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Abstract Cellular models are important tools in various

research areas related to colorectal biology and associated

diseases. Herein, we review the most widely used cell lines

and the different techniques to grow them, either as cell

monolayer, polarized two-dimensional epithelia on mem-

brane filters, or as three-dimensional spheres in scaffold-

free or matrix-supported culture conditions. Moreover,

recent developments, such as gut-on-chip devices or the

ex vivo growth of biopsy-derived organoids, are also dis-

cussed. We provide an overview on the potential

applications but also on the limitations for each of these

techniques, while evaluating their contribution to provide

more reliable cellular models for research, diagnostic

testing, or pharmacological validation related to colon

physiology and pathophysiology.
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Abbreviations

CF Cystic fibrosis

CFTR CF transmembrane conductance regulator

IBD Inflammatory bowel disease

ECM Extracellular matrix

TEER Transepithelial electrical resistance

TJ Tight junction

2D or 3D Two- or three-dimensional

Introduction

The intestine is a tubular structure extending between

stomach and anus, which operates as a highly efficient and

selective barrier, separating an external milieu composed

of ingested food, microorganisms, or toxic waste from the

internal body fluids and metabolism. Indeed, a single

epithelial cell layer—composed of different cell types and

covered by a mucus layer—forms the barrier that separates

the gut lumen from the underlying sterile tissue [1].

Whereas the small intestine sections duodenum, jeju-

num, and ileum absorb nutrients released from digested

food, the colon as the last intestinal section is mainly

responsible for reabsorbing water, ions, vitamins, and

organic acids of microbial origin, as well as for storing and

expelling waste material.

The intestinal barrier function relies on an epithelial

layer of highly differentiated columnar cells that are mainly

characterized by an absorptive apical surface and a tight

junction belt sealing the intercellular spaces. In this way,

selective uptake of luminal contents is controlled via apical

membrane transporters.

The ex vivo use of intestinal cells as model systems is of

great importance in various areas of basic and translational

science but also clinical research, namely, diagnosis

prognosis and personalized therapeutics. These models are

crucial for exploring the physiology or pathophysiology of

intestinal diseases in the laboratory, including disease
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mechanisms involved in cancer, inflammatory bowel dis-

ease, or cystic fibrosis (CF), as well as for toxicological and

bioavailability tests of newly developed food ingredients or

drugs, epithelial interaction with gut microbes, and to

perform diagnostic tests based on electrophysiological

measurements of ion transport properties in patient-derived

biological materials. The constant improvements of such

models should also allow to progressively use them to

replace some of the experiments currently still performed

in laboratory animals.

Intestinal cell lines used as models

The entire intestinal epithelium contains crypt invagina-

tions where adult stem cells continuously generate

replacement cells, which then differentiate on their way to

the epithelium surface into entero- or colonocytes (see

Fig. 1). In the colon, this proliferative environment is

susceptible to malignant transformation [2], so that most of

the available cell line models were derived from human

tumor samples. Their use became widespread following the

successful establishment of the first immortalized human

tumor cell line, HeLa, in 1952.

Caco-2 cells

The most widely used cellular model over the last 30 years

has been the Caco-2 cell line, reaching over 13,590 refer-

ences in the PubMed database in April 2016. Grown to a

confluent culture these cells undergo differentiation with

several morphological and functional characteristics of

small intestine enterocytes, although cells were initially

obtained from a human colon adenocarcinoma [3]. This

coexistence of colonocyte and enterocyte characteristics

has turned these cells very useful to explore absorptive and

pathogen-defensive properties of the intestinal mucosa.

When grown on filter membranes, these cells form a con-

fluent cell layer with a polarized organization, in particular,

the sealing of the lateral intercellular space through tight

junctions [4, 5], which can be measured as transepithelial

electrical resistance (TEER).

Caco-2 cells show a microsatellite-stable phenotype and

harbor mutations in the tumor-suppressing proteins APC,

p53, and SMAD4 but not in the oncogenes KRAS, BRAF,

or PI3KCA [6, 7].

The parental Caco-2 cell line has revealed some mor-

phological heterogeneity and a mosaic expression pattern

of intestinal marker enzymes during the cellular differen-

tiation process, which may be of interest to specific

research questions [3, 8, 9]. This may indicate a hetero-

geneous differentiation potential or some intrinsic pattern

of functional differentiation within the cell population.

Alternatively, a proportion of the cells may retain stem-cell

like properties or phenotypic plasticity and diverge in their

features during differentiation. Interestingly, recent studies

revealed that Caco-2 cells cultured under continuous flow

conditions can form a crypt-villus organization and also

differentiate into other cell types, such as goblet and

enteroendocrine cells [10].

The observed morphological heterogeneity has moti-

vated the selection of several clones, such as Caco-2/TC7,

Caco-2/AQ, and Caco-2/15, with higher expression of the

cell surface activities of taurocholic acid transport, alkaline

phosphatase, or sucrase isomaltase, respectively [3, 11].

Another example is the Caco-2/C2BBe clone that was

Fig. 1 Cellular organization of the colon epithelium. a The epithe-

lium is composed of crypt invaginations and the epithelial surface

(villus elevations characterize the small intestine but not the colon).

The scheme on the left depicts the crypt (with a stem cell niche at its

basis and the transit-amplifying compartment) followed by a zone of

cell migration and differentiation that ends in apoptotic cell loss at the

surface. b Model of the cell lineage from a single stem cell to the

various differentiated cell types of the colon epithelium and the

Paneth cell-like secretory cells of the colon stem cell niche [134]
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selected for a more homogeneous apical brush border

morphology and exclusive apical villin localization [3, 12].

The use of these clones may explain conflicting results that

appeared in the literature but also highlighted that cell

culture conditions may modify the differentiation process

of parental Caco-2 cells, so that these conditions need to be

clearly defined [3].

The co-culture of Caco-2 cells separated by a filter

membrane from B-cell lymphoma Raji cells induced about

20 % of them to adopt M-cell-like properties [13–15].

M-cells are microvilli-less specialized antigen-sampling

cells that effectively bind, transport, and deliver non-nu-

tritional macromolecules and microorganisms to the

immune cells of the gut-associated lymphoid tissue that

underlies the intestinal epithelium in Peyer’s patches [16,

17]. M-cells represent only about 1 % of the intestinal

surface area but possess a high transcytotic capacity and

ability to transport bacteria, viruses, or materials, such as

nanoparticles. This cell model has been widely employed

in the context of oral vaccination, nanomaterial-based

delivery, or infection by pathogenic bacteria [16, 18, 19].

Other colorectal cell lines

SW480 are colorectal adenocarcinoma cells with a more

mesenchymal phenotype and a high proliferation rate,

which do not form a polarized monolayer. They are mostly

used for research on Wnt-related oncogenic signaling

pathways or assays validating anti-cancer drugs.

T84 cells were derived from a lung metastasis of a colon

carcinoma and can spontaneously differentiate in culture

forming apical microvilli and basolateral tight junctions.

They have, thus, been frequently used, similar to Caco-2, as

a model for studying a tight polarized enterocyte cell layer.

HT29 is a colorectal adenocarcinoma cell line with

epithelial morphology but do not form a fully differentiated

cell layer. They contain a small proportion of goblet cells

with mucin secretion and carry a mutation in the BRAF

oncogene.

Other commonly used cell lines are LS174T, INT-407,

HT20-MTX, and NCM460. Properties and main applica-

tions of all these cell lines are summarized in Table 1. Not

mentioned are many other colon cancer-derived cell lines

[20, 21] that serve as models for specific genetic alterations

found in colorectal cancer and are grown as standard

monolayer cultures.

Two-dimensional (2D) culture systems

For many research applications, intestinal cells are culti-

vated as two-dimensional flat monolayers on plastic

surfaces (Fig. 2a). This allows rapid growth under

relatively cost-effective conditions, and the cells can be

easily handled, manipulated or transfected, and harvested

for analysis. Sufficiently large numbers of cells are

obtained for monitoring cell viability, changes in gene

expression, or biochemical determination of enzymatic

activities underlying a given molecular response. These

growth conditions and the size of spread colorectal cells are

also well-suited for high-throughput drug or siRNA

screenings, especially when using automated fluorescence

image analyses. Thus, such monolayer cultures offer the

advantage of a reductionist approach to study the intrinsic

characteristics of colorectal tumor cells (Table 2).

However, when grown on plastic surface, many of the

functionally important epithelial cell properties are not

developed and may thus yield results of limited physio-

logical relevance. For example, the undifferentiated state of

cells without adherens and tight junctions that is observed

in monolayer cell cultures does not exist in the tissue. In

addition, growing various epithelial cell types, including

Caco-2 and T84, on an ultra-stiff plastic matrix creates

conditions that promote cell proliferation and mesenchy-

mal-like malignant phenotypes [22–26]. In addition, the

lack of signals contributed by other stroma cell types may

affect the morphological organization or response of

intestinal cells [27–29] or render sensitive tumor cell lines

resistant to targeted drugs [30, 31].

Growth as polarized cells on microporous filter

membranes

A significant improvement in physiological relevance of the

two-dimensional (2D) cell models is achieved upon their

growth on microporous membrane inserts that allow free

access of ions and nutrients to either the apical or the baso-

lateral sides of the cell monolayer (Fig. 2b). These conditions

induce full cell polarization. This is a process requiring

several days to weeks and implies a striking functional sep-

aration between the apical and basolateral plasma membrane

domains. As a result, an apical domain (corresponding to the

intestinal lumen) generates a multitude of actin bundle-sup-

ported microvilli forming the morphological structure known

as brush border [32–34]. The microvilli projections mas-

sively increase the apical cell surface and guarantee the

uptake of luminal nutrients through cell surface enzymes and

transport proteins. In addition, a basolateral membrane

domain establishes cell–cell adhesion complexes and cell–

extracellular matrix (ECM) interactions, and exposes recep-

tors to growth factors or hormones. Cell polarization also

implies differential sorting of proteins to each membrane

domain [35, 36], including specific sets of ion channels,

receptors, and solute transporters. Another essential junc-

tional hallmark is the sealing of the lateral intercellular space

through tight junctions [4, 5] (Fig. 2c).
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Growing cells on microporous membrane inserts allow

monitoring the integrity of the monolayer through their

TEER. TEER is measured in Ohm with an epithelial

voltohmmeter and represents a quantitative technique to

measure the integrity of the epithelial barrier or of tight

junction dynamics in the cell culture model [37]. For

electrical measurements, two small electrodes are used, one

being placed in the upper apical and the other in the lower

compartment underneath the porous membrane, so that the

electrodes are separated by the cellular monolayer. Nor-

mally, monolayers with TEER values of over 1000 X cm2

are considered as ‘‘tight,’’ with values of 300–400 X cm2

as ‘‘intermediate,’’ and as ‘‘leaky’’ with values of

50–100 X cm2; however, TEER values ranging from 62 to

1290 X cm2 have been reported for Caco-2 cells and also

depend on cell line variants and culture conditions [37, 38].

It should be recalled that Caco-2 cells alone do not fully

represent the physiology of the intestinal mucosa, because

other cell types, such as goblet and enteroendocrine cells

exist. Including such cells in the cell layer grown on filter

membranes will reduce the strength of the barrier function,

so that these models are more permeable but can be more

physiological, depending on the research question.

Because abnormal intestinal epithelial cell polarity and

morphology are typical features of several human patho-

logical conditions, TEER measurement under these growth

Table 1 Summary of properties of the most commonly used colon-derived cell lines

Cell line Mutated genes Citations Origin Main characteristics Main applications References

Caco-2 APC, TP53,

SMAD4

13592 Colon adeno-

carcinoma

Functional characteristics of

small intestine enterocytes; can

differentiate into a polarized

monolayer

Electrophysiology; absorptive

and pathogen-defensive

properties of the intestinal

barrier; innate immune

response; drug resistance

[3, 11,

135]

SW480 APC, TP53,

KRAS,

PIK3CA

2333 Duke’s type B

colorectal

adenocarcinoma

Do not form polarized

monolayer; high proliferation

rate; more mesenchymal

phenotype

Research on Wnt and other

oncogenic signaling

pathways; drug resistance;

toxicity of nanoparticles

[78, 136–

140]

T84 APC, KRAS,

PI3KCA

1395 Lung metastasis of

colon carcinoma

Differentiate into a polarized

monolayer; mixed

differentiation into both,

chloride-secreting enterocytes

and mucin-secreting goblet-

like cells

Electrophysiology; pathogen-

epithelium interactions;

barrier function

[141–145]

LS174T CTNNB1, KRAS 982 Duke’s type B

colorectal

adenocarcinoma

Goblet-like cells with secretion

of mucins MUC2, MUC5A/C

and MUC6; do not form

polarized monolayer

Mucin expression studies;

cancer research; drug

resistance

[146–148]

INT-407 Express E6-, E7

papilloma

virus

oncogenes;

Myc

overexpression

199 Originally from human

embryonic intestinal

epithelium; now

HeLa cells (cervix

adenocarcinoma)

Contaminated and overgrown by

HeLa cells indistinguishable

from HeLa by STR PCR DNA

profiling; residual formation of

polarized brush border

Attachment of Campylobacter

jejuni and other pathogenic

bacteria (also attach to

HeLa cells)

[149–153]

HT29-

MTX

APC, TP53,

BRAF

139 Selected subclone of

adenocarcinoma-

derived HT29 cells

Display mucus producing goblet-

cell properties; do not form

polarized monolayer; HT29-

MTX co-cultured with Caco-2

generate a confluent cell layer

model covered by a protective

mucus layer at the expense of

reduced barrier function

Effect of food-borne

nanomaterial additives on

the epithelium;

bioavailability of drugs in

the presence of mucus; drug

resistance

[154–162]

NCM460 Cytogenetic

changes; lack

p16INK4a

expression

128 Immortalized normal

colonocytes

Metabolic characteristics of

normal mucosa, with low

glycolytic rate and pentose

phosphate synthesis but high

tricarboxylic acid cycle

activity

Interaction with microbial

pathogens; control cells for

studying oncogenic

signaling pathways

[163–173]

Citation numbers were retrieved from the PubMed database in April 2016

3974 J. F. S. Pereira et al.

123



conditions has physiologically or clinically relevant con-

clusions. One example is the CFTR-mediated chloride

(Cl-) transport in colon biopsies of cystic fibrosis (CF)

patients, because CFTR-mediated secretion can serve as a

valuable biomarker for CF diagnosis and prognosis [39–

41]. To this end, rectal biopsy specimens are generally

mounted and analyzed in ringer solution-perfused micro-

Ussing chambers under open-circuit conditions, although

other options (non-perfused, short-circuit) have also been

used [42]. The cAMP-dependent apical Cl- secretion is

measured upon co-activation of calcium-dependent potas-

sium channels in the basolateral membrane, which provide

the driving force for luminal Cl- exit through CFTR and

allow to distinguish functional from mutant CFTR [40].

The experimental limitations and disadvantages of

growing an epithelial cell monolayer on filter membranes

are first the long period required for establishment of a

fully polarized organization (10–14 days) before experi-

ments can be performed. Second, the required transwell

filter inserts represent additional costs, and the cell number

is limited, so that cell analyses using PCR, immunofluo-

rescence and Western blot are possible, but fully

differentiated cells have limitations regarding manipulation

through transfection, unless a previously established

stable cell line is seeded that was engineered to express a

gene of interest after cell polarization, e.g., from an indu-

cible gene promoter [43]. Furthermore, the microporous

filter membrane is a structural surrogate for the basal

membrane to which intestinal cells attach, and although it

can be coated with different purified matrix proteins, the

membrane does not functionally correspond to a physio-

logical ECM.

bFig. 2 Schematic representation of different colon cell cultivation

techniques. a Two-dimensional monolayer of cells grown in a plastic

culture dish. b Tightly sealed two-dimensional monolayer formed by

cells grown on semi-permeable membrane filters that separate an

upper and lower compartment, allowing the cells to assume a

functionally polarized morphological organization. c Schematic rep-

resentation of a polarized intestinal cell with tight junctions and an

apical ring of actin filaments, functionally separating the plasma

membrane into two domains: the microvilli-containing apical and the

basolateral domain with concomitant differential sorting of trans-

porter proteins, such as the apical sodium-glucose co-transporter

(NaGlc), the chloride channel CFTR or the epithelial sodium channel

(ENaC), as well as the basolateral sodium–potassium pump (Na–K),

the sodium–potassium-chloride co-transporter (NKCC1) or potassium

channels of the KCN family. d Schematic view of a flow cell used for

organ-on-chip models. Channels for fluid perfusion (red or green

color) and for air-suction (gray) are shown. e Magnified represen-

tation of the channel system from a gut-on-chip device shown in (d).
Visible is the cell monolayer grown on the porous membrane with

upper and lower fluid channels and lateral vacuum channels allowing

to exert mechanical stretching forces on the cell monolayer
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Co-cultures using microporous filter membranes

Another important feature of this culture technique is the

ability to grow co-cultures of different cell types in the two

different filter compartments, so that they share soluble fac-

tors released into the medium but are not in a direct physical

contact. This is important because the mucosa contains

immune cells, the gut-associated lymphoid tissues, and

myofibroblasts underneath the epithelial cell layer that are

important players in the inflammatory bowel disease process.

They may not only interact through the secretion of cytokines

or growth factors and substantially modify drug response [30]

but also induce differentiation of some epithelial cells into

M-cells, as already described above [13–15].

An important consideration in this respect is the pore

size of the chosen porous membrane filters. For studies

concerning cell polarity, permeability or drug transport,

tissue remodeling, or co-culture of different cell types,

filters with pore sizes of 0.4, 1.0, or 3.0 lm are recom-

mended to keep cell types and compartments separated. In

contrast, pore sizes of 5.0 or 8.0 lm allow cells to cross the

membrane and are required to study epithelial tumor cell

invasion, transepithelial migration, chemotaxis, or phago-

cytosis. It should, however, be kept in mind that some cell

types or their cell body protrusions may squeeze through

3-lm pores to the other membrane side and, thus, establish

direct contact with cells present or grown in the opposite

membrane compartment.

Deliberate promotion of cell–cell contact can be

achieved using an inverted filter insert approach. Here,

Caco-2 cells, for example, are first grown as a polarized

monolayer on the filter membrane, which is then turned

upside down to face the lower compartment. Then, the

apical compartment can be loaded with lymphocytes that

will sediment onto the membrane and contact Caco-2 cells

from the physiologically relevant basolateral side [13].

Co-culture approaches are being used with increasing

frequency to bridge the gap between simplistic single-lin-

eage models and the dynamic biological processes that

occur in vivo [44]. In the future, an increasing complexity

of such co-culture models can be expected to uncover new

and more accurate in vitro synergies to intestinal biology.

Gut-on-chip technique

A highly sophisticated improvement of filter membrane-

based culture systems is microfluidic flow chambers [45–

47]. In these devices, epithelial cells are grown on a porous

membrane with one fluid-perfused channel underneath the

membrane and another above the apical luminal face (see

Fig. 2d). This allows the cells to experience nutrients or

signal molecules from the basolateral side and flow-derived

shear forces on the apical surface.

Several unprecedented technical improvements are

achieved with this gut-on-chip technique [10, 48, 49]. First,

it is possible to mimic the rhythmic peristaltic contraction

of the intestine, because two adjacent hollow microchan-

nels exist and serve to apply a vacuum through cyclic

suction (Fig. 2e). In this way, the central porous membrane

with its attached cell layer becomes deformed, and this

exerts cyclic mechanical stretch forces. Because mechani-

cal stimulation has now been recognized to affect not only

cell morphology but also signaling transduction and gene

expression [50–53], the properties of the seeded epithelial

cell layer can be expected to be even closer to the in vivo

situation. For example, under these conditions, Caco-2

cells were reported to spontaneously reorganize into 3D

intestinal villi and reestablish basal proliferative crypt-like

structures that give also rise to mucus-secreting,

enteroendocrine, and Paneth cells [10]. These systems

appear thus to reach an interface between 2D and 3D

growth conditions.

Second, the continuous fluid flow of fresh culture

medium in these microfluidic devices does not only con-

stantly supply nutrients but also removes unbound residual

bacteria as well as metabolic wastes. Thus, the kinetics of

nanomaterial adsorption or bacterial growth on the

epithelial cell layer differs from a static membrane filter

assay and is further modulated by rhythmic cell stretching

[54].

Third, a microenvironment in steady-state equilibrium

can be created with stable co-culture conditions allowing to

mimic in vitro the interaction between epithelial cells,

underlying immune cells and probiotic or pathogenic gut

microbes [54]. Moreover, this model system can be

specifically manipulated over a time course regarding its

biochemical and cellular composition or the presence of

mechanical cell stretching. Microscale structures that

generate a geometric landscape of villi on the chip [55] can

further increase the dynamics of the intestinal microenvi-

ronment and provide novel insights into its role in

pharmacokinetics and inflammatory bowel disease (IBD).

A limitation is that cells grow on an artificial porous

membrane and lack the physiological ECM

microenvironment.

Three-dimensional (3D) culture systems

Intestinal cells that grow as a 2D monolayer lack important

aspects of tissue- and organ-specific microarchitecture.

There is no doubt that immortalized colorectal tumor cell

lines grown in 2D culture have contributed tremendously to

the knowledge about the molecular pathways involved in

malignant cell transformation, but they cannot represent

adequate model systems for complex tumor biology, for
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example, [56]. Indeed, in drug development, only 5 % of

the drugs found active in such cell culture models reach

relevant clinical trials [57, 58]. There is now evidence that

3D culture models may better recapitulate the mechanisms

of drug resistance found in tumors [59, 60]. The reason is

that spatial and physical aspects exist in these cultures that

alter signal transduction and influence the cellular response

or behavior.

It is likely that 3D cell culture models may bridge the

gap between in vitro models used in the discovery or

screening phase of drug development and subsequent ani-

mal experiments for safety assessment prior to clinical

trials. In particular, increasing predictive power of 3D

culture models could contribute to reduce the number of

animals used by the pharmaceutical industry for drug

efficacy and toxicity tests. 3D cell cultures further revealed

greater stability and longer life span than cell cultures in

2D and are thus more suitable for long-term studies on cell

interactions or drug effects. Similarly, the growth of

patient-derived cells in such 3D cultures may open

unprecedented possibilities for personalized pharmacoge-

netic approaches that animal models cannot address.

Currently, there are several 3D culture methods,

including the scaffold-free platforms for spheroid growth

and the scaffold-based models (hydrogels or solid bioma-

terials) [61–64], described in the following.

Scaffold-free techniques

Scaffold-free methods in 3D culture do not contain added

biomaterials or ECM and are based on the natural affinity

shown by many cell types to establish cell–cell adhesion

and generate their own ECM. When using established

colorectal or intestinal cell lines, they primarily generate

simple aggregates of cells, which do not develop any

functional differentiation or polarized organization. When

single isolated CD133? colon cancer stem cells are culti-

vated, they generate a clonogenic 3D spheroid but do not

further differentiate into different cell types [65]. HT29

cells may even become enriched in a population with stem-

cell like properties [66], and primary CD133-positive colon

cancer stem cells can be isolated through their ability to

form spheroids in serum-free medium [67].

Spheroid formation can be induced by a variety of dif-

ferent techniques. The earliest method employed in cancer

biology is spinner flask culture, where fluid turbulence

prevents attachment and promotes cellular aggregation

[28]. This technique has later been developed into biore-

actors, allowing the culture of large populations of

spheroids under perfusion-controlled parameters (oxygen,

nutrient supply and pH, for example). A simpler method

for spheroid production involves liquid overlay of a cell

suspension over a non-adherent surface, such as agar-

coated plates or special low-adherence culture dishes. Both

methods can produce large numbers of relatively consistent

spheroids, but commonly generate a large variation in size

and number of the spheroids.

Recently, primary spheroid cultures obtained directly

from colorectal cancer samples were isolated using low

attachment culture plates. Following glass bead-mediated

mechanical disruption of tumor material, crypt-like struc-

tures were isolated and grew into spheroids in the presence

of a cell-death reducing RHO-associated kinase (ROCK1)

inhibitor [68]. If viable in a clinical setting, such approa-

ches should greatly improve the future design of a

personalized cancer treatment.

A variation of low-attachment plates are dishes with

micropatterned surfaces that create small square or hon-

eycomb-shaped islands where cells can form adhesive

contacts without allowing full cell spreading. Growth under

such conditions also promotes 3D cell aggregation. Instead,

precision micropatterns can be used to create small isolated

compartments to which cell growth is confined, so that

spheroids grow in regular patterns of defined size and in the

same focal plane, thus suitable for automated analyses [69].

Alternatively, individual spheroids can be grown within

small hanging drops, in which cells are first in suspension,

then concentrate at the bottom of the drop by gravity and

can subsequently form aggregates through cell–cell adhe-

sion. This scaffold-free method is simple to use and

generates spheroids with consistent sizes and shapes, so

that testing series encounter comparable and controllable

conditions. With this technique, spheroids can also be

harvested and analyzed individually. Two approaches to

the hanging drop are currently being used. One applies the

cell suspension to the lid of a culture plate, which is then

inverted to hang over the liquid-filled culture plate, which

creates a humid atmosphere. A second approach employs

culture plates specially designed to generate a hanging drop

after applying a cell suspension. For example, the Perfec-

ta3D� or GravityPlusTM hanging drop plates consist of the

main culture plate with access holes and a complementary

lid and tray (Fig. 3a). These operate in 96-well plates with

small volumes of 30–50 lL and should contain only about

5000 cells in each drop. Some plates can also hold 384

drops of 25 lL with 2500 cells. Each day a small volume

of fresh culture medium needs to be added to provide

sufficient nutrients and prevent changes in osmolality, and

this way reagents and drugs can also be added or removed

from the drop cultures. Spheroids can be harvested from

the top by aspirating with a pipette, or through the bottom

side by centrifugation into a 96-well receiving plate or

addition of excess medium until the drop falls. The addi-

tion of polymers to the culture medium can further

standardize the formation of single spheres of equal size

[70, 71], so that high-throughput assays become feasible.
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Spheroids can be analyzed using colorimetric, fluores-

cence, and luminescence assays measured with a plate

reader. However, these hanging drop approaches require

generally very careful and standardized conditions of

medium or humidity supply to avoid volume and tonicity

fluctuation within the drop that will damage the spheroids.

From the biological point of view, spheres of colonic or

intestinal cells are usually unstructured, high-density

clumps of cells that experience gradients of oxygen,

nutrients, and metabolism end products, so that cellular

stress and apoptosis are created in their center, much alike

the initial pre-angiogenic phase of tumor development.

They are generally limited in size (400–600 lm) resulting

from these gradients and develop a necrotic core sur-

rounded by a rim of viable cells (100–300 lm) in the

periphery They, thus, have their role in testing anti-cancer

drugs, for instance, as described for the angiogenic and

invasive behavior of HT29 or HCT116 tumor cells [69, 72,

73], or the induction of stemness properties in colorectal

cells upon hypoxic stress conditions [74]. Spheroid biology

is certainly closer to tumors than a thin monolayer of cells

grown on a stiff plastic dish [56, 75].

Scaffold-based techniques

3D scaffolds can be manufactured from a range of natural

or synthetic materials and can be divided into two

approaches—hydrogels and solid scaffolds.

Through the use of hydrophilic polymer chains, highly

hydrated scaffolds with water content above 30 % by

Fig. 3 Three-dimensional (3D)

techniques to culture colon

cells. a 3D sphere formation

using the hanging-drop

technique. A cell suspension is

applied to a specially designed

plate (left) and cells accumulate

and aggregate at the bottom of

the drop. b 3D cyst formation

by Caco-2 cells grown in

Matrigel [101]. The confocal

microscopy image shows DAPI-

stained nuclei in blue and

phalloidin-stained actin

filaments in red, revealing the

polarized cell organization and

formation of a central apical

lumen
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weight can be formed and their mechanical and structural

properties depend on chemical crosslinks or physical

interactions between polymer chains, similar to or modified

from tissue ECM [76]. The various available scaffold

materials differ in their suitability for a given scientific

question to be addressed, depending on their physical

properties, such as pore size, or stiffness, their reluctance to

diffusion of soluble molecules, and their biological effects,

including cell adhesion, signaling, or biodegradability.

Plant-derived hydrogels

As plant-derived polymers methylcellulose, agarose or

alginate is mainly used. The addition of up to 1 %

methylcellulose to the culture medium generates a semi-

solid medium with increased viscosity working as a bio-

logically inert crowding agent, so that cell aggregation is

promoted. Similarly, suspending cells in a 0.5 % agarose

solution lead to the formation of a gel with a non-adhesive

surface and scaffold-free environment for multicellular

aggregates to form.

Alginate is linear polysaccharide derived from brown

seaweed and a co-polymer with alternating regions of

mannuronic acid and guluronic acid. It forms a gel in the

presence of calcium ions and has been used as a scaffold

for encapsulation of various types of cells. Cells are sus-

pended in sodium alginate solution and gel-formation is

then induced by addition of calcium ions, which crosslink

the polysaccharide chains to entrap the cells. This approach

has allowed 3D-culturing of microdissected primary col-

orectal adenomas without overgrowth by fibroblasts [77]

and of colorectal cell lines used for drug response testing

[78, 79]. Because cells have no receptors to adhere to

alginate, increased adhesion has been achieved by coupling

RGD peptides that represent the natural binding site for a

subset of integrins in ECM proteins, including fibronectin,

laminin, vitronectin, and collagen [80]. Alternatively,

alginate gels can be interpenetrated with collagen-I fibers

[22]. In both cases, the calcium concentration also allows

adjusting the gel’s stiffness, and this is the major experi-

mental advantage of this hydrogel type.

Animal-derived hydrogels

The animal-derived matrices collagen and Matrigel are

described in the following paragraphs and widely used,

allowing cell surface receptors, such as integrins to interact

with natural matrix proteins. Pioneering work from the

laboratory of Mina Bissell has demonstrated the impor-

tance of creating physiologically more relevant in vitro

culturing models through 3D techniques that include the

interaction of cultured cells with an appropriate ECM [81,

82].

Adhesion between cells and the ECM includes mainly

focal adhesions (FAs) and focal complexes, where trans-

membrane integrin receptors link the ECM to the

cytoskeleton. This activates sub-membrane signal trans-

duction complexes, which regulate microenvironmental

sensing and cell motility. In consequence, cell–ECM

interaction modifies cell signaling networks and gene

expression, and this in turn determines the cellular response

to pharmaceutical compounds [83–85]. The ECM further

establishes drug diffusion gradients similar to tissues and

can include effector proteins like growth factors. There-

fore, such natural ECM-based 3D approaches are unique in

that they can promote the generation of self-organized

multicellular structures, such as the acini observed with

mammary cells, or hollow cyst-like structures of polarized

Caco-2 cells.

Collagen was one of the earliest biomaterials with

widespread use for 3D cell culture and is the most abundant

ECM component. Several tissue-specific types exist, such

as collagen type I from skin, tendon and bone, type II in

cartilage, type IV in basal lamina, and type V in hair. They

have been used for 3D in vitro pharmacological testing [86]

or cell invasion [87] of HT29 and HCT116 colorectal cells,

and can induce morphological differentiation in some

colon cell lines [88]. Collagen gel cultures have also been

used to study the role of matrix-degrading metallopro-

teinases that are expressed in colorectal cells [89].

More complex collagen gels can be engineered as

interpenetrating polymer networks with other ECM com-

ponents, such as hyaluronic acid (HA), a linear non-

sulphated polysaccharide composed of a repeating glu-

curonic acid, and N-acetyl-glucosamine disaccharide units.

The negative charge of glucuronic acid fixes cations and

water to form a gel, but HA is also the ligand for the cell

surface receptor CD44 [90]. The presence of HA can thus

affect signaling pathways and determine the biological

activity of cancer cells, such as drug response [91].

Novel bioengineering techniques have led to the

development of microscale collagen structures that mirror

the density and size of human intestinal villi [92], or of

microwells that allow the formation of crypts below a

surrounding surface [93]. These microscale supports can

then be colonized with Caco-2 or crypt-derived primary

cells and can be expected to add a physiologically more

realistic geometry to the cell models in the near future.

Matrigel-based techniques

MatrigelTM is the most widely used hydrogel and a com-

mercial product collected from the Engelbreth–Holm–

Swarm (EHS) tumor grown in mice. As a natural bioma-

terial, it contains a complex mixture of multiple ECM

proteins and associated molecules, providing a framework
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of signals from the microenvironment. Matrigel, also

known as reconstituted basement membrane (rBM), is

mainly composed of laminin, type IV collagen, and heparin

sulphate [94–96], but its exact constituents or residual

growth factors are not clearly defined and suffer batch-to-

batch variation. Although different tissue types deposit

varying amounts and types of basement membrane com-

ponents, Matrigel is considered similar to a conserved

developmental basement membrane and can thus not only

facilitate 3D organization of cells from different tissue

types but also allow stem cell propagation.

Many epithelial cell types respond to Matrigel by

ceasing proliferation and developing a polarized tissue-

specific morphology, such as acinar structures from glands

[97, 98] or capillary-like tube structure from the endothe-

lium [99]. These structures allowed the identification of

biological agents that repress the tumor phenotype and

restore differentiated tissue architecture of malignant cell

cultures, despite the presence of oncogenic mutations in

their genomes [82, 98]. These studies elucidated that the

ECM conveys important information that cannot be

explained by cells being solitary entity defined only by

their genome. Regarding the intestinal epithelium, some

colorectal cell lines, such as HT29, form mere aggregates

when cultured in Matrigel [100], whereas the other like

Caco-2 is induced to grow as polarized cells and form cyst-

like structures with a central lumen [101] (see Fig. 3b). The

formation of the apical luminal space can involve hol-

lowing through directional vesicle trafficking and cell–cell

repulsion, or cavitation via luminal cell death [102].

With regard to colon cells, Matrigel has been used to

enrich cell lines for cancer stem cells [103], to validate

pharmacological inhibition of oncogenic signaling [104] or

of spheroid growth [105], or to study the nutritional impact

on intestinal crypt cell perturbation [106]. Caco-2 cells can

be grown as 3D Matrigel cultures on cover slips or

chamber slides and, subsequently, analyzed with most

standard protocols, such as immunofluorescence analysis in

formaldehyde-fixed preparations, Western blot analysis of

protein expression levels after lysis in denaturing or non-

denaturing sample buffers, or transcriptomics following

total RNA extraction.

Limitations of Matrigel-based 3D cultures are related to

batch variability and, therefore, some lack of repro-

ducibility. In addition, the fact that it is generated by tumor

cells may affect the response of cells grown in Matrigel.

Other drawbacks concern handling difficulties. Matrigel

must be kept on ice to keep its viscosity low enough for

pipetting and prevent the gel formation that occurs at room

temperature. Thus, to deposit Matrigel, for example, as

25-lL drops on cover slips or chamber slide wells, all

involved materials need to be pre-chilled. Then, about

10,000 cells are seeded on top after polymerization at

37 �C giving rise to many 3D cysts in the same cushion.

Once polymerized, the matrix is not suitable for long-term

storage of samples, because it can collapse, especially

when stored cooled. The dense gel structure does not allow

easy retrieval of the individual 3D cell structures that form,

and presents a diffusion barrier that can interfere with

certain biochemical assays. From the biological perspec-

tive, Caco-2 cyst structures are well-suited to study effects

from the basolateral side of the polarized epithelium, but

the apical side is not easily accessible for testing the effect

of microbes or luminal toxins. In addition, in co-culture

approaches with fibroblasts, one needs to bear in mind that

Matrigel components may suffer significant modification

through MMP activity or secretion of additional ECM

proteins [107].

Other scaffold material

Another development in the field is the use of decellular-

ized extracellular matrix ‘ghosts’ that not only represent a

biomechanical scaffold for cell–ECM adhesion, but also

contain deposited signaling cues, such as growth factors

and cytokines [108]. Such tissue-derived matrices (TDMs)

have been prepared from rodent intestine [109] or human

colon tumor biopsies [110] following decellularization

with detergents and enzymes. When TDMs are then

repopulated with specific cell types, they can help to elu-

cidate how changes in the ECM, for example, during

cancer or IBD, contribute to inflammation and the disease

process. TDMs may further help to engineer a prosthetic

seed structure to promote intestinal regeneration of dam-

aged regions in vivo, or generate in vitro an intestinal tissue

inoculum containing intestinal crypt or pluripotent stem

cells, which can subsequently be introduced into the

patient.

Other more recent types of hydrogels rely on fully

synthetic scaffolds, such as polyethylene glycol (PEG) or

repeating peptide sequences, and can mimic the nanofiber

structure of an ECM while enabling chemical control over

physical and adhesive properties [111–113]. Examples are

ExtracelTM combining HA, gelatin, and the crosslinker

polyethylene glycol diacrylate, QGel� as a PEG-based

matrix modified with Arg–Gly–Asp (RGD) sites for inter-

gin binding, 3-DLife hydrogels as a two component

polyvinyl alcohol-PEG gel, and PuraMatrix based on

RADA-peptides that self-assemble into nanofiber struc-

tures. When compared with natural scaffolds, they are

mechanically stiffer and, therefore, suitable for modeling

the denser tumor microenvironment. However, they require

surface modifications with RGD or other integrin-binding

peptide sequences to allow cell attachment. In addition,

some of the chemical reactions involved or the presence of

toxic unpolymerized components (e.g., acrylamide) may
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have cytotoxic effects. Their suitability for intestinal or

colorectal 3D models remains to be demonstrated.

Research on biomaterials has also generated solid

scaffolds that provide a fibrous or porous physical support

for seeding specific cell types. Such products are synthetic

(for example polystyrene-based), supplied sterile and ready

to use, and manufactured in highly reproducible technical

processes [63, 114]. Their use with intestinal cells awaits

functional validation.

Organoid cultures

The epithelia of both the small and large intestines are

constantly being regenerated through an adult stem cell

population located at the basis of crypts. These stem cells

generate highly proliferative cells that form the transit-

amplifying compartment and from these the mature lin-

eages of the surface epithelium progressively differentiate

into goblet cells, entero- or colonocytes, enteroendocrine

cells, or tuft cells [115]. Following the molecular identifi-

cation of stem cell marker Lgr5, the corresponding mouse

intestinal stem cells were isolated [116] and culture con-

ditions developed allowing them to self-organize in vitro

into a crypt-villus structure known as intestinal organoids

or ‘mini-guts’ [117, 118] (Fig. 4a). These mini-guts con-

tain the distinct cell types that are normally found in the gut

besides enterocytes, including goblet and Paneth cells.

Later, single crypts, which can be readily isolated from

mouse or human intestine biopsies by EDTA-based Ca2?/

Mg2? chelation, were found to grow with much higher

efficiency into 3D organoids, because the association of

stem cells with a Paneth cell retains essential information

to form organoids in vitro [119]. In Matrigel, these mini-

guts grow as cysts with a central lumen to which the

enterocyte brush borders are located and the secretion by

Paneth and goblet cells is directed. In the absence of

Matrigel, however, they acquire the opposite conformation

(i.e., apical side toward the outside of the spheroids).

Crypt-like structures emanate at the basal side facing the

Matrigel-containing medium. Thus, they represent a closed

epithelial structure with a polarized topology comparable

with that of physiological tissue.

Isolated intestinal crypts require Matrigel, and a cocktail

of the Lgr-5-ligand R-spondin, EGF, and Noggin as min-

imal, essential stem cell maintenance factors. For colon

crypt culture, Wnt3a is an additional factor required to

maintain the stemness of Lgr5? cells. Organoids grown

from human colon are amenable to several standard

experimental manipulations used for cell lines, including

long-term storage by freezing, analysis by immunofluo-

rescence microscopy, transcriptomic and proteomic

analyses, and ion transport measurements [120–124]. For

transfection or infection with recombinant retro- and

lentiviruses, isolated crypts structures need to be first dis-

sociated and then regrown into organoids [123, 125, 126].

Protocols have been developed to grow human epithelial

mini-guts from biopsies [127] (Fig. 4a) and were applied to

CF patients, namely, to assess the function of their CFTR

protein [120, 128]. For example, five or six superficial

rectal mucosa specimens (3–4 mm in diameter) can be

recovered with colon forceps or suction and immediately

placed into culture medium. Then, the rectal mucosa

samples are EDTA-treated for 45–90 min to isolate the

crypts. These are then cultured in Matrigel surrounded by

medium, enriched with a cocktail of specific growth factors

that maintains ‘‘stemness’’ of the epithelial stem cell

compartment, including riboflavin (vitamin B2) and neu-

ronal supplement N27, nicotinamide, N-acetyl-L-cystein

(NAC), A83-01 (potent inhibitor of TGF-b type I receptor),

and a p38 MAPK inhibition to stimulate stem cells to

develop closed epithelial structures with an internal lumen.

After 2–3 weeks of culture mini-guts have grown and

can be analyzed as primary patient-derived cell material.

For example, Matrigel-grown organoids are closed

epithelial structures that contain the internal lumen lined by

the apical membrane and thus allow performing swelling

assays. In particular, the cAMP-stimulating drug forskolin

has been used to activate CFTR at the apical membrane,

resulting in salt and fluid secretion into the organoid lumen

and its corresponding rapid swelling (see Fig. 4b). This

swelling event is greatly reduced in organoids derived from

CF patients [120] and can be monitored using the fluo-

rescent cell-permeable dye calcein green. Pharmacological

compounds targeting CFTR can be screened with this assay

in a primary human cell model to determine their ability to

restore activity of mutant CFTR at the plasma membrane.

Moreover, patient-derived organoids can be used to test for

their individual response to different existing drugs. This

personalized therapy approach is of particularly great value

for patients bearing very rare mutations.

Organoids grown from patient-derived biopsies are also

of major interest for cancer research to overcome the

limitations of established cancer cell lines, which were

generally derived by subjecting primary tumor cells to a

challenging in vitro adaptation process. This leads to the

selection of characteristics that favor metastatic and fast

growing tumor cells, which, therefore, may not represent

adequate models. Indeed, many promising candidate drugs

to treat cancer perform well in preclinical cell line models

but later fail to deliver a clinical response in animal or

patient trials [58, 129]. With the high success rate of

establishing organoid cultures from individual patient

biopsies and their ability to expand in vitro, this technique

may allow a novel approach to personalized medicine in

oncology on the basis of cancer genetics and patient-cell

drug sensitivity [130, 131]. It should be noted that tumor
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biopsies are usually polyclonal due to genetic heterogene-

ity and, therefore, is the corresponding organoid culture.

The presence of sub-clonal organoid populations has

interesting implications for predicting patient responses to

therapy. A limitation is that crypts from normal adjacent

mucosa were shown to overgrow the tumor organoids

unless essential factors like Wnt or EGF are omitted from

the culture medium [131]. Many tumor cells carry muta-

tions in the corresponding signal transduction pathways,

e.g., in the APC or KRAS genes, that turn them independent

of the above stimuli; however, genetic subtypes of tumors

without these mutations may be lost under these selective

culture conditions.

Further limitations of organoids exist: despite the high

level of intestinal differentiation of 3D organoid cultures,

they do not experience physical stretching resulting from

peristaltic contractions, in contrast to the gut-on-a-chip

approach. They also consist largely of epithelial cells

without any interaction with mesenchymal cell types or

blood vessels. This aspect may be overcome by using

embryonic or induced pluripotent stem cells (PSC) that can

form organoids able to include sub-epithelial myofibrob-

lasts, enteric nerves and immune cells [132, 133]. RNA-

sequencing data demonstrated that organoids most closely

resemble human foetal intestine and may be immature with

respect to some metabolic and host-defence functions

Fig. 4 Patient-derived colon organoids. a Schematic representation

of organoid generation from colon crypts obtained by patient biopsy.

b Forskolin-induced swelling assay in colon organoids [120]. Phase

contrast image of organoids from a colon biopsy grown in culture and

treated with DMSO or forskolin to stimulate cAMP-dependent

activation of CFTR. Intestinal CFTR is predominantly expressed at

the apical membrane of colon cells, so that its activation drives the

secretion of chloride and fluid into the central organoid lumen. Scale

bar 30 lm
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[121]. In addition, organoids form a sealed structure that

cannot be cultured with living microbes at the luminal side.

Developing these aspects of the model would be of special

interest to research on IBD development or mucosa

regeneration.

Final remarks

Significant advances in cell culture techniques have been

described in the past 15 years and brought intestinal or

colorectal cell models much closer to physiologically rel-

evant systems. It is important to note, however, that the

systems outlined above cannot provide all the required

insights needed to understand complex biological questions

related to the mucosa and some still lack functional vali-

dation in animal experiments. Therefore, for each

technique, one should be aware of the limitations and, thus,

the biological value of the obtained results. Ideally, a

combination of different model systems with complemen-

tary properties should be employed to consolidate

experimental data.
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107. Pereira C, Araújo F, Barrias CC et al (2015) Dissecting stromal-

epithelial interactions in a 3D in vitro cellularized intestinal

model for permeability studies. Biomaterials 56:36–45. doi:10.

1016/j.biomaterials.2015.03.054

108. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001)

Taking cell-matrix adhesions to the third dimension. Science

294:1708–1712. doi:10.1126/science.1064829

109. Totonelli G, Maghsoudlou P, Garriboli M et al (2012) A rat

decellularized small bowel scaffold that preserves villus-crypt

architecture for intestinal regeneration. Biomaterials

33:3401–3410. doi:10.1016/j.biomaterials.2012.01.012

110. Genovese L, Zawada L, Tosoni A et al (2014) Cellular local-

ization, invasion, and turnover are differently influenced by

healthy and tumor-derived extracellular matrix. Tissue Eng Part

A 20:2005–2018. doi:10.1089/ten.TEA.2013.0588

111. Lowe SB, Tan VTG, Soeriyadi AH et al (2014) Synthesis and

high-throughput processing of polymeric hydrogels for 3D cell

culture. Bioconjug Chem 25:1581–1601. doi:10.1021/

bc500310v

112. Trappmann B, Chen CS (2013) How cells sense extracellular

matrix stiffness: a material’s perspective. Curr Opin Biotechnol

24:948–953. doi:10.1016/j.copbio.2013.03.020

113. Worthington P, Pochan DJ, Langhans SA (2015) Peptide

hydrogels—versatile matrices for 3D cell culture in cancer

medicine. Front Oncol 5:92. doi:10.3389/fonc.2015.00092

114. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell

culture matrices: state of the art. Tissue Eng Part B Rev

14:61–86. doi:10.1089/teb.2007.0150

115. Barker N (2014) Adult intestinal stem cells: critical drivers of

epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol

15:19–33. doi:10.1038/nrm3721

116. Barker N, van Es JH, Kuipers J et al (2007) Identification of

stem cells in small intestine and colon by marker gene Lgr5.

Nature 449:1003–1007. doi:10.1038/nature06196
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