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Abstract Vascular remodeling is a dynamic process of

structural and functional changes in response to biochem-

ical and biomechanical signals in a complex in vivo milieu.

While inherently adaptive, dysregulation leads to mal-

adaptive remodeling. Reactive oxygen species participate

in homeostatic cell signaling in tightly regulated- and

compartmentalized cellular circuits. It is well established

that perturbations in oxidation–reduction (redox) home-

ostasis can lead to a state of oxidative-, and more recently,

reductive stress. We provide an overview of the redox

signaling in the vasculature and review the role of oxida-

tive- and reductive stress in maladaptive vascular

remodeling. Particular emphasis has been placed on

essential processes that determine phenotype modulation,

migration and fate of the main cell types in the vessel wall.

Recent advances in systems biology and the translational

opportunities they may provide to specifically target the

redox pathways driving pathological vascular remodeling

are discussed.
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Abbreviations

AngII Angiotensin II

AP1 Activator protein 1

AT1R Angiotensin II type 1 receptor

BH4 Tetrahydrobiopterin

Cys Cysteine

Cys-SH Cysteinyl thiolates

Cys-S-SH Cysteinyl persulfide

EC Endothelial cell

ECM Extracellular matrix

eNOS Endothelial nitric oxide synthase

FAK Focal adhesion kinase

GCHI Guanosine triphosphate cyclohydrolase I

GSS S-Glutathiolation

GTP Guanosine triphosphate

Hic5 H2O2-inducible clone-5

HSP27 Heat shock protein 27

Nox NADPH oxidase

Keap1 Kelch-like ECH-associated protein 1

LMW-PTP Low molecular weight protein tyrosine

phosphatase

MAPKAPK2 Mitogen-activated protein kinase-activated

protein kinase 2

MEF2 Myocyte-enhanced factor 2

MLC Myosin light chain

MLCP Myosin light chain phosphatase

MRTF-A Myocardin-related transcription factor A

NF-jB Nuclear factor jB

Nrf2 Nuclear factor erythroid 2-related factor 2

p38 MAPK p38 mitogen-activated protein kinase
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PDGFb Platelet-derived growth factor b
PDGFR Platelet-derived growth factor receptor

PI3K Phosphoinositol 3-kinase

PIP3 Phosphatidylinositol 3,4,5 trisphosphate

PKCf Protein kinase Cf
Poldip2 Polymerase [DNA-directed] delta-

interacting protein 2

PTEN Phosphatase and tensin homolog

ROCK Rho-kinase

ROS Reactive oxygen species

SMC Smooth muscle cell

SOD Superoxide dismutase

SRF Serum response factor

SSH1L Slingshot1L phosphatase,

TAT3 Signal transducer and activator of

transcription 3

TGFb Transforming growth factor b
TXNIP Thioredoxin-interacting protein

VEGF Vascular endothelial growth factor

VEGF-R Vascular endothelial growth factor

receptor

WSS Wall shear stress

Vascular remodeling

The vessel wall is a dynamic and integrated organ composed

of endothelial cells (ECs), smooth muscle cells (SMCs),

fibroblasts and perivascular tissue that interact with each other

and the circulatory cells in a complex autocrine/paracrine

manner [1]. The vasculature can sense changes within its

milieu and integrate these signals to transduce intra- and

intercellular communication that drive structural and func-

tional changes in a process called vascular remodeling [1, 2].

Dynamic vascular remodeling involves alterations in many

cellular processes including growth and proliferation, adhe-

sion and migration, phenotypic changes, survival and death, as

well as production or degradation of extracellular matrix

(ECM). Remodeling is usually an adaptive process that occurs

in response to long-term changes in hemodynamic conditions,

but it may subsequently contribute to the pathophysiology of

vascular diseases such as systemic- and pulmonary

hypertension, atherosclerosis, restenosis following revascu-

larization by balloon angioplasty and stenting (BAS) or

venous bypass grafts [1, 2]. Complex interactions between

growth factors, inflammatory cytokines, vasoactive sub-

stances and hemodynamic stimuli in the vessel wall determine

physiologic- and pathophysiologic remodeling. Oxido-re-

ductive or ‘‘redox’’ signaling via reactive oxygen species

(ROS) plays an integral part in cellular effects of these stimuli

and a key role in all aspects of the remodeling process [3].

Redox signaling in the vasculature

Cells are continuously exposed to ROS generated

endogenously in what could be considered as a trade off for

utilizing O2 for metabolism [4]. Several ROS including

superoxide (O��
2 ), hydrogen peroxide (H2O2), peroxynitrite

(OONO-), and the hydroxyl radical (HO�) are generated in

biological systems [3]. To counter the damaging effects of

ROS, a complex web of antioxidants, such as the abundant

low molecular weight protein glutathione (GSH) and

enzymatic antioxidant systems with specific subcellular

distribution and reactivity maintain intracellular redox

homeostasis [5]. In contrast to the historical view of ROS

as purely harmful, extensive data indicate that some ROS,

i.e. O��
2 and H2O2, are generated as a regulated physio-

logical process and function as signaling molecules in

control of cell and tissue homeostasis [6]. Other ROS, such

as OONO- and HO�, are not considered as signaling

molecules because of their very reactive nature [3]. In the

vasculature, ROS are produced by all cell types including

ECs, SMCs, and adventitial cells. Another biologically

generated free radical nitric oxide (NO) has many impor-

tant effects in vessels, directly or via interaction with ROS.

NO and ROS are generated by the membrane-bound

NADPH-dependent enzymes, nitric oxide synthase (NOS)

and NADPH oxidases (Nox), the expression of which is

tightly controlled, compartmentalized and tissue-specific

[6]. Other sources of ROS that are relevant to the vascular

system are the mitochondrial respiration chain, xanthine

oxidase, lipoxygensae and myeloperoxidase [3]. We pro-

vide an overview of the two NADPH-dependent sources of

ROS/NO in the vasculature. It is important to note that

ROS generation from each of these sources can lead to

ROS release from other sources [3].

In addition to NO, hydrogen sulfide (H2S) is another

gaseous signaling molecule [7] that is enzymatically gen-

erated in ECs and mediates vasorelaxation [8]. As an

electron donor [9], H2S is a reductant [10] and can exert

antioxidant effects via both direct- and indirect actions.

The direct effect of H2S involves sulfhydration of target

proteins, which is the conversion of cysteinyl thiolates

(Cys-SH) to cysteinyl persulfide (Cys-S-SH) by the addi-

tion of H2S-derived sulfur [11]. Moreover, as shown in

non-vascular tissues, H2S donors can protect against

oxidative stress indirectly by increasing GSH levels [12] or

directly by sulfhydration of two Cys residues in kelch-like

ECH-associated protein 1 (Keap1), the cystoplasmic

adaptor that represses the ‘‘master regulator’’ nuclear factor

erythroid 2-related factor 2 (Nrf2), thus promoting Nrf2

localization to the nucleus and inducing the expression of

multiple cellular antioxidants [13, 14]. As will be pointed

out, emerging data indicate that H2S-induced redox
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signaling participates in EC fate processes that can deter-

mine vascular remodeling, a role that is the subject of

ongoing basic- and clinical research [15].

Nox and ‘‘uncoupled’’ eNOS- major vascular

sources of ROS

The Nox family is composed of 7 catalytic subunits termed

Nox1-5, Duox1 and Duox2 (for Dual Oxidase) [16]. Sev-

eral protein components form the classic NADPH oxidase

complex, consisting of p22phox and gp91phox (the mem-

brane-bound subunit, crucial for the activity) and p47phox,

p67phox (regulatory cytosolic proteins) and the low-

molecular weight G protein Rac. Nox1, 2, 4 and 5 isoen-

zymes are expressed in vascular tissues and regulate such

diverse functions as differentiation, proliferation, apopto-

sis, senescence, inflammatory responses and O2 sensing

[17]. The activity and expression of Nox can be regulated

by cytokines [tumor necrosis factor-a (TNFa, transforming

growth factor b (TGFb), platelet-derived growth factor

(PDGF)] and agonists like angiotensin II (AngII) and

thrombin [18]. AngII is a potent stimulus of both Nox

activity and expression, contributing to the association

between activation of the renin–angiotensin system and

ROS production in several vascular pathologies. When

upregulated, Noxs have been implicated in diabetes-in-

duced vascular disease, hypertension and atherosclerosis,

but upregulation can be physiologically advantageous, as in

angiogenesis and collateral formation [17].

eNOS, the predominant isoform of NOS in the vascu-

lature, is critical in the regulation of vascular function and

generates NO [19–21]. Under normal conditions, in the

presence of Ca2?/calmodulin, eNOS catalyzes the genera-

tion of NO from L-arginine (L-Arg) by means of electron

transfer from NADPH through a flavin-containing reduc-

tase domain to oxygen bound at the heme of an oxygenase

domain, which also contains binding sites for tetrahydro-

biopterin (BH4) and L-Arg [19, 21]. The oxidation of

NADPH is tightly coupled to the production of NO by

eNOS. However, when the oxidation of NADPH is

uncoupled from the production of NO, eNOS generates O��
2

and secondary ROS, in what is widely known as eNOS

‘‘uncoupling’’ [19]. eNOS uncoupling has been associated

with many pathophysiologic conditions, such as hyperten-

sion, atherosclerosis and diabetes [21]. BH4 is crucial for

eNOS function and is involved in stabilizing NOS protein

structure and eNOS is uncoupled when BH4 is limiting.

O��
2 can oxidize the NOS-bound BH4 [22]. The in vivo

source of the ROS that may lead to BH4 depletion has been

attributed to pathways including Nox, xanthine oxidase and

the mitochondrial electron transfer chain [23, 24]. ONOO-

does rapidly oxidize BH4. However, it can also irreversibly

inactivate the NOS enzymes, likely by a direct reaction

with the NOS heme, producing an inactive enzyme rather

than an uncoupled enzyme [20].

‘‘Oxidative’’ and ‘‘reductive’’ stress

An extensive network of signaling cascades and effector

proteins regulates elimination of ROS. Increased genera-

tion of ROS can disrupt the homeostasis in thiol-dependent

redox circuits by changing the redox state of the GSH pool

and thioredoxin (Trx) enzyme family that act as the critical

control nodes in the cellular redox network, thus leading to

a state of ‘‘oxidative stress’’ [25]. Oxidative stress results in

changes in signaling, structural and regulatory proteins and

in DNA damage that lead to altered cell growth, prolifer-

ation, differentiation and death. In addition to the control of

redox potential by GSH and Trx redox circuits, antioxidant

enzymes, such as superoxide dismutase (SOD), catalase,

and glutathione peroxidase (Gpx), catalyze rapid break

down of ROS to less reactive or nonreactive products, and

are key in preventing damage from oxidative stress [3].

Although oxidative stress is the established paradigm

delineating an excess of ROS vis-à-vis the antioxidant

capacity, ‘‘reductive stress’’ is also increasingly gaining

recognition [26, 27]. A supra-physiological increase in the

GSH pool can conceivably increase the reductive flux into

the cellular thiol circuits and affect the redox-sensitive thiol

elements, predominantly through formation of disulfide

bonds with Cys residues in a reversible process called

S-glutathiolation. For example, we have shown that

reductive stress following vascular injury inflicted by BAS

promotes S-glutathiolation of a regulatory protein to

determine vascular remodeling [27]. In addition to thiol

disulfide exchange, S-glutathiolation is promoted by ROS

via thyil radical formation on numerous targets proteins,

thus affecting virtually all aspects of the cellular processes

(gene expression, cytoskeletal dynamics, signaling, ion

channels and transporters function, cell death and survival)

[28]—central processes in vascular remodeling in response

to injury.

Effector cell types in redox-mediated vascular
remodeling

Endothelial cells (ECs)

Redox signaling and endothelial dysfunction

ECs constitute the inner most layer of the vessel wall.

Acting as the interface between blood circulation and

multiple tissues, ECs are constantly exposed and are

adapting to numerous biochemical and biomechanical

stimuli. ECs have a remarkable ability for migration and
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proliferation from a quiescent state that is key in angio-

genesis. It is therefore not surprising that perturbations in

these critical EC functions are at the crux of several vas-

cular pathologies [29].

Redox signaling plays major regulatory roles in the

maintenance of cellular homeostasis and in physiological

adaptive responses in ECs. To this end, maintenance of a

tight balance between NO- and ROS-dependent signaling is

critical (Fig. 1). Endothelial dysfunction in the context of

atherosclerosis [30] and diabetes [31] is characterized by a

pathological decrease in NO- and an increase in redox-

dependent signaling. eNOS-derived NO mediates

endothelium-dependent vasodilation, required for normal

vascular homeostasis, and it inhibits critical atherogenesis

pathways such as platelet aggregation, SMC proliferation

and migration and leukocyte adhesion [29]. eNOS uncou-

pling from NO- to ROS generation via BH4 depletion is an

important pathobiological step in endothelial dysfunction.

De novo biosynthesis of BH4 from guanosine triphosphate

(GTP) is dependent on the rate limiting enzyme GTP

cyclohydrolase (GCH) I (Fig. 1), and EC-specific knockout

of this enzyme causes a loss of NO bioactivity and increase

in O��
2 production in ECs [32]. EC-targeted overexpression

of GCH on the other hand increases BH4 and NO

bioavailability, and reduces neointimal hyperplasia in vein

grafts of atherosclerotic mice via accelerated EC repopu-

lation and growth [33] and decreased inflammation [34].

Direct oxidation of eNOS via S-glutathiolation of specific

Cys residues also mediates eNOS uncoupling [20], which

is distinct from BH4 deficiency. Nonetheless, BH4 deple-

tion and S-glutathiolation interact and exacerbate eNOS

uncoupling [35]. Moreover, there is an intricate signaling

cross-talk between various sources of ROS in ECs that

promotes endothelial pathology. For instance, AngII-in-

duced Nox2-derived O��
2 induces ROS release from

mitochondria and contributes to hypertension [16]. Fur-

thermore, AngII-induced Nox-dependent O��
2 generation is

amplified by S-glutathiolation-mediated uncoupling of

eNOS, akin to ‘‘kindling a bonfire’’, and causes endothelial

dysfunction [36] (Fig. 1).

Mechano-sensitive redox pathways in ECs

Pulsatility of blood pressure and flow exposes the vessel

wall to hemodynamic forces in the form of shear stress and

cyclic stretch. The cytoskeleton and the integrins, trans-

membrane receptors that act as bridge between cell

cytoskeleton and ECM [37], are the key structural frame-

work for EC to transmit mechanical forces from its

luminal, abluminal and junctional surfaces to its interior.

ECs convert these mechanical stimuli into numerous

intracellular signals that regulate a broad range of critical

EC functions including migration, proliferation,

permeability and apoptosis [38]. The response of ECs to

physiologic levels of wall shear stress (WSS) serves a

number of regulatory functions including modulation of

hemostasis and thrombosis, control of inflammation

through expression of chemotactic and adhesion molecules

on the cell surface, and vascular SMC contraction through

the release of vasoconstrictors and vasodilators [38]. Pul-

satile flow induces WSS that varies temporally and

spatially along the vascular bed [39]. In the straight part of

the vessel, blood flow is undisturbed as opposed to dis-

turbed blood flow on bends and bifurcations with very high

WSS. Disruption or unsteady blood flow through these

‘‘atherosclerosis-prone’’ areas of the vessel can impair the

physiological functions mentioned above leading to

proatherogenic and/or prothrombotic states.

ROS have central role in physiological and pathophys-

iological WSS-induced vascular remodeling (Fig. 2). With

normal pulsatile laminar flow, WSS-mediated generation

of ROS at low levels by Nox regulates normal cell growth,

proliferation and differentiation [40]. Several antioxidant

pathways are induced and maintained by normal laminar

WSS. Expression and activity of eNOS is enhanced by

normal WSS through multiple mechanisms [39]. Normal

WSS also activates Nrf2, a ‘‘master regulator’’ of numerous

antioxidant enzymes, by releasing it from its cytoplasmic

repressor Keap1, and it activates critical molecules

involved in limiting inflammation [39]. Shear stress causes

dissociation of cytoplasmic Nrf2 from Keap1 and Nrf2

translocation into the nucleus in a phosphoinositol 3-kinase

(PI3K)/Akt-dependent pathway [41]. A mechano-sensitive

switch has also been identified in the form of Trx-inter-

acting protein, a scaffold protein that inactivates Trx [39].

By down-regulating Trx-interacting protein (TXNIP)

expression hence activating Trx, physiological WSS inhi-

bits pro-inflammatory signaling in ECs [42].

Acute cessation of the laminar flow [43] or presence of

oscillatory flow on the other hand acutely increases cellular

ROS formation [44], which subsequently remains elevated

for the duration of WSS exposure [45] (Fig. 2). Nox2 and

Nox4 isoforms of NADPH oxidase generate ROS in ECs,

with Nox2 more abundantly expressed [46]. Although

these Nox isoforms exist in differential subcellular com-

partments in ECs and their response to stimuli such as

AngII differs, expression of both isoforms is upregulated

by oscillatory flow and downregulated by pulsatile laminar

flow in vitro [39]. Although contribution of Nox2-derived

ROS in atherogenesis is shown [47], the exact role of Nox4

remains controversial. The shear responsive protein kinase

Cf (PKCf) negatively regulates WSS-induced eNOS

expression [48], induces Nox-mediated ROS generation

[49] and is highly activated in atheroprone vascular regions

[50]. Finally, abnormal WSS can induce activation of

nuclear factor jB (NF-jB), the prototypical transcription
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factor for pro-inflammatory pathways, through integrin-

mediated signaling in a process that is also dependent on

Rac1-induced ROS generation [51] (Fig. 2).

Redox signaling in EC growth, proliferation and migration

In ECs, ROS modulate many processes determining cell

fate (e.g. growth, proliferation and survival), cytoskeletal

reorganization and inflammatory responses that are central

in EC-mediated vascular remodeling [52]. EC growth and

survival are dependent on several factors, such as vascular

endothelial growth factor (VEGF), which are coupled to

the intracellular production of ROS [53] (Fig. 3). While the

physiological ROS-dependent signaling is critical for

induction of proliferative pathways in ECs [54], dysregu-

lated generation of ROS impairs EC proliferation and

promotes apoptosis [54] and induces vascular hypertrophy

when ROS diffuse into the subjacent SMCs [55].

Migration of ECs is essential for morphogenesis, wound

healing and angiogenesis [56]. The migratory process pri-

marily involves sensing a gradient by ECs and establishing

polarity. The dynamic, integrated, cyclic process that
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ensues is facilitated by highly coordinated cytoskeletal

changes and includes extracellular adhesion, plasma

membrane protrusion at the leading edge (‘‘lamellipodia’’

formation), formation of new adhesion sites under the

protrusion called focal adhesions (FAs), disruption of the

older adhesions at the rear of the cell, followed by cell

body contraction that draws the cell forward [56]. ROS

play a key role in multiple steps of this process (Fig. 3).

The amount and location of ROS generation are critical

since successful migration is dependent on several bio-

molecules the actions of which are spatiotemporally

regulated in subcellular compartments in front and rear of

migrating ECs. The effects of VEGF in initiating EC

migration are mediated by Nox-derived ROS production in

a Rac1-dependent mechanism [57]. Similarly, a role for

Nox2- and Nox4-derived ROS in EC migration has been

demonstrated [58]. VEGF-induced EC migration is sup-

pressed by overexpressing mitochondrial catalase or

mitochondrial DNA depletion [59], implicating a role for

mitochondria-derived ROS in promoting EC migration.

The lamellipodia are characterized by a dense network of

short, branched actin and cortactin filaments [60]. These

cytoskeletal proteins play a role in activation of Nox [61],

and cortactin co-localization with p47phox subunit of Nox is

important in the assembly of Nox components with the

actin cytoskeleton during agonists-induced ROS generation

in ECs [62]. Targeting Nox components to focal complexes

in lamellipodia may therefore facilitate ROS generation at

specialized sites in the leading edge of migrating ECs, a

requirement for stimulus-induced migration [63]. Accord-

ingly, a role for recruitment of cortactin, Rac1 and p47phox

Nox subunit and localized ROS production in the forma-

tion of the lamellipodia in pulmonary ECs has recently

been shown [64].

ROS mediate numerous effects in initiation and pro-

motion of angiogenesis, another major function of ECs.

Both physiological angiogenesis (wound healing, vessel

damage and ischemic repair) and pathological angiogenesis

(cancer, diabetic retinopathy and macular degeneration)

involve the same initial signaling cascades, all of which

involve ROS. VEGF plays a key role in EC activation from

a quiescent state in a process that is, in part, ROS-depen-

dent [65]. ROS upregulate VEGF expression and VEGF

binding to VEGF receptor 2 (VEGFR2) induces ROS

production that is critical for angiogenesis [66]. This is

mediated by VEGFR2-induced localized ROS generation

that promotes junctional detachment of the EC monolayer

[67] and initiation of EC migration. During angiogenesis,

ECs need to rapidly proliferate, and proliferating ECs have

increased ROS production as compared with quiescent

cells [68]. ROS generated by VEGF signaling induces

S-glutathiolation-mediated inhibition of low-molecular

weight protein tyrosine phosphatase (LMW-PTP), which

dephosphorlyates and inhibits VEGFR2 signaling [69].
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Downregulation of TXNIP results in deglutathiolation-

mediated activation of LMW-PTP and thereby inhibition of

VEGFR2 signaling [69] (Fig. 3). As discussed, EC prolif-

eration in response to growth factors and activation of

downstream kinases is ROS-dependent. Migration and

proliferation of ECs result in tube formation, the earliest

stage of new vessel formation. Autophagy, subcellular

degradation that is critical for cell survival under nutrient-

deprived conditions, plays a key role in phenotypic

responses of ECs in tube formation in a process that is also

driven by ROS generation [70]. Lastly, H2S, at low phys-

iological concentrations, has been shown to stimulate EC

proliferation and migration [71, 72] and to participate in

VEGF signaling through breaking an intrinsic inhibitory

disulfide bond in VEGFR2 thus promoting EC migration

(Fig. 3) [73]. H2S exerts potent proangiogenic effect in

ECs in the setting of chronic ischemia by activating

extracellular kinase pathways that promote vessel growth

[74].

Smooth muscle cells (SMCs)

Phenotypic plasticity of SMCs

Smooth muscle cells are highly plastic cell types that play

key roles in normal vascular physiology and in patho-

physiology. Biological responses in the SMCs are complex

due to impressive ability of the SMCs to undergo pheno-

typic switching, heterogeneity of SMC origin in the

vasculature, and the presence of SMC progenitor cells [75].

SMCs exist in different phenotypic states [76], with the

switch from a quiescent contractile phenotype to a syn-

thetic proliferative type playing an important role in

pathologic vascular remodeling, particularly in

atherosclerotic plaque progression and vascular injury-in-

duced intimal proliferation [75, 76]. Due to the presence of

SMC progenitor cells in the vessel wall and their potential

contribution to vascular remodeling [77, 78], in vivo SMC

lineage tracing studies are needed to elucidate the exact

origin of the cell types that are found in intima lesions [75,

78]. This is further complicated by the diverse develop-

mental origins of SMCs in the vascular system [79].

Although phenotypic switching seems to occur in all SMCs

regardless of their origin, the responses of these SMCs to

different stimuli vary [79].

Redox signaling and phenotypic modulation in SMCs

Intracellular regulation of SMC phenotype depends on

several kinases and downstream transcription regulation of

contractile proteins and proteins that are associated with

the cytoskeleton [75]. ROS play an essential role in this

process (Fig. 4). Specificity of the intracellular ROS-

mediated effects is dependent on subcellular compart-

mentalization. For instance, Nox1 and Nox4 isoforms of

NADPH oxidase have differential signaling roles in phe-

notypic regulation of SMCs, which correlate with their

differential compartmentalization in the membrane and

leading edge of migratory SMCs [3]. Nox4 mainly pro-

duces H2O2 and Nox4 expression and activity is critical in

the maintenance of the differentiated phenotype of SMCs

isolated from aorta in vitro [80]. Nox4 modulates effects of

TGFb in aortic SMCs via p38 mitogen-activated protein

kinase (MAPK)-dependent regulation of several transcrip-

tion factors that mediate gene transcription elicited by

diverse signaling pathways (e.g. serum response factor

(SRF) and myocardin-related transcription factor A

(MRTF-A) [81]). In contrast to the homeostatic role in

systemic arteries, Nox4 mediates hypoxia-induced prolif-

eration of SMCs in the pulmonary artery [82]. Unlike

Nox4, Nox1 expression and activity are associated with a

reduction in differentiation markers and increase in

migratory, synthetic and proliferative SMC type. Through

these modulations, Nox1 plays a key role in neointima

formation after vascular injury [83]. Of direct relevance,

cyclophilin A, a secreted growth factor from SMCs under

oxidative stress, induces Nox activation by translocation of

the cytosolic p47phox subunit to membrane lipid rafts or

caveolae [84] and promotes neointima formation [85].

Redox signaling also regulates numerous aspects of

cytoskeletal dynamics [86] and thereby modulates SMC

differentiation. For example, carbonylation and subsequent

degradation of annexin A1, a member of the annexin

family of proteins that bind or ‘‘annex’’ to phospholipid

membranes, promotes the growth of pulmonary artery

SMCs [87]. In the nucleus, oxidation of actin by the oxi-

doreductase MICAL-2, an atypical actin regulatory protein,

promotes actin disassembly and increases nuclear retention

of MRTF-A and subsequent activation of SRF/MRTF-A-

dependent gene transcription [88]. Finally, biomechanical

forces can also modulate the SMC phenotype via redox-

dependent mechanisms. Mechanical stretch for instance

potentiates Nox1-mediated ROS production that causes

vascular SMC switch to synthetic phenotype via myocyte-

enhanced factor 2 (MEF2), a transcription factor that plays

a key role in cell fate in response to extracellular signals

[89].

Redox signaling and SMC adhesion and migration

In vascular remodeling associated with disease, a pheno-

typic switch in the SMCs to a synthetic type enables them

to migrate and proliferate in response to a variety of

extracellular stimuli. Migratory steps in the SMCs are

similar to ECs, with ROS regulating multiple phases in the

process (Fig. 5).
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Vascular SMC migration is modulated by numerous

stimuli, in particular PDGF is the major promigratory

factor [90]. The effects of PDGF occur mainly via PDGF-b
receptor activation [91]. Although the PDGF receptors

have very low abundance in normal vessels, PDGF-b
receptor expression is induced during initial response to

injury or the phenotypic transformation of SMCs [90].

Since Nox inhibition blocks PDGF-induced PDGF-b-re-

ceptor phosphorylation [92], ROS may be involved as early

as the initial activation of the receptor. LMW-PTP limits

PDGF receptor activation and its activity is inhibited by

ROS through formation of an inactivating disulfide bond

between two vicinal Cys in its catalytic pocket [93]. Upon

activation, PDGF receptor provides binding sites for

phospholipase C, Src kinase and PI3K. PI3K activates

Rhoguanine nucleotide exchange factors to stimulate Rho-

GTPase family members (such as Rho, Rac and cdc42) [3].

Rac activates several Nox family members, mainly Nox1

and Nox2 [3], and increases ROS, which in turn induce

generation of other pro-migratory factors and thus amplify

the migratory cell response [90]. The redox-sensitive

transcription factor Nrf2 limits PDGF-stimulated vascular

MEF2 SRF 
MRTF-A 

MICAL-2 

Oxidized 
G actin 

NOX4 NOX1 

H2O2

p38MAPK 

Mechanical stretch TGF

TGF R

NOX4     NOX1  SMC phenotype switch 

Fig. 4 Redox-dependent

phenotype switch in smooth

muscle cells. TGFb
transforming growth factor b,

p38 MAPK p38 mitogen-

activated protein kinase, MRTA-

F myocardin-related

transcription factor A, SRF

serum response factor, MEF2

myocyte-enhanced factor 2,

SMC smooth muscle cell

PDGF-

PDGFR 
NOX1 

PI3K 

Rac

Rho 

LMW-PTP 

ROS

ROCK MLCP 
P

Contraction
MLC

Nrf2 
Antioxidant 
enzymes 

SSH1L 

14-3-3 
14-3-3 

SSH1L Cofilin

Actin network 

Actin 

Focal adhesion 
Lamellipodium

NOX4 

ROS

Poldip2

TGF

HSP27 Hic-5 

Rho 

ECM 
Integrins

Focal adhesion 

FAK 

LMW-PTP 

Src

Shp2 

Migration 

Fig. 5 Redox-mediated smooth

muscle cell migration. PDGFb
platelet-derived growth factor b,

PDGFR platelet-derived growth

factor receptor, PI3K

phosphoinositol 3-kinase,

LMW-PTP low molecular

weight protein tyrosine

phosphatase, ROS reactive

oxygen species, ROCK rho-

kinase, MLCP myosin light

chain phosphatase, MLC myosin

light chain, Nrf2 nuclear factor

erythroid 2-related factor 2,

SSH1L slingshot1L

phosphatase, TGFb
transforming growth factor b,

FAK focal adhesion kinase,

Hic5 H2O2-inducible clone-5,

HSP27 heat shock protein 27,

Poldip2 polymerase [DNA-

directed] delta-interacting

protein 2, ECM extracellular

matrix

356 K. Karimi Galougahi et al.

123



SMC migration by decreasing ROS, and is protective

against neointimal hyperplasia after vascular injury [94]

(Fig. 5). Mechano-responsive signaling can also initiate

SMC migration, but the underlying mechanisms are not

fully elucidated. It has recently been shown that cyclic

mechanical stretch can induce Nox4-dependent activation

of cofilin, which is required for cytoskeletal reorganization

and SMC reorientation after mechanical stimulation [95].

Activation of cofilin increases depolymerization of actin

filaments, a necessary step in the formation of new actin

filaments, thereby playing an essential role in maintaining

and protruding lamellipodia at the leading edge of

migrating cells [90] (Fig. 5). In PDGF-stimulated SMCs,

cofilin is activated through dephosphorylation by Sling-

shot1L (SSH1L) phosphatase via Nox1-dependent

oxidation of 14-3-3, which results in disruption of its

inhibitory association with SSH1L [96].

After formation of lamellipodia, integrins mediate the

formation of focal adhesions (FA). The FAs act as orga-

nizers of the SMC contractile proteins and incorporate and

integrate multiple signaling molecules such as focal

adhesion kinase (FAK), integrin-linked kinase and Src

kinase [97]. These kinases link integrins to the actin

cytoskeleton and coordinate the formation and strength-

ening of FAs in the lamellipodium, as well as their

recycling from the rear of the cell [90]. ROS are critically

involved in many aspects of FA formation and turnover in

SMCs (Fig. 5). Integrin activity is modulated by oxidation

of redox-sensitive motifs when cells attach to surface [98].

Integrin signaling itself involves ROS generation [45].

ROS production via this mechanism can inhibit LMW-PTP

[99] that, in addition to modulating PDGFR activation

discussed earlier, associates with and inactivates FAK

[100]. Moreover, redox-mediated inhibition of the phos-

phatase Shp2 can lead to activation of FAK [101]. ROS are

critically involved in FA turnover, which is key in suc-

cessful cell motility. Rho mediates actin polymerization

and FA formation and ROS can directly activate Rho by

oxidation of a redox-sensitive motif [102]. Moreover, Nox4

is key in FA turnover and polymerase [DNA-directed]

delta-interacting protein 2 (poldip2), an activator of Nox4-

mediated ROS production in vascular SMCs, affects FA

turnover and inhibits SMC migration in a RhoA/FAK-de-

pendent manner [103]. Nox4 expression is increased by

TGFb and TGFb in turn increases the number of FAs.

Downstream mediators of TGFb-induced Nox4-dependent

FA formation have recently been shown to include the FA

resident protein H2O2-inducible clone-5 (Hic-5) and its

binding partner the heat shock protein 27 [104].

Following FA formation, cell body contraction gener-

ates the force that is needed to move the SMC forward. FAs

are connected to actin and ROS can influence actin

dynamics directly or indirectly during specific phases of

migration [90]. Actin polymerization is affected by ROS,

with the direction of effects depending on the type and

amount of ROS that are generated [3]. Interaction of actin

and myosin to generate contractile force is modulated by

the redox-sensitive GTPase Rho [105]. Activation of the

Rho/Rho-kinase (ROCK) pathway promotes myosin light

chain phosphorylation by inhibiting the regulatory subunit

of myosin light chain phosphatase (MLCP), thus promoting

contraction in pulmonary SMCs [106]. Consistent with

this, ROCK2 isoform of Rho-kinase promotes migratory

and proliferative phenotype in pulmonary SMCs in mice,

and its expression is increased in patients with PAH [107].

Further studies are needed to clarify the specific roles and

functional differences between ROCK1 and ROCK2 iso-

forms [108].

Redox signaling and SMC hypertrophy and proliferation

SMC proliferation is an essential part of biological devel-

opment and contributes to adaptive responses to injury—

i.e. vascular repair. Similar to the migratory process, dys-

regulation of SMC proliferation perpetuates pathology (e.g.

progression of atherosclerosis or neointima formation

postBAS). Several migratory and proliferative pathways

overlap in the SMCs and critical promigratory factors such

as PDGF also promote proliferation [3]. AngII mainly

mediates SMC hypertrophy [109] rather than migration or

proliferation. SMC proliferation is tightly coupled with

cellular redox state, and ROS have key regulatory roles by

modulating the function of many growth factors and

kinases that are essential in proliferative signaling cascades

(Fig. 6), largely by oxidative modification of Cys residues

[110]. These regulatory roles are perturbed under condi-

tions associated with increased ROS. High levels of ROS

generally inactivate downstream effectors of growth factor

signaling [3]. For example, many signaling elements and

effectors in growth factor-mediated PI3K signal transduc-

tion are redox-sensitive. While PI3K itself is susceptible to

sulfenation [111], the functional significance of this mod-

ification or the presence of other oxidative Cys

modifications is yet to be determined. Oxidative modifi-

cation of one or two Cys on Src, depending on the context

and cell type, leads to its activation [112], and Src in turn

can activate PI3K. Growth factors potentiate the accumu-

lation of phosphatidylinositol 3,4,5 trisphosphate (PIP3),

both through a PI3K-dependent increase in synthesis as

well as oxidative inactivation of phosphatase and tensin

homolog (PTEN) that catalyzes the removal of PIP3 [113].

PIP3 then activates the redox-sensitive Akt, activity of

which is affected by sulfenation of a Cys residue [114].

Moreover, AngII-induced ROS generation promotes asso-

ciation of the redox-sensitive p38 mitogen-activated

protein kinases (MAPK) and MAPK-activated protein
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kinase-2 with Akt [115]. Akt activates the transcription

factors activator protein 1 (AP1) and NF-jB to promote

cell cycle progression [3]. Finally, many transcription

factors in proliferative pathway are directly regulated by

redox modifications, for instance signal transducer and

activator of transcription 3 (STAT3) and c-Jun are both

negatively regulated by S-glutathiolation [116, 117]

(Fig. 6).

In contrast to growth factor signaling, functional effects

of oxidative modification of phosphatases are varied.

S-glutathiolation of a reactive Cys in protein tyrosine

phosphatase 1B reversibly inhibits its activity and pro-

motes proliferative signaling [110]. Similarly, reversible

oxidation of Shp1/2 inhibits their function through a dif-

ferent mechanism. Of the critical Cys residues in the

enzymes’ active site, when the catalytic Cys is re-reduced,

two conserved ‘‘backdoor’’ Cys form an intramolecular

disulfide. Formation of this backdoor–backdoor disulfide is

dependent on the presence of the active site Cys and can

proceed via either active site Cys-backdoor Cys interme-

diate [118]. These two backdoor Cys are necessary and

sufficient to ensure reversible oxidation of the Shps

because removal of both Cys leads to irreversible oxidative

inactivation [27, 118]. This regulatory mechanism has

recently been shown to be critical in neointima formation

postBAS [27].

Perivascular tissue

Perivascular tissue, in particular perivascular adipose tissue

(PVAT) is increasingly recognized to play important

physiological roles in vascular homeostasis [119]. PVAT

generates numerous cytokines (pro-inflammatory such as

IL6 and anti-inflammatory like adiponectin [120]) as well

as ROS that affect the adjacent vascular layers in a para-

crine manner and play an integral role in vascular

remodeling [121]. PVAT actively participates in the

inflammatory response to BAS [122]. Vessel injury

downregulates the anti-inflammatory adiponectin in PVAT

and promotes SMC growth [123] and PVAT-released lep-

tin contributes on neointima formation after vascular injury

[124]. PVAT also exerts effects on vascular remodeling via

redox pathways. For example, 4-hydroxynonenal (4-HNE),

a product of lipid peroxidation generated in the vascular

wall, mediates paracrine activation of peroxisome prolif-

erator-activated receptor-c signaling in the PVAT, thus

promoting the release of adiponectin, which exerts a

paracrine effect back to the vascular wall to reduce Nox

activity [120] and to promote eNOS coupling [125].

Moreover, a reduction in the activity of the anti-inflam-

matory mammalian target of rapamycin complex 2

(mTORC2) in the PVAT leads to inducible NOS-mediated

increase in ONOO-, which impairs endothelium-mediated

vasorelaxation [126]. Further mechanistic studies are nee-

ded to elucidate the role of redox signaling in PAVT-

mediated vascular remodeling, particularly in the context

of obesity and metabolic syndrome.

Pericytes in the microvasculature

Pericytes are contractile cells on capillaries that may have a

role in regulating local blood flow in addition to stabilizing

NF B AP1 STAT3c-JUN

Ang II 

NOX1/2 

ROSMAPK 

MAPKAPK2 Akt

PTENPIP3

SMC hypertrophy & proliferation   

Fig. 6 Redox signaling and

smooth muscle cell hypertrophy

and proliferation. PDGFb
platelet-derived growth factor b,

PDGFR platelet-derived growth

factor receptor, AngII

angiotensin II, AT1R

angiotensin II type 1 receptor,

ROS reactive oxygen species,

MAPK mitogen-activated

protein kinase, MAPKAPK2

mitogen-activated protein

kinase-activated protein kinase

2, PIP3 phosphatidylinositol

3,4,5 trisphosphate, PTEN

phosphatase and tensin

homolog, AP1 activator protein

1, NF-jB nuclear factor jB,

STAT3 signal transducer and

activator of transcription 3

358 K. Karimi Galougahi et al.

123



newly formed capillaries [127]. Pericytes can be con-

stricted and dilated by signaling molecules in vitro and

capillary blood flow heterogeneity might reflect differences

in pericyte tone. These properties of pericytes are

increasingly recognized in physiology and in remodeling of

microvasculature in pathology. Pericyte contraction in

response to ischemia–reperfusion contributes to ‘‘no-re-

flow’’ phenomenon in the brain that is mediated by

oxidative-nitrosative stress [128], nonetheless, pericyte

death in rigor, which majorly contributes to no-reflow

phenomenon, does not change with ROS scavenging [127].

A role for pericytes in myocardial no-reflow has been

implicated [129] but remains to be established. A marked

increase in the capillary pericyte coverage and a switch in

phenotype to contractile SMC have been shown to con-

tribute to distal vascular remodeling in human PAH [130].

Since receptor tyrosine kinases have been shown to reduce

pericyte density in solid tumor models, it is plausible that

these agents might be useful in treatment of PAH. Given

these recent studies, it is clear that the physiological reg-

ulatory role of pericytes in the microvasculature and

putative involvement of redox-dependent mechanisms in

these cell types require further elucidation.

Therapeutic implications and future directions

Like most biological processes, vascular remodeling and

redox signaling are extremely complex. The complexity of

the biology mandates sophisticated approaches to tackle

dysregulation of biosystems. As can be seen from our

overview, enormous efforts have been made for gaining in-

depth insights into the pathobiology of vascular remodeling

and the role that ROS play in this phenomenon. Bearing

this in mind, it is no surprise that general antioxidants that

primarily aimed to scavenge ROS failed to improve redox-

dependent cardiovascular pathologies [131].

The advent of systems biology, with high dimensional

‘‘omics’’ tools, provides a unique opportunity for more

sophisticated, unbiased understanding of the biological

processes. This approach promises to provide most bio-

logically relevant therapeutic targets. A relevant example

of using this method in vascular remodeling is transcrip-

tomic characterization of in-stent restenosis by our group.

We performed near genome wide analysis in de novo

atherosclerosis and in-stent restenosis in atherectomy

samples from patients. Independently, we generated net-

works of gene–gene interactions using text mining of the

entire abstracted literature. By overlaying gene expression

from atherectomy tissue on these networks and scoring

individual networks according to the average differential

significance of network members, we found the network

with Gpx1 as its hub to be the most significantly down-

regulated of all gene networks in in-stent restenosis [27]. In

mechanistic studies, we found that loss of Gpx1 leads to

increased SMC proliferation, migration and apoptosis, and

that this is attenuated by inhibition of the orphan receptor

tyrosine kinase ROS1 through cell-fate regulation. Sus-

tained ROS1 activation that triggered SMC proliferation

and neointimal hyperplasia was mediated by the reductive

stress associated with Gpx1 deficiency, which lead to

inhibition of the regulatory phosphatase Shp2 by S-glu-

tathiolation of 2 backdoor Cys residues. Importantly, we

determined that pharmacological inhibition of ROS1

attenuated in-stent restenosis without affecting reendothe-

lialization. This differential effect on SMCs and ECs is

critical since the current anti-proliferative drugs used in

stents, whilst very effective, indiscriminately affect ECs

and SMCs leading to delayed reendothelialization [132]

and higher risk of late stent thrombosis [133].

As our understanding of the mechanisms governing

phenotype switching and cell fate in ECs and SMCs

deepens, differential targeting of these cells will be more

attainable. Similar to ROS1 inhibitors, targeting pyruvate

dehydrogenase kinase isoform 2, which governs mito-

chondrial hyperpolarization in SMCs after BAS [134] or

cytidine triphosphate synthase 1 that catalyzes generation

of the energy-rich nucleotide cytidine triphosphate in pro-

liferating SMCs after balloon injury [135], reduce

neointima formation without affecting reendothelialization.

It is high time for development of similarly tailored ther-

apies that are directed at redox pathways to slow or halt

pathological vascular remodeling.
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