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Abstract Since their discovery, SOCS have been charac-

terised as regulatory cornerstones of intracellular

signalling. While classically controlling the JAK/STAT

pathway, their inhibitory effects are documented across

several cascades, underpinning their essential role in

homeostatic maintenance and disease. After 20 years of

extensive research, SOCS3 has emerged as arguably the

most important family member, through its regulation of

both cytokine- and pathogen-induced cascades. In fact, low

expression of SOCS3 is associated with autoimmunity and

oncogenesis, while high expression is linked to diabetes

and pathogenic immune evasion. The induction of SOCS3

by both viruses and bacteria and its impact upon inflam-

matory disorders, underscores this protein’s increasing

clinical potential. Therefore, with the aim of highlighting

SOCS3 as a therapeutic target for future development, this

review revisits its multi-faceted immune regulatory func-

tions and summarises its role in a broad ranges of diseases.

Keywords Suppressor of cytokine signalling (SOCS) �
Janus kinase/signal transduction and activator of
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Introduction

SOCS regulation of intracellular signalling

Inflammation represents a fundamental response to

microbial, chemical and physical injury. Cytokine sig-

nalling regulates various pathophysiological processes and

the generation of immune responses and inflammation [1].

Cytokines, such as interleukins (IL) and interferons (IFNs),

activate the Janus kinase/signal transducer and activator of

transcription (JAK/STAT) pathway [2], a critical intracel-

lular cascade for the transduction of extracellular signals to

the nucleus. The association of a ligand with its receptor

results in receptor dimerisation, leading to JAK auto-

phosphorylation. Activated JAKs phosphorylate cytoplas-

mic domains of the receptor, which provide docking sites

for STATs. Phosphorylated STATs dissociate from the

receptor, dimerise and translocate to the nucleus, where

they interact with various regulatory elements that induce

target gene expression [3–5]. Although cytokines are

required to control infection, their overproduction can lead

to local and/or systemic pathology. Several well-charac-

terised mechanisms exist to prevent the overproduction of

these mediators and down-regulate their signalling,

including the upregulation of suppressor of cytokine sig-

nalling (SOCS) proteins [6, 7]. SOCS are intracellular,

cytokine-inducible proteins that regulate the JAK/STAT

pathway in numerous cell types, including those of the

immune system [8, 9]. The SOCS family consists of 8

members, the cytokine-inducible Src homology 2 protein

(CIS) and SOCS1-SOCS7 [10–12]. This group of proteins

shares structural similarity: a central Src homology (SH)2

domain, a conserved C-terminal SOCS box and an amino-

terminal domain of variable length and sequence [13].

SOCS1 and SOCS3 contain an additional kinase inhibitory
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region (KIR) [14] (Fig. 1). SOCS proteins can be induced

by numerous cytokines, including IL-6 and TNF-a, growth
factors, chemokines and pathogenic components (Fig. 2),

including lipopolysaccharide (LPS) [11, 15–18]. Once

upregulated, SOCS act via a negative feedback loop to

inhibit further signal transduction. SOCS1 and SOCS3

proteins directly bind to JAKs through the SH2 domain and

inhibit their activity. Babon et al. identified a new model of

SOCS3 signalling inhibition. Once SOCS3 is recruited to

receptors via high affinity binding sites, such as gp130, it

binds to and inhibits the catalytic activity of JAK1, JAK2

and TYK2 [19]. This process is elegantly reviewed by

Babon and Nicola [20]. Both SOCS1 and SOCS3 also

compete for the acquisition of phosphorylated cytokine

receptor tyrosine residues, thereby blocking STAT binding.

SOCS use the ubiquitin proteasome system to degrade

JAKs and other signalling molecules, via interaction with

their SOCS box [21], which is also important for the sta-

bilisation and/or degradation of SOCS1 and SOCS3

themselves [22] (Fig. 3). Interestingly, SOCS1 and SOCS3

retain some activity even after truncation of the SOCS box,

highlighting that the SOCS box is not solely responsible for

degradation of SOCS1 and SOCS3 target proteins [23].

Furthermore, compared to the other SOCS family

members, the SOCS box of SOCS1 and SOCS3 binds with

lower affinity to the E3 ligase protein, Cullin-5, revealing

their differential mechanisms of action [24]. Among the

SOCS family, SOCS1 and SOCS3 are the best charac-

terised in their inhibition of JAK-STAT signalling. SOCS1

and SOCS3 also inhibit other signalling pathways, such as

Ras/Extracellular Signal-Regulated Kinase (Ras/ERK),

Phosphatidylinositide 3-kinases (PI3K) and focal adhesion

kinase (FAK) signalling and the NF-jB cascades [25–29].

In recent years, increasing evidence detailing SOCS3’s

broad-acting regulation of many biological processes has

implicated it in several immune disorders, diabetes,

infectious disease progression and oncogenesis, thus iden-

tifying SOCS3 as a key protein at the cross roads of

numerous intracellular and pathological events.

SOCS3 signalling regulation

SOCS3 is a well characterised regulator of STAT3 acti-

vation in response to several cytokines, including those in

the gp130-containing IL-6 receptor family [30–36], but

has also been documented to inhibit STAT1 [37], STAT4

[38], STAT5 [39] and STAT6 [40]. Moreover, SOCS3’s

broad regulation of several immune pathways is clearly

Fig. 1 Suppressor of cytokine signalling (SOCS) protein family

members; there are eight members of the SOCS family of proteins,

with each member possessing a SOCS box domain (blue), an SH2

domain (pink) and an amino-terminal region. The highly conserved

SOCS box domain, located at the carboxy-terminus, is 40 amino acids

in length and is the site of recruitment for the components of the E3

ligase, used for protein degradation. The SH2 domain is centrally

located and also exhibits a considerable level of homology between

members of the SOCS family. However, the amino-terminal domain

is more variable in terms of both length and sequence. In SOCS1 and

SOCS3 only, there is a kinase inhibitory region (KIR) just upstream

of the SH2 domain, which yields another method of inhibiting the

catalytic activity of JAKs, in addition to E3 ligase assembly. The KIR

is thought to bind to the activation loop of JAKs with high affinity and

thereby act as a pseudo-substrate. The importance of this region to the

suppressive activity of SOCS1 and SOCS3 is emphasised by the fact

that point mutations in this region completely abrogate their capacity

to regulate cytokine signalling
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demonstrated through its inhibition of IL-1-TRAF6 and

TNF-a-TRAF2 signalling [29, 41], and its enhancement

of FAK-mediated CCL11 signal transduction [28].

SOCS3’s important regulatory role during infection is

evidenced by its rapid induction upon detection of TNF-a,
IL-6 and several pathogen-associated molecular patterns

(PAMPs), such as LPS and CPG-containing DNA [1, 42,

43]. While SOCS3 is mainly characterised for its role in

negative feedback inhibition [44–46], silencing of SOCS3

decreases LPS-induced production of TNF-a and IL-6 in

macrophages, revealing its ‘‘alternative’’ role in positively

regulating TLR4-induced macrophage activation [47].

While these seemingly contradictory roles may be cell-

type specific, they highlight the multi-functional and

versatile effects of this molecule. Along with innate

immune regulation, SOCS3 is an important regulator of

adaptive immunity and plays a crucial role in T cell

activation and polarisation. Differentiation of naive

T-helper (Th) cells into the mature antigen-specific Th2

phenotype is associated with SOCS3 expression [48], with

Egwuagu et al., finding 23-fold higher SOCS3 levels in

Th2 cells, compared with CD4? naive T cells [49]. In

addition, SOCS3 is important for the onset and mainte-

nance of Th2-mediated allergic immune disease, with

SOCS3 transgenic mice displaying amplified Th2

responses and features characteristic of asthma [50].

Furthermore, SOCS3 inhibits Th1 differentiation via

regulation of IL-12-induced STAT4 activation [48, 49,

51]. SOCS3 also plays a role in restricting Th17 cell

generation, by inhibiting IL-23 signalling [52]. This

SOCS3-mediated skewing towards Th2 differentiation has

implications for asthma onset and development, with

Veenbergen et al. showing that in SOCS3-transduced

antigen-presenting cells (APCs), splenic CD3? T cells

had decreased antigen-specific proliferation and a signif-

icant reduction in IFN-c (-43 %), IL-4 (-41 %), and IL-

17 (-70 %) production [53]. In order to highlight these

broad regulatory functions of SOCS3, Table 1 sum-

marises several of its key roles.

Abnormal levels or dysfunction of SOCS3 have been

linked to the onset and/or development of several human

diseases, including rheumatoid arthritis (RA), hepatitis C

virus (HCV) and Human Immunodeficiency Virus (HIV)

infection, diabetes and cancer [29, 54–56]. Therefore, this

review documents the role of SOCS3 in these disorders,

with the aim of encouraging discussion around the thera-

peutic potential of SOCS3 and development of novel

treatments.

Fig. 2 SOCS protein induction

by JAK/STAT signalling; when

a cytokine or growth factor

binds to its cognate receptor, the

two chains of the receptor

become more closely

associated, which in turn brings

the JAKs closer. This allows the

JAK proteins to phosphorylate

and activate each other and

subsequently phosphorylate

specific sites on the receptor

chains. This leads to STAT

recruitment to the

phosphorylated sites on the

receptor, through specific

interactions via their SH2

domains. The STATs

themselves are phosphorylated

and activated by the JAKs,

which enables their dimerisation

and translocation to the nucleus,

where they induce the

transcription of their target

genes. These genes include the

SOCS family members. In this

manner, a negative feedback

loop is established, as SOCS

proteins will go on to attenuate

cytokine signalling by targeting

JAKs and STATs, as

represented in Fig. 3
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SOCS3 and rheumatoid arthritis

RA is a common autoimmune disease characterised by

chronic inflammation of multiple joints, resulting in

mononuclear cell infiltration and progressive cartilage

destruction [57–59]. The exact trigger for RA remains

unknown, although pro-inflammatory cytokines, such as

TNF-a, IL-1, IL-6 and IL-17, have been shown to play an

important role in its pathology [60–63]. Deregulation of

TNF-a expression in transgenic mice is sufficient to cause

chronic inflammatory polyarthritis [64]. Furthermore,

blocking TNF-a with a monoclonal antibody or soluble

receptor significantly improves the clinical status of

patients [65–67]. IL-6 strongly signals via the JAK/STAT

pathway and accumulating evidence suggests that STAT

and SOCS proteins play important roles in RA

pathogenesis [53, 54, 68]. In 1995, Wang et al. reported

activated STAT3, but not STAT1, in cells isolated from the

synovial fluid (SF) of patients with inflammatory arthritis

[69, 70]. Moreover, the SF from RA patients has been

shown to induce STAT3 activation in monocytes [71];

while hyper-activation of STAT3, as well as increased

SOCS3, was reported in synovial tissue from an arthritis

murine model [54, 61]. In 2001, Shouda et al., found that

adenoviral delivery of SOCS3 or a dominant negative

STAT3 in synovial tissue of mice with antigen-induced

arthritis (AIA) and collagen-induced arthritis (CIA) sig-

nificantly reduced the severity of arthritis and joint

swelling, compared to control groups. SOCS3 expression

suppressed bone destruction and reduced joint inflamma-

tion, which subsequently resulted in decreased IL-6

production. SOCS3 was found to be more effective than the

Fig. 3 Mechanisms of SOCS-mediated inhibition of the JAK/STAT

pathway; SOCS1 can inhibit the kinase activity of JAKs by directly

binding to them, while it is thought that SOCS3 first binds to the

receptor to hinder the activity of JAKs. It is believed that CIS also

binds to the cytokine receptor chains, but in doing so obstructs the

recruitment and therefore activation of the STAT proteins. SOCS

proteins can also mediate the degradation of JAKs via the ubiquitin–

proteasome system (box overlay). The highly conserved SOCS box

domain directly interacts with Elongin B and C, two components of

an E3 ligase complex, which then interact with Cullin-5 and RING-

box 2 (Rbx2), as well as an E2 ubiquitin conjugating enzyme. The

assembly of this complex allows the polyubiquitination of JAK

proteins to occur, which labels them for degradation by the

proteasome
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dominant negative STAT3 in the CIA model, suggesting

that SOCS3 induction in synovial cells could represent an

effective therapeutic strategy for treating RA [61]. Addi-

tionally, high expression of SOCS3 in splenic APCs led to

decreased production of IL-6 and TNF-a, but high pro-

duction of the anti-inflammatory cytokine, IL-10. These

altered splenic cellular responses were accompanied by a

profound protective effect against the development of CIA

[53]. Furthermore, deletion of SOCS3 in hematopoietic and

endothelial cells was associated with severe IL-1-depen-

dent inflammatory arthritis, characterised by a prominent

neutrophil synovial infiltrate and increased bone destruc-

tion [58]. This absence of SOCS3 enhanced T lymphocyte

and macrophage activation, resulting in upregulation of IL-

17 and IL-6, respectively, most likely feeding uncontrolled,

detrimental STAT3 signal transduction [58]. A mutation in

the gp130 receptor chain (Y757F) of mice blocked SOCS3

binding and thus led to the development of a spontaneous

RA-like phenotype associated with autoantibody produc-

tion and T cell abnormalities with advanced age [72]. In

addition, Van de Loo et al., showed that SOCS3 mRNA

and protein are increased in human pathological chondro-

cytes, suggesting that SOCS3 dysregulates normal

chondrocyte function, thereby playing a major role in the

development of cartilage pathology observed in RA

patients [54].

Together these findings reveal the significant role

SOCS3 plays in RA progression and emphasise that signal

inhibition of STATs, especially STAT3, by SOCS3 could

be an effective strategy in the treatment of RA.

SOCS3 and diabetes

Diabetes is a significant metabolic disorder characterised

by impaired insulin activity [73]. Pro-inflammatory

cytokines, such as IL-6 and TNF-a, have been shown to

play a critical role in insulin resistance and are associated

with type 2 diabetes [74]. Several studies have shown that

SOCS3 participates in the regulation of insulin signalling

[75–78]. SOCS3 expression is elevated in the adipose tis-

sue of insulin-resistant obese mice, while SOCS3 is

induced transiently by insulin in the liver, muscle and

white adipose tissue [75]. Even though insulin sensitivity

was enhanced in the liver of hepatocyte-specific SOCS3-

deficient mice, they exhibited obesity and systemic insulin

resistance with age, suggesting that deletion of the SOCS3

gene in the liver can even modulate insulin sensitivity in

other organs [76]. However, a separate study showed that

in mice exposed to IL-6, increased hepatic SOCS3 inhib-

ited both insulin receptor auto-phosphorylation and insulin

receptor substrate 1 (IRS1) phosphorylation [79]. Further-

more, Jorgensen et al., reported that mice lacking SOCS3

in skeletal muscle were protected against the development

of hyper-insulinemia and insulin resistance. This protection

was thought to be mediated through increased glucose

uptake as a result of enhanced IRS1 and protein kinase B

(Akt) phosphorylation in the skeletal muscle [77]. In

addition, overexpression of SOCS3 in adipocytes causes

local adipocyte insulin resistance in mice. Shi et al., found

that overexpression of SOCS3 in adipocytes decreased both

total and phosphorylated IRS1 protein levels, limited p85

Table 1 The functions of SOCS3

Role Mechanism

Inhibits JAK/STAT signalling Binds to JAKs via SH2 domain and inhibits activity

Competes for phosphorylation sites on cytokine receptors and inhibits STAT activation

Ubiquitinates and degrades JAKs via SOCS box

Inhibits Ras/extracellular signal-regulated

kinase (Ras/ERK) signalling

Interacts with the Ras inhibitor; p120 RasGAP

Maintains activation of ERK

Ensures cell survival and proliferation

Inhibits phosphatidylinositide 3-kinases (PI3K)

signalling

Prevents PI3K p85 activation

Inhibits focal adhesion kinase (FAK) signalling Interacts with FAK (Y397) via SH2 and KIR domains

Inhibits kinase activity and phosphorylation of FAK

Ubiquitinates and degrades FAK via SOCS box

Inhibits cell motility on fibronectin

Inhibits NF-jB pathway IL-1b-induced NF-jB-dependent pro-apoptotic early response genes are inhibited by SOCS-3,

e.g. iNOS, ICAM, complement C3, Mob-1, MIP-1, CX3C, NF-jB-p105, IRF-1 and

fibrinogen

T helper (Th) cell polarisation Highly expressed in Th2 cells

Prevents differentiation into Th1 cells

Restricts IL-17 induction
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binding to IRS-1 and attenuated glucose uptake in adipo-

cytes. This impaired insulin signalling in the adipose tissue

of transgenic mice overexpressing SOCS3, decreased

lipogenesis and blocked insulin’s anti-lipolytic activity

[81]. SOCS3 was also shown to inhibit insulin action by

binding to IRS1 and IRS2 and targeting them for protea-

somal degradation [82].

These studies clearly demonstrate a crucial role for

SOCS3 in regulating insulin signalling and highlight the

significant impact clinical regulation of SOCS3 might have

in therapeutically controlling insulin activity in patients

with diabetes.

SOCS3 and viral infection

The interferon (IFN) response represents an early host

defence mechanism against viral infection. Viruses evade

immune responses using a variety of strategic interventions.

DNA and RNA viruses often inhibit IFN-induced anti-viral

responses by blocking the JAK/STAT pathway [83–86].

Induction of SOCS3 by viruses such as herpes simplex virus

type 1 (HSV-1), HCV and HIV-1, suggests a key role for

SOCS3 in suppressing anti-viral signal transduction [87–89].

HSV-1 is estimated to infect *3.7 billion people under

50 years of age (WHO, 2012). The virus rapidly induces

SOCS3 expression via STAT3 activation, which conse-

quently attenuates anti-viral IFN JAK/STAT signalling,

thus enhancing HSV-1 replication [89, 90].

HCV infection represents another global health problem,

with *180 million of the world’s population currently

infected. *70–80 % of these patients develop chronic

infection, with a risk for progressive liver fibrosis and

hepatocellular carcinoma [91]. HCV core protein is thought

to inhibit IFN-mediated STAT1 activation via increased

SOCS3 expression, which may, at least in part, explain the

lack of therapeutic responsiveness to IFN-a treatment [88].

In fact, hepatic SOCS3 expression is strongly associated

with resistance to IFN-a therapy [87, 91]. Furthermore,

Zhu et al., showed that IFN-a resistant HCV replicons

produced higher levels of SOCS3 than their IFN-sensitive

counterparts [92]. Recently, we reported that peripheral

blood mononuclear cells from HCV-infected patients have

elevated SOCS3 expression, compared to healthy controls,

and that HCV overexpression in Huh7 hepatocytes indu-

ced SOCS3, which inhibited TNF-a signalling [29].

Interestingly, while Shao et al., also showed overexpres-

sion of SOCS3 inhibited IFN-induced STAT1

phosphorylation, it reduced HCV replication, suggesting

that in this context, the anti-viral actions of SOCS3 are

mediated through a JAK/STAT-independent pathway [93].

HIV is also a major health problem, infecting *34

million individuals worldwide (WHO, 2013). SOCS1 and

SOCS3 have been found to be increased upon HIV-1

infection and responsible for reduced IFN responsiveness

and, in the case of SOCS1, regulation of HIV-1 Gag traf-

ficking and assembly [94, 95]. IFN-b transiently suppresses

viral replication within macrophages of the central nervous

system (CNS) upon HIV-1 infection [96], but the virus

overcomes this protective innate immune response via the

induction of SOCS3, which inhibits IFN-b-mediated JAK/

STAT signalling [96]. In contrast to these studies, Miller

et al., reported that HIV-1 downregulates SOCS3 and

SOCS1, which results in sustained activation of STAT

proteins. The authors conclude that SOCS3- and SOCS1-

mediated interference of HIV infection drives immune

activation, thereby favouring HIV replication [97].

Influenza A virus triggers contagious acute respiratory

disease that infects 5–10 % of the adult population each

year (WHO, 2016) [98]. Overexpression of Influenza NS1

protein in HeLa cells upregulated SOCS1 and SOCS3 and

inhibited STAT1-3 signalling, demonstrating an immune

evasion strategy that ensures anti-viral responses to IFNs

are blocked [99]. Pauli et al., also reported that Influenza A

virus inhibited type I IFN signalling through induction of

SOCS3, in an NF-jB-dependent manner. Additionally,

SOCS3-deficient murine embryonic fibroblasts (MEFs) or

SOCS3 knockdown cells showed sustained phosphoryla-

tion of STAT1, correlating with elevated expression of type

I IFN-dependent genes and reduced viral titres [100].

RSV causes severe respiratory tract illness in infants and

the elderly. RSV regulates IFN signalling via SOCS1,

SOCS3 and CIS induction [101–103]. RSV also interferes

with type I IFN signalling by mediating proteasomal

degradation of STAT2, which demonstrates the broad anti-

viral immune evasion strategies of this virus [104].

These findings collectively demonstrate the important

role for SOCS3 in regulating type I IFN responses during

viral infection and show how a number of viruses,

including HSV-1, HCV, Influenza and RSV, all induce

SOCS3 expression in several cell types. This immune

evasion strategy has been shown to actively dampen host

anti-viral responses, thus promoting the ability of the virus

to replicate. Together these reports may suggest that, as

with inflammatory disorders, therapeutic manipulation of

SOCS3 expression could be a useful tool in restoring the

anti-viral immune responses.

SOCS3 and bacterial infection

SOCS3 plays a critical role in restraining inflammation

and, in doing so, generates optimal levels of protective

immune responses against bacterial infection. Induction of

SOCS3 by LPS indicates its important role in immune

responses against bacteria [105], and has paved the way for
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analysis into SOCS3-induction via a plethora of specific

bacterial species including Anaplasma phagocytophilum,

the causative agent of tick-borne human granulocytic

anaplasmosis (HGA) [106], Brucella species (B. melitensis,

B. neotomae and B. ovis) [107], Lactobacillus rhamnosus

GG and Streptococcus thermophilus [108].

Borrelia burgdorferi or its lipidated outer surface pro-

tein A (L-OspA) amplified IL-10-induced SOCS1 and

SOCS3 mRNA and protein expression in murine J774

macrophages [109]; Helicobacter pylori in a Korean isolate

(HP99), induced the expression of SOCS3 in rat gastric

mucosal cells (RGM-1) [110]; Mycobacterium bovis

Bacille Calmette-Guérin (M. bovis BCG) up-regulated and

activated NOTCH1 signalling, leading to the expression of

SOCS3 [111], all suggesting a conserved bacterial immune

evasion strategy. Salmonella typhimurium increased TLR4-

mediated SOCS3 expression in draining lymph nodes

(DLNs) and blocked Smad3 (small mothers against

decapentaplegic homolog-3)-mediated production of

CCL21. The reduction in CCL21 is thought to disrupt

lymph node architecture and cell trafficking and thus

enhance S. typhimurium virulence [112].

There is also an increasing body of evidence implicating

SOCS3 as having a crucial role in Mycobacterium tuber-

culosis (TB) infection and disease severity. Using DNA

array and RT-PCR technology, Mistry et al., found ele-

vated SOCS3 expression in whole blood from TB patients

as well as patients with recurrent TB, when compared to

healthy donors with latent M. tuberculosis infection

(LTBIs) [113]. Given that SOCS3 overexpression in mice

leads to immune polarisation, promoting generation of Th2

cells [51] and suppression of Th17 responses [52], the

modulation of SOCS3 in T cells is an important immune

polarising process during M. tuberculosis infection.

A later study by Nair et al., showed that the PPE18

protein of M. tuberculosis upregulates the expression, as

well as tyrosine phosphorylation, of SOCS3, which

directly leads to inhibition of LPS-induced IL-12 and

TNF-a production by blocking nuclear translocation of

p50, p65 NF-jB, and c-rel transcription factors [114]. A

separate study found that SOCS3 expression in either

lymphoid or myeloid cells generates resistance to M.

tuberculosis via SOCS3’s regulation of IL-6/STAT3 sig-

nalling, which prevented IL-6-mediated inhibition of TNF

and IL-12 secretion. In this way, SOCS3 contributed to

IFN-c expression in CD4? T cells and attenuated the

secretion of IL-17 by cd T cells, in response to infection

[115]. Further studies have demonstrated that SOCS3

expression correlates with severity of disease, with

SOCS3 mRNA accumulation significantly reduced in

advanced pulmonary TB, compared with endemic con-

trols [116, 117].

This data highlights the broad spectrum of bacterial

pathogens that harness our immune responses via SOCS3

and further identify it as a target to improve the control

of infection, or enhance the efficiency of novel vaccination

strategies against bacteria.

SOCS3 and cancer

SOCS3 exhibits clear tumour suppressor activity, which

is thought to be mediated via both the JAK/STAT

pathway and focal adhesion kinase (FAK) signalling [80,

118–124]. FAK is a ubiquitously expressed, non-recep-

tor, protein tyrosine kinase that plays a crucial role in

many cellular processes including cell survival, prolif-

eration and motility [125–127]. SOCS3 binds to FAK,

inhibits its kinase activity and induces its degradation via

the proteasome, thereby effecting cell migration and

tumour invasion [118]. Aberrant methylation in the

promoter region of the SOCS3 gene frequently occurs in

several types of human malignancy, and its transcrip-

tional silencing is associated with malignant tumour

behaviour [80, 128]. Decreased SOCS3 expression was

found in adenocarcinoma human alveolar epithelial cells

(A549), induced by SOCS3 methylation. Reactivation of

SOCS3, using a demethylation agent, attenuated proline-

rich tyrosine kinase 2 (PYK2) expression and phospho-

rylation, resulting in reduced cell migration [129]. In

addition, SOCS3 methylation has been reported in hep-

atocellular carcinoma (HCC) cells, with restoration of

SOCS3 via demethylation, leading to suppressed STAT3

phosphorylation and cell growth in HCC cells [121].

Constitutive activation (by tyrosine phosphorylation) of

STAT3 and STAT5, both of which are SOCS3-regulated,

has been connected to cancer development [130, 131].

STAT3 is a substrate for the breast tumour kinase (Brk),

a tyrosine kinase expressed in breast carcinoma, which

has been linked to tumour progression [132]. Knock-

down of Brk in breast cancer cells (T47D and BT474),

decreased the phosphorylation of STAT3 and inhibited

T47D cell migration, indicating that blocking Brk

activity could have a profound effect in treating breast

cancer [132]. Recently, Gao et al., demonstrated that

SOCS3 binds to Brk and inhibits its kinase activity.

SOCS3 associates with Brk via its SH2 domain, but its

main inhibitory effect is mediated by the KIR domain

[133]. In addition, the C-terminal SOCS box domain of

SOCS3 has a modest effect on promoting Brk degrada-

tion [133]. The authors reported that, as SOCS3 is the

only known inhibitor of Brk, it is a potential therapeutic

target for blocking Brk activity and inhibiting cancer

progression [133]. In T47D breast cancer cells, SOCS3
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also suppressed STAT3 expression and abrogated

STAT5 phosphorylation, decreasing cell proliferation

[134]. Overexpression of SOCS3 in the head and neck

squamous cell carcinoma (HNSCC) cell line again

inhibited proliferation, migration and invasion, clearly

identifying SOCS3 as an effective tumour suppressor

gene [135].

Th17 cells produce pro-inflammatory mediators such as

IL-17A, IL-17F, IL-21, and TNF-a, but their overpro-

duction is linked to autoimmunity and cancer [136, 137].

The fish oil, docosahexaenoic acid (DHA), is suggested to

be an effective adjuvant for anti-cancer drugs, with several

intracellular targets, including NF-jB and peroxisome

proliferator-activated receptor gamma (PPARc) [138].

Interestingly, DHA reduces STAT3 phosphorylation,

thereby interfering with Th17 cell differentiation. This

effect was associated with DHA-induced SOCS3 expres-

sion, in a PPARc-dependent manner. Silencing of SOCS3

in T cells blunted the capacity of DHA to restrain IL-17

expression. In addition, DHA prevented tumour outgrowth

in an IL-17-dependent manner, as measured by cell via-

bility assay [139]. Leptin JAK/STAT signalling is

involved in gastric cancer [140]. Murine gastrointestinal

epithelial cells, containing a SOCS3 deletion, developed

gastric tumours, with mice demonstrating an increase in

the cell damage-, cell cycle- and apoptosis-related mole-

cules, p53, p21 and Bcl-xL. Furthermore, enhanced

STAT3 phosphorylation, induced by deletion of SOCS3,

led to increased leptin production, possibly acting through

the zinc finger transcription factor, specificity protein 1

(Sp1). These SOCS3-deficient mice developed tumours in

the stomach within 2 months and died within 6 months,

demonstrating SOCS3’s role in regulating this tumouri-

genic pathway [140]. Sp1 and STAT3 regulate both

distinct and overlapping groups of genes during tumouri-

genesis. These two transcription factors function in

cooperation to activate target genes in cancer progression

[141, 142].

While SOCS3 can inhibit activation of STAT3 of sev-

eral cytokine receptors, including gp130 [143, 144],

granulocyte-colony stimulating factor receptor [145], leptin

receptor [146] and IL-12Rb [38], it does not inhibit STAT3

activation in the IL-10 receptor pathway, suggesting a

broad regulatory capacity for IL-10-induced SOCS3 [46,

147].

Altogether, these data explicitly illustrate the anti-tu-

mour activity of SOCS3, which acts by limiting the

production of a plethora of genes involved in cell survival,

proliferation and motility, culminating in limited tumour

growth. Indeed, new immune-related anti-cancer therapies

may benefit by exploring SOCS3 as a potential target for

treatment of specific malignancies.

Therapeutic implications of SOCS3

The broad regulatory properties of SOCS3 and its direct

involvement in inflammatory disorders, diabetes, cancer

and both bacterial and viral infection, highlights it as a

strong therapeutic target. On the other hand, SOCS3 is

induced by a number of cytokines with both pro- and anti-

inflammatory functions, including IL-6 [46] and IL-10

[148], respectively. Furthermore, SOCS3 differentially

regulates inflammation depending on the cell type, pre-

senting obvious therapeutic challenges that must be

addressed through specific cell targeting [8, 149]. For this

reason, the transient nature of SOCS3 expression is being

addressed to ensure therapeutic effectiveness [150]. For

example, cell-penetrating (CP) forms of SOCS3 have been

established in cell cultures and mice, effectively blocking

signal transduction and protecting against inflammation

and organ failure during bacterial challenge [151]. Also,

overexpression of SOCS3, using a recombinant adenovirus

cDNA, reduced inflammatory RA development in mice

[61], further demonstrating the therapeutic potential of

SOCS3.

Interestingly, HCV upregulates SOCS3 in both hepato-

cytes [93] and immune cells [29], and since SOCS3

regulates the IFN-a pathway, it makes its suppression an

obvious target for enhancing the response to therapeutic

IFN-a. However, as with artificial induction of SOCS3, its

reduction may also be challenging. MicroRNAs are

increasingly being identified as regulators of SOCS

expression [152]. This is demonstrated in the repression of

microRNA-122, which inhibits SOCS3 expression (via

enhanced promoter methylation) and was postulated as a

promising alternative to treat HCV [153–155]. We have

also shown miR19a expression to suppress SOCS3, both at

the mRNA and protein level [156], identifying another

possible method of silencing SOCS3.

By suppressing the tumour-promoting activity of

STATs, SOCS3 could also be a useful tool in the treatment

of cancer; in fact, SOCS3 overexpression has already been

shown to inhibit growth of non-small lung cancer cells and

adenoviral transfer of SOCS3 enhanced the radio-sensi-

tivity of non-small lung cancer cells [157]. Infection of

liver tumour cells with oncolytic adenovirus CN305

(AdCN305)-SOCS3 and AdCN305-cell-penetrating pep-

tides-SOCS3 resulted in dramatic cytotoxicity of liver

tumour cells. However, the cytotoxic effects were not

observed in normal cells infected with these vectors.

Infection of liver tumour cells with AdCN305-SOCS3 and

AdCN305-cpp-SOCS3 resulted in almost complete inhi-

bition of STAT3 phosphorylation, demonstrating that the

transfer of SOCS3 via an oncolytic adenovirus represents a

useful approach to be explored further in the treatment of
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cancer [158, 159]. Furthermore, SOCS3 overexpression

suppressed the growth of the malignant fibrous histiocy-

toma (MFH) cell line by inhibiting STAT3 and IL-6

production, adding to the growing body of evidence

pointing towards SOCS3 as an effective tumour suppressor

[160]. Upregulation of SOCS3 by platelet factor 4 (PF4)

may also be a therapeutic target for cancer. PF4 is an

angiostatic chemokine that suppresses tumour growth and

metastasis [161]. Recently, PF4 was found to induce

SOCS3, thereby inhibiting STAT3 activation, angiogene-

sis, growth and induced apoptosis in myeloma cells [161].

Silencing of SOCS3 abolished PF4’s ability to inhibit

STAT3 activation, suggesting a critical role of SOCS3 in

PF4-induced STAT3 inhibition and indicating that PF4

may be a potential new targeting agent for the treatment of

myeloma [161].

Expression of SOCS3 is also closely associated with the

severity of allergic asthma and dermatitis, making it a

target for therapeutic intervention in allergic disease [50,

162]. Heterozygous deletion of SOCS3 and overexpression

of a dominant negative form of SOCS3 were both proven

to be effective in prevention of early and late-phase

responses of allergic conjunctivitis, a common allergic eye

disease [162]. However, another study showed that defec-

tive SOCS3 expression causes inflammatory skin disease

[163]. Keratinocyte-specific deletion of SOCS3 caused

severe skin inflammation, with inflamed skin showing

constitutive STAT3 activation and upregulation of IL-6

[163]. This SOCS3-mediated homeostatic function in skin

inflammation is supported by other reports showing that a

specific microRNA, miR203, is highly expressed in human

psoriatic skin and inhibits the expression of SOCS3 [164].

Together, these studies confirm the therapeutic potential of

SOCS3 in development, diagnoses and treatment of human

disorders; thus manipulation of SOCS3 could be a novel

therapeutic approach and methods of artificially regulating

its expression may be a solution for many diseases.

Conclusion

The discovery of SOCS proteins has provided new insight

into cytokine regulation and immune responses. SOCS3

plays a significant role in regulating different signal

transduction pathways, with the classical JAK/STAT reg-

ulation being the target of its effects. SOCS3 expression is

shown to be associated with many inflammatory,

immunological, infectious and oncogenic disorders. The

vast body of evidence which has accumulated over the past

two decades indicates that the regulation of SOCS3

expression may be a powerful therapeutic tool to treat

various human diseases such as RA, pathogenic infection,

diabetes and cancer. The role of SOCS3 in several

signalling pathways is becoming evident and, therefore,

further investigation into its regulation of cascades, such as

MAPK and NF-jB, may reveal even more intricate roles

for SOCS3 in human disease. However, it is already clear

that regulatory peptides, overexpression constructs or

microRNA may be useful tools in enhancing or suppressing

SOCS3 levels and could represent new and exciting

approaches in treating disease.
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