascade of tau [44]. It has been shown that

MARK regulates tau phosphorylation in a cell culture

model [133], and Par-1 (Drosophila homolog of MARK)

contributes to tau toxicity in vivo by regulating Ser262

phosphorylation and may facilitate further phosphorylation

events like the phosphorylation on Ser202 and Ser396/404

[44]. Phosphorylation by MARK dissociates tau from MT

[82, 134], and consistent with this, MARK was found to be

elevated in AD patients and co-deposited with NFTs [135].

GSK-3b is another key kinase that mediates phospho-

rylation at multiple sites of tau [136], and its expression is

elevated in AD [137]. One of the sites receptive to GSK-3b
phosphorylation is Thr231, and its phosphorylation state is

an important factor in MT regulation [138]. In culture cells

and animal models, GSK-3b expression enhances tau tox-

icity [139, 140]. Activation of GSK-3b inhibits long-term

potentiation (LTP), while spatiotemporal inhibition of

GSK-3b attenuates tau phosphorylation and protects LTP

[141]. It has also been shown that inhibition of GSK-3b by

lithium can rescue tau pathology [142, 143].

Besides MARK and GSK-3b, CDK5 is another impor-

tant regulator of tau phosphorylation. CDK5

phosphorylates tau on Thr181, Thr231, Ser202 and Ser396/

Ser404. CDK5 activation stimulates MT release of tau, as

well as tau aggregation and NFT formation [144, 145]. In

contrast to MARK, CDK5-dependent phosphorylation is

not thought to be an initiating event in the phosphorylation

cascade. The Ser396/Ser404 phosphorylations require prior

modification on Ser262, a MARK phosphorylation site

[44]. Activation of GSK-3b and inhibition of protein

phosphatase 1 may be another aspect of CDK50s functions

[146, 147]. Importantly, both GSK-3b and CDK5 are vital

mediators connecting b-amyloid toxicity with tau hyper-

phosphorylation [136, 148, 149].

Overall, the activities of tau phosphatases (PP1, PP2A

and PP2B) are decreased in AD brains [150]. Among them,

PP2A is an effective tau phosphatase that dephosphorylates

tau on Ser199, Ser202, Thr205, Ser396 and Ser404 [151–

153], and restores the normal activity of tau. Inhibition of

PP2A by okadaic acid, homocysteine, or zinc further

increase tau phosphorylation levels and toxicities [154–

156]. In vivo, PP2A activity can be inhibited by I2PP2A

(inhibitor 2 of PP2A), which is phosphorylated at Ser9 and

accumulated in the cytoplasm, resulting in increased PP2A

inhibition and tau hyperphosphorylation in AD brains

[157]. Conversely, compounds that can activate PP2A,

such as betaine and NMNAT2 (nicotinamide mononu-

cleotide adenylyltransferase 2), can reduce tau

hyperphosphorylation [158, 159]. The cross-talk that

occurs between kinases and phosphatases can sometimes

complicate analysis. For example, GSK-3b activation can

inhibit PP2A by upregulating PTP1B (protein tyrosine

phosphatase 1B), which can phosphorylate PP2A at Tyr307

[160, 161]. This mechanism suggests a potentially vicious

cycle between activation of kinases and inhibition of

phosphatases in AD brains.

Roles of metal ions in AD and tauopathy

Metal elements such as zinc (Zn), copper (Cu) and iron

(Fe) are indispensable in numerous fundamental biological

processes. They can either function as the structural com-

ponents of proteins or act as the critical co-factors for many

enzymes [162]. Homeostasis of metal ions is important for

the maintenance of normal cell functions, and dyshome-

ostasis can lead to various diseases states such as Wilson’s

disease, Menkes disease, and anemia [163]. The intricate

balance of metal metabolism is regulated stringently by

metal ion transporters, chaperons, and other metal ion

homeostasis-related proteins [163]. In AD autopsy, ectopic

accumulation of metal ions is found in the cortical and

neuropil region, and co-deposits of metal ions with Ab
plaques have been described [164]. The expression level

and distribution of metal-related genes like zinc ion

transporters ZnT1 and ZnT4, and iron ion homeostasis-

related genes like transferrin are correspondingly altered in

AD [165–167], and their protein products are also found to

co-exist in plaques or NFTs [168].

The detailed mechanism of metal ion dysregulation in

AD and other neurodegenerative diseases is largely

unclear. However, these observations strongly suggest that

elevation or reduction of certain metal ions is relevant in

these diseases. In vivo, the effects of metal ion regulation

in AD were tested in mouse models [169–172], and it was

found that chelator and genetic manipulations of metal

homeostasis-related genes can reduce Ab accumulation

and lessen the symptoms. In vitro studies show that metal

ions (Zn, Cu, Fe) can promote Ab aggregation and fibril-

lation by directly binding with the peptide and changing its
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biochemical properties [173–175]. Based on these results,

it was proposed that decreasing metal ion concentration

with the 8-OH quinolone class hydrophobic chelators

Clioquinol (CQ) and its derivative PBT2 might be a

promising treatment for AD. Indeed, treatment with these

chelators in mouse models shows dramatic reduction of Ab
aggregation and restores the neural activity [169]. In fly Ab
models, genetic modulation of iron or zinc ion homeostasis

also delays disease development [176, 177].

Changes in normal metal ion regulation are also found

in tauopathies. NFTs bearing neurons are accompanied

with expressional alterations of zinc ion or other metal

ion transporters [166]. In addition, aluminum (Al) and

iron (Fe) ions have been found to co-deposit with NFTs

[178]. In most cases, the exact role of these metal ions in

tau toxicity in many cases is still unknown. However,

there is evidence that metal ions such as Fe, Cu and Zn

ions can directly bind with tau proteins and induce protein

aggregation in vitro [179–181]. Two cysteine (Cys) resi-

dues in the MT binding domain may mediate the

interaction between tau and the above-mentioned metal

ions (Fig. 1), while Cys to Ala changes could nearly

eliminate the fibrillization induced by Zn and Cu ions

in vitro [181]. In fly models, changes of Cys to Ala

(C291A/C322A or tauC2A) strongly suppress tau toxici-

ties and almost erase the zinc effect on tau [47], whereas

changes back to zinc ion binding His residues (C291H or

C322H) restore some of tau’s toxicity and, importantly,

zinc ion responsiveness. Based on our work, we found

that zinc ion chelation, either through genetic or chemical

chelating measures, is effective but does not deliver the

dramatic effects achieved through zinc ion binding elim-

ination as seen in tauC2A [47]. This discrepancy is likely

due to the fact that metal ions are important for cell

survival and their levels are strictly regulated; therefore,

depleting metals to a negligible level without serious

consequences is likely not feasible. tau binding to zinc ion

occurs in the submicromolar range [47, 181], and it is

hypothesized that zinc ion depletion by genetic interfer-

ence or chelator treatments can only progress to a limited

degree, one which cannot effectively remove zinc ion

binding from tau. From this perspective, it is under-

standable that removal of zinc ion binding in tauC2A

results in far less toxicity in the mutant tau compared to

that achievable through zinc ion modulation.

In addition to direct tau binding, zinc ion has also been

found to influence the phosphorylation process of tau by

activating kinases, such as p70S6 kinase and Raf/mitogen-

activated protein kinase, as well as inhibiting PP2A activity

[155, 182–185]. Zinc ion’s effect on phosphorylation,

however, appears to be much less dramatic on tau toxicity

as compared to its tau binding. Substitutions of two zinc

ion binding Cys residues (tauC2A) greatly mitigate tau

toxicity without significantly affecting the hyperphospho-

rylation status of tau. Furthermore, the tauC2A mutant is

largely impervious to zinc ion alterations. It can be con-

cluded that zinc ion contributes to tauopathy in two

independent pathways: increasing tau phosphorylation and,

more importantly, by directly binding with tau proteins

[47]. Interestingly, copper ion’s role in Huntington’s dis-

ease has also been shown to be due to its physical binding

to Huntingtin protein [186]. These studies reveal some

clear and detailed mechanistic insight into the functional

consequences of metal dyshomeostasis in certain neu-

rodegenerative diseases.

Copper ion’s effects on tau toxicity through CDK5

dysregulation have also been reported [187], suggesting the

existence of additional pathways of metal toxicity in

tauopathy. In tissue culture neurons and fly models, ele-

vation of zinc and copper ions has been shown to greatly

enhance tau pathology [47, 187]. Consistent with this, zinc

ion treatment dramatically increases tau phosphorylation in

a mouse model [188], yet CQ, a chelator of zinc ion and

other divalent metal ions, reduces the phosphorylation of

tau and neurodegenerations in the brain [47, 155].

Molecular chaperons, tau clearance and tau toxicity

Molecular chaperons play essential roles in degrading

misfolded proteins [189]. In tauopathies, chaperons are also

involved in tau toxicity regulation, although a full under-

standing of the underlining mechanism remains to be

elucidated. Hsc70 and Hsp70 are two proteins that can

regulate levels of tau species, including that of total tau,

hyperphosphorylated tau and aggregated tau in both tissue

culture cells and transgenic mice [190, 191]. Hsp70/Hsc70

cooperates with CHIP (carboxyl terminus of Hsc70 inter-

acting protein) to ubiquitinate and degrade tau protein.

Upregulation of Hsp70 can reduce the accumulation of

insoluble tau and overexpression of CHIP highly increases

tau ubiquitination and aggregation of insoluble tau in the

COS-7 cell. Correspondingly, deletion of CHIP results in

the decrease of Hsp70 mRNA and accumulation of phos-

pho-tau protein [190, 192].

Hsp110 is one of the Hsp70/Hsc70-associated proteins,

and Hsp110 KO mice develop severe accumulation of

hyperphosphorylated tau and neurodegeneration pheno-

types [193]. BAG-1 is another Hsp70/Hsc70-interacting

protein that associates with tau pathology in vivo, and in

AD mouse models high expression of BAG-1 always

accompanies tau aggregation [194]. It has also been

demonstrated that overexpressing BAG-1 up-regulates tau

expression, while its knock-down decreases tau levels. This

regulation may work through interfering with the 20S

proteasome to slow down tau degradation [195]. All these

pieces of evidence point to the existence of an important
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protein recognition and degradation system around the

Hsp70/Hsc70 complex for tau species.

Hsp90 is another regulatory protein known to work

downstream of Hsp70/Hsc70, and tau, like the other target

proteins, would be subsequently processed by Hsp90 [196,

197], after being targeted by Hsp70/Hsc70. However,

Hsp90 as a regulator of tau fates is quite complicated [198].

While tau proteins with modifications of pS202/pT205 or

pS396/pS404 and tau protein in the MC-1 conformation (a

representative form in tauopathy recognized by MC-1

antibody [199]) are considered specific targets of Hsp90

[200], it is also thought that Hsp90 inhibition can promote

degradation of several substrates, including hyperphos-

phorylated tau [197, 200, 201]. Recent studies suggest that

inhibition of Hsp90 activates autophagy and proteasome

pathways, thus promoting the degradation of tau or tau

kinases [198, 202, 203]. Based on this evidence, inhibitors

of Hsp90, such as EC102 and 17-AAG, have been devel-

oped that can pass the blood–brain barrier (BBB) and help

to degrade tau proteins in the mouse model [197, 204, 205].

Two immunophilins, FKBP51 and FKBP52 (FK506-

binding protein 51 and 52), are also reportedly involved in

chaperon-mediated tau detoxification [206, 207], albeit in

different ways. FKBP52 overexpression can prevent tau

accumulation in tissue culture cells [206], whereas

knocking it down via RNAi enhances tau pathology in C.

elegans [208]. FKB51 may associate with Hsp90 and

negatively modulate activity of 20S proteasome, prevent-

ing tau refolding and degradation. It has also been shown

that increasing FKB51 levels exacerbated tau pathology in

mouse models, while its depletion attenuated the symp-

toms. Interestingly, NFTs did not excessively form under

FKB51 elevation, suggesting that other aggregated tau

forms contributed more to the toxicity [209].

The ubiquitin–proteasome pathway and autophagy

machinery constitute the main players in tau degradation

[210]. In AD brains, tau monomers are removed by pro-

teasomes and NFTs are removed through autophagy.

However, it is difficult to determine which pathway deals

with the oligomer, the most toxic form of tau (see review

[210]). Under pathological conditions, tau aggregations

like PHFs are highly ubiquitinated and co-deposit with

proteasome components [211, 212]. The function of pro-

teasomes, especially that of the 20S proteasome, is

impaired in both AD patients and animal models [213].

Likewise, inhibition of proteasome activity by lactacystin

significantly reduces tau degradation in cultured cells

[214]. While the underlying mechanism for proteasome

malfunction in AD is still largely unknown, evidence

shows that phosphorylated tau protein may attenuate its

activity, implying possible feedback inhibition [213, 215].

Furthermore, a trypsin-like but not chymotrypsin-like

activity might be required for tau processing [216]. As the

key E3 ubiquitin ligase for tau processing [210], CHIP

connects the degradation pathway with the molecular

chaperon function. Although the detailed mechanism

remains unknown, a non-canonical, ubiquitin-independent

degradation pathway is thought to be involved in tau

clearance [214].

As mentioned previously, autophagy is another tau

clearance pathway. Autophagosomes and autolysosomes

are abundant in AD samples; nevertheless, autophagy

activity is impaired, accompanied with lysosomal vesicle

accumulation [217]. More importantly, trehalose, a natural

alpha-linked disaccharide and stimulator of autophagy, can

significantly decrease the levels of phosphorylated tau and

abnormal tau accumulation in rodent models [218]. It has

additionally been shown that in the P301S tau transgenic

mouse, trehalose can lessen the filamentous inclusions in

the cerebral cortex and brainstem, but not in the spinal

cord. More experiments are needed to further explain this

selectivity [219].

Additional evidence supports the involvement of

autophagy in tau clearance. For instance, rapamycin can

inhibit mTORC1 activity and in turn upregulate autophagy.

In a P301S mouse model, rapamycin can encouragingly

reduce most hallmarks of tau disease, including phospho-

rylated tau levels, NFT formation and locomotion defects

[220, 221]. On the contrary, inhibition of autophagy

through inhibitors such as 3-methylamphetamine (3-MA),

or by genetic means such as removing ATG7 activity or

upregulating mTORC1 activity, leads to a suppression of

tau clearance [221–223]. Intriguingly, different subtypes of

autophagy may target distinct tau species. Full-length tau is

preferentially degraded by macroautophagy. However,

certain truncated forms of tau proteins such as tauRDDK280

are processed through Hsc70-mediated autophagy (Chap-

erone-mediated autophagy, CMA) [222], indicating that

the role of autophagy in regulating tau proteins is complex.

Strategies for development of tauopathy
treatments

No effective treatments or medicines exist to cure or pre-

vent AD or tauopathies. Based on our current

understanding of tauopathy, some clinical strategies

directed to attack certain aspects of tauopathy are sum-

marized here (Table 1). There is no question that better

elucidation of the etiology of tau will lead to more effective

treatment against tauopathy in the future.

Microtubule stabilization

Paclitaxel (taxol), a mitotic inhibitor broadly used in cancer

chemotherapy, can stabilize cellular microtubules and
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partially reverse tau toxicities from MT disassembly. In tau

transgenic mice, weekly injections of paclitaxel can help

restore axon transport ability and ameliorate movement

impairment [224]. Epothilones D, another MT stabilizer, is

also able to re-establish axon transport and improve the

cognitive performance of aged PS19 mice [225]. To

improve the permeability of the BBB, new generation

compounds such as BMS-241027 have been synthesized

and shown to benefit tau mice and it is now undergoing

Phase 1 clinical trials [226]. In addition to taxol derivatives

(paclitaxel, BMS-241027, TPI-287), neuroprotective pep-

tides such as Davunetide (NAP) can also protect MT in

tauopathies [227, 228]. NAP has been evaluated in a Phase

II/III clinical trial, but was reported to have failed in pro-

gressive supranuclear palsy (PSP) treatment [229, 230].

Unfortunately, compounds targeting MTs are beneficial

when treating cancer and schizophrenia, but have not

proved very effective towards tauopathy, suggesting

human tauopathy is most likely a tau gain-of-function

disease, and MTs’ defects may not be the main contributor.

Nevertheless, since MT stabilizers are beneficial to

experimental subjects in vertebrate models and pre-clinical

studies, it is still possible that under some circumstances

these stabilizers may find use in supportive treatments for

tauopathies.

Reduction of abnormal tau modifications

Phosphorylation appears to be the most important post-

translation modification of tau and several candidates have

been developed to target tau phosphorylation. GSK3b is

one of the most important kinases in tau pathogenesis and

is one of the best targets currently under study [231, 232].

LiCl (lithium chloride) is a well-known GSK3b inhibitor,

and in fly and mouse models, LiCl treatment significantly

reduced levels of tau phosphorylation and aggregation, as

well as axonal transportation [43, 233, 234].

It was also reported that long-term lithium treatment in

certain human trials led to promising results, including

reduction of CSF phosphorylated tau and better perfor-

mance in cognitive tests [235, 236]. However, other

clinical reports found LiCl failed to improve the cognition

of patients, or to reduce the hyperphosphorylation of tau

[237, 238]. Therefore, additional carefully designed long-

term studies are needed to investigate and clarify the

effects of LiCl. Another GSK3b inhibitor, Tideglusib, can

effectively reduce tau toxicity and pathology, and improve

memory in mice [239], and is now in Phase II trial [240,

241]. The potency of Tideglusib in humans remains an area

of debate. A double blind Phase II study suggested that it

failed in AD and PSP patients [240, 241]; however, a

recent report from trial investigators claimed that Tide-

glusib can reduce patient brain atrophy rate as monitored

by MRI [230] (http://www.noscira.com/media/docs/Nota_

Prensa20072012_en.pdf). AZD1080 is another GSK3b
inhibitor that is permeable to the BBB. In the pre-clinical

test, this compound significantly attenuated GSK3b activ-

ity [242]. In addition to GSK3b, other kinases such as

CDK5, MARK and Fyn are considered potential targets as

well [243, 244].

Alternatively, augmenting the activities of tau phos-

phatases can reduce tau phosphorylation. Sodium selenate

(Na2SeO4) reduces hyperphosphorylation, abrogates NFTs

of tau and relieves symptoms in tau mice by activating

PP2A [245]. Another PP2A activator, biguanide met-

formin, formerly used as an anti-diabetic drug, also

decreases tau phosphorylation [246]. PP2A activators

generally belong to sphingoid, phenolic and anionic clas-

ses, so more candidates from these categories may possibly

be tested in future studies [247]. It is worthwhile to point

out that targeting PP2A to compromise tau toxicity has

potential limitations. Due to the broad range of PP2A

substrates [248], using PP2A as a drug target should be

very carefully conceived, taking activator specificity and

Table 1 Tauopathy treatment strategies under development

Aspect related to tauopathy Therapy strategies Drugs

Binding and regulation of microtubules Stabilize microtubules Paclitaxel, epothilones D, BMS-241027, TPI-287,

NAP (Davunetide), TMAO

Abnormal modification (phosphorylation,

acetylation)

Reduce abnormal modifications on

tau

Lithium, tideglusib, AZD1080, metformin, sphingoid,

phenolic and anionic compounds

Heavy metals (Cu, Fe, Zn) Regulate metal homeostasis CQ, DP-109, PBT2

Protein aggregation Inhibit protein aggregation Methylene blue, LMTX

Molecular chaperons, and tau clearance Regulate tau protein level Rapamycin, trehalose, IU1

Immunotherapies PHF-1 antibody, tau peptide (tau379-408), phosphor-

peptides (tau 195-213 (P-Ser202, 205), tau 207-220

[P-Thr212, Ser214), and tau 224-238 (P-Ser238)]
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safety into consideration (for more discussion of this see

review by Jeffry [247]). One solution is to modulate

specific PP2A components or regulatory partners such as

inhibitors 1 or 2 of PP2A [249], which are less universally

involved in other biological processes. Drugs such as

Memantine have been shown to effectively block tau

phosphorylation by modulating I2PP2A [250].

Regulation of metal ion homeostasis and/or tau

aggregation

Aggregate forms of tau are considered toxic to neurons and

greatly contribute to tau pathology [72]. For this reason,

compounds that block protein aggregation may qualify as

potential candidates to treat tauopathies [251]. Metal ions

are often inducers of protein aggregation and one important

factor for zinc ion’s aggravating effect on tau is through its

direct binding to the protein. Data from animal models

suggest that genetic manipulation of metal ion homeostasis

can significantly moderate AD pathogenesis and tauopathy.

Metal ion chelation also enhances b-amyloid solubility in

AD tissues. In mouse model studies, metal ion chelator

clioquinol (iodochlorhydroxyquin) [252] and DP-109 (1,2-

bis(2-aminophenyloxy)ethane-N,N,N0,N0-bis(2-octadecy-

loxyethyl)ester, N,N0-disodium salt) can reduce Ab toxicity

and levels of insoluble Ab aggregation as well as plaque

formation [169, 171]. In addition, an improved analog of

clioquinol, PBT2, shows more effective rescue of AD

symptoms in mouse models [253–255]. Although PBT2

and CQ acting as ionophores or metal chaperones are also

proposed [256], the data strongly indicate that reuse and

redistribution of metal ions are critical to AD progression.

A small AD clinical study suggested clioquinol may be

somewhat effective in treating the disease [257]; however,

some of the results were also the subject of debate [258].

More encouragingly, PBT2 performs better in clinical tri-

als, showing evidence of CSF Ab reduction and improved

cognition in patients [259, 260].

Because metal ions are absolutely necessary for cell

survival and their homeostasis is strictly regulated, their

universal removal would unlikely be achievable in vivo

without severe consequences. An ideal strategy would be to

target the key metal ions involved in neurodegenerations

through more complete chelation of metal ions specifically

from relevant pathologic proteins. However, this strategy

remains a challenge as there is currently no method to

specifically prevent or interfere with the binding of metal

ions to tau without also affecting their binding to the other

proteins. Alternatively, for practical purpose, targeting

metal ion levels in relevant pathologic tissues may be

considered.

Other compounds have also been shown to be effective

in reducing tau aggregation. Methylene blue

(methylthioninium chloride), a heterocyclic aromatic

chemical compound, effectively retards the aggregation

process by directly inserting into b-sheet structures

in vitro [261]. In vivo, methylene blue improves cognition

in tau mouse models [112], and is now in phase II trial

evaluations [262]. LMTX, a derivative of methylene blue,

is currently in a phase III clinical trials and might be an

even more effective remedy for AD [263]. Since b-sheet

conformation is not unique for aggregated Ab and tau, but

is also observed in other proteinopathies, it is hypothe-

sized that methylene blue and LMTX might also be

effective therapies in other protein aggregation diseases.

Regulation of tau protein level and/

or immunotherapy

Because the tau protein itself is considered the central

cause of pathogenesis in tauopathies [264–267], regulating

tau proteins might be the most direct and efficient way to

ameliorate the disease symptoms. As previously discussed,

reducing tau protein levels can mitigate the severity of

neuropathology and neurodegeneration in AD mouse

models [268–270]. One possible approach to regulating tau

levels is through changing mRNA stability or translation

efficiency either via siRNA interference or pharmacologic

compounds [271]; another approach to depress tau levels is

through increasing protein degradation by stimulating the

autophagy and/or proteasome pathway. It has been shown

that autophagy activation with the use of rapamycin and

trehalose significantly reduces tau levels [218, 220]. Acti-

vating the proteasome to eliminate pathological tau

proteins constitutes an alternative to autophagy. IU1 (in-

hibitor of USP14) has been shown to enhance proteasome

(20S) activity and promote tau degradation in tissue culture

cells [272].

Immunotherapies which target key proteins involved in

the pathogenesis of neurodegenerative diseases are another

method of approach. The concept of using immunotherapy

against AD was first tested in an APP transgenic rodent

model. b-Amyloid-immunized young mice developed

plaques and neurodegeneration at a much slower rate than

the control group [273]. Additional studies showed that

both active and passive immunization could benefit the

disease model by reducing Ab levels [274–276]. Based on

these results, clinical trials of b-amyloid Immunotherapy

have been performed in human subjects. Although there are

concerns regarding the safety of the treatment and uncer-

tainties with the reproducibility, some patients receiving

AN1972 (a synthetic full-length b-amyloid peptide with

QS-21 adjuvant) have been reported to be absent of plaques

after treatment [277].

Immunotherapies aimed at tau proteins have also been

explored. A peptide (tau 379–408 aa) immunization in

12 Y. Huang et al.

123



P301L transgenic mice can dramatically reduce tau

aggregation and slow the pathogenesis [278]. Additional

tau peptide fragments, some with phosphorylation residues

(tau 195–213 aa with pS202/pS205; tau 207–220 aa with

pT212/pS214; tau 224–238 aa with pS238), have also been

tested in animal models [279, 280]. Promisingly, several of

these show reduction of tau aggregation and restore cog-

nitive abilities in test animals. Passive immunization which

targets PHF-1 by injecting anti-PHF-1 IgG (recognizing a

PHF-1 epitope with two phosphorylation sites pS396/

pS404) also significantly reduces tau toxicities in mouse

models [281]. Although a number of successful cases have

been reported, mechanistically it is more difficult to

understand how immunotherapy works against tau, since,

unlike extracellular Ab plaques, tau is mostly an intracel-

lular component.

Conclusive remarks

Great strides have been made towards understanding the

mystery of tau toxicities. In general, it is thought that

hyperphosphorylation on tau can lead to the downstream

toxic effects, which include ‘‘loss of function’’, such as loss

of microtubule binding, and ‘‘gain of toxicity’’, such as

formation of tau oligomers and aggregates (refer to Fig. 2).

The exact mechanism of tau toxicity might be the result of

the combination of these two events. Phosphorylation of

tau is by itself a highly complex process, regulated by

various kinases and phosphatases at multiple positions

(refer to Fig. 1). Some phosphorylation events are key to

tau toxicity while some others are less important and some

may even play protective roles.

Besides phosphorylation, other protein modifications,

such as glycosylation and ubiquitination, metal ions, and

protein degradation systems, can all influence tau toxicity

and disease progression. This level of complexity hinders a

rapid and concrete understanding of tau toxicity and

impedes the progress of drug development.

In the past few years, models for tau studies have

expanded. In addition to the use of traditional cell culture,

and in vivo models of fruit flies, worms and mice, other

mammalian models have also been developed including rat

and primate monkey models. This expanding repertoire of

models may better facilitate our understanding of tauopathy.

Though the number of aged people and the people who

suffer the risk of severe neurodegenerative diseases such as

AD are rising, effective drugs and therapies for these dis-

eases are still lacking. Currently, various drug candidates

against different individual aspects of tau toxicity have

been developed or are under active development. The

complexity of tauopathy also suggests the consideration of

a combination strategy to block tau toxicity, such as

blockage of tau aggregation and promotion of its clearance,

coupled with regeneration of the neurons in the patholog-

ical lesions. To obtain more effective therapies, it is

imperative to acquire a better understanding of tauopathy.

This no doubt requires finding potential connections

between known impact factors and some other lesser

known elements. Clarifying their roles on tau toxicity as

well as the relative importance of these factors’ contribu-

tions to tauopathy needs to be further established.

Investigations need also to be carried out to understand the

underlying mechanism of how different mutations of tau

can lead to distinct neuropathologies. A better under-

standing of tau etiology will undoubtedly lead to improved

therapies in the future.
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