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Abstract

In the present study we have developed a statistical mechanics-based iterative method to extract 

statistical atomic interaction potentials from known, non-redundant protein structures. Our method 

circumvents the long-standing reference state problem in deriving traditional knowledge-based 

scoring functions, by using rapid iterations through a physical, global convergence function. The 

rapid convergence of this physics-based method, unlike other parameter optimization methods, 

warrants the feasibility of deriving distance-dependent, all-atom statistical potentials to keep the 

scoring accuracy. The derived potentials, referred to as ITScore/Pro, have been validated using 

three diverse benchmarks: the high-resolution decoy set, the AMBER benchmark decoy set, 

and the CASP8 decoy set. Significant improvement in performance has been achieved. Finally, 

comparisons between the potentials of our model and potentials of a knowledge-based scoring 

function with a randomized reference state have revealed the reason for the better performance of 

our scoring function, which could provide useful insight into the development of other physical 

scoring functions. The potentials developed in the present study are generally applicable for 

structural selection in protein structure prediction.
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1 Introduction

Knowledge about the three-dimensional structures of proteins is of high importance 

to mechanistic studies of protein functions and rational therapeutic design. Currently, 

the number of the experimentally determined structures in the Protein Date Bank 

(PDB)1 is only a small fraction of the amino acid sequences found in the GenBank.2 

Therefore, there is a pressing need to predict protein structures by using computational 

methods. Over the years, numerous computational approaches have been developed for 

structure prediction from sequences.3–9 Roughly, these approaches can be divided into 

two categories:10 template-based modeling (comparative modeling and threading), and first-

principle modeling (referred as ab initio modeling). In template-based modeling, protein 
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structures are constructed based on the known protein structure/fold templates in the PDB 

that are close to the sequence to be modeled.11 In first-principle modeling, no homologous 

or analogous template is needed; instead, three-dimensional protein models are built ‘from 

scratch’ by sampling the conformational space and searching for the one with the lowest free 

energy.12–15

One common step for both template-based modeling and first-principle modeling is to 

first generate a large number of decoy protein conformations. This can be done either by 

constructing models from different templates or by sampling different regions of the protein 

conformational space.16 The availability of an accurate scoring function that can discern 

the near-native structure from an ensemble of decoy structures is one of the important 

determinants for the success rate of structure prediction. The number of decoys is huge 

particularly for first-principle modeling. Thus, the efficiency, in addition to the accuracy, of a 

scoring function is also important for structure prediction.17–19

Despite 30 years of efforts, the scoring function problem remains a great challenge in 

computational biology.19 Approaches to the development of scoring functions can be 

grouped into two broad categories: physics-based and knowledge-based. In physics-based 

approaches, the energy of a structure is computed as the sum of individual interactions such 

as van der Waals interactions, electrostatic interactions, and bond stretching, bending and 

torsional forces, with force field parameters normally derived from quantum mechanical 

calculations.20–27 Despite its lucid physical meaning and a number of successes, physics-

based scoring functions have not been widely adopted in protein structure prediction due to 

impractically-high computational cost and insufficient conformational sampling.

An alternative approach is knowledge-based scoring functions, in which empirical energy 

potentials are derived from the information embedded in the known protein structures.28–30 

Despite their simple forms, the knowledge-based scoring functions appear to be the most 

successful approaches and are widely used in protein structure prediction.19,31,32 There are 

two types of methods to derive potential parameters for knowledge-based scoring functions. 

The first type of methods is to optimize the potential parameters such that the energy (or 

Z-score) of the native (or near-native) structure is lower than those of the decoys.33–41 

Despite the success achieved, the parameter optimization approaches may be restricted 

by two factors. First, some of the potential parameters derived can be unphysical and 

contradict to chemical knowledge. Second, the high-dimensional optimization process is 

computationally intensive. To be computationally practical, these methods normally adopt 

less accurate coarse-grained potentials by using either contact-based (or distance-dependent 

but with only a few different distances, referred to as quasi-contact-based) potentials or a 

reduced protein representation.

The second type of methods to derive pairwise potentials in the knowledge-based scoring 

functions is the potential of mean force (PMF) method. The PMF method directly converts 

the potentials from the occurrence frequencies of atom pairs in the native structures by using 

an inverse Boltzmann relation.42–45 Since the pioneering work of Tanaka and Scheraga,28 

many efforts have been devoted to the use of the PMF method for developing distance-

dependent or contact-based potentials at atomic or residue level. The resulting scoring 
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functions are widely applied to protein structure prediction.46–50 Despite the success, one 

unsolved key issue in the PMF method is the determination of the “reference state”42,43,51 

The reference state is defined as the state with no interaction between any two atoms/

residues. As pointed out by Thomas and Dill,42 such an ideal reference state is not 

achievable due to atom connectivity, excluded volume, and other effects in proteins. Most 

of the current PMF scoring functions are based on a crude approximation for the reference 

state by randomly mixing all of the atoms in proteins. Several other useful approximations 

have also been introduced to characterize the reference state,48,52 but these are still not 

sufficiently accurate. Studies on protein-ligand interactions by our group and other groups 

showed that PMF-based scoring functions can lead to wrong predictions of the native 

binding modes despite significant success in binding affinity predictions (see refs 53–55 and 

references therein). It is therefore expected that proper handling of the reference state issue 

is important to protein structure prediction.

In an elegant work by Thomas and Dill,44 it was shown that the reference state can be 

circumvented by an iterative method in a lattice HP model. However, how to circumvent 

the reference state problem for the much more complicated true protein system remains 

challenging.

In the present study, we have developed a statistical mechanics-based iterative method 

to extract distance-dependent, all-atom potentials for structural model selection in protein 

structure prediction. The method circumvents the long-standing reference state problem 

by improving the pair potentials iteratively through comparisons of the physics-based pair 

distribution functions. As shown in the Materials and Methods, the derived potentials rank 

the native structure with the lowest energy and thus distinguish it from the decoys. Our 

new scoring function, referred to as ITScore/Pro, has been extensively evaluated with 

the high-resolution decoy set of 148 proteins by Floudas and colleagues,36 the AMBER 

benchmarking decoy set of 47 proteins by Wroblewska and Skolnick,26 and the CASP8 

decoy set of 123 proteins (http://predictioncenter.org/), showing significant improvement in 

performance. To understand why our scoring function performs well to provide insightful 

information for development of other physical scoring functions, we have also analyzed how 

the reference state affects the derived potentials.

2 Materials and Methods

2.1 The iterative method to extract effective potentials

Here, we take a large training set of the experimentally-determined native protein structures 

and computationally generated ensembles of non-native/decoy structures as the system (see 

next subsection for details). We use the following paradigm to derive the effective pair 

potentials of the scoring function by iteration. Similar methods have been used to extract 

pair potentials from known pair distribution functions for simple liquid systems using 

an inverse Monte Carlo approach.56 Figure 1 shows an illustration of our method. The 

statistical mechanical basis for why the effective potentials derived from the method can 

discriminate the native structures from the decoys is described in the next section.
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The idea of our paradigm is summarized as follows: For a given ensemble of native and 

pregenerated decoy structures and a set of trial pair potentials uij r , we will be able to 

calculate the pair distribution function gij r  for each atom pair ij based on the principles 

of statistical mechanics (explained below). If uij r  are incorrect, the calculated gij r  will be 

different from the true gij
* r  observed in the native structures. The corresponding differences 

Δgij r = gij r − gij
* r  will be used to optimize uij r  by iteration, until Δgij r  are below a 

predefined cutoff and thus the trial potentials uij r  approach the true effective potentials uij
* r . 

Here, we assume the approximation that all the protein structures (natives and decoys) in the 

training set form a canonical ensemble. There will be two key issues in this paradigm. First, 

the initial guess of uij r  cannot be far off from the true uij
* r ; otherwise the iterative process 

may be trapped at local energy minima. Second, an intelligent iterative function should be 

proposed for fast convergence of the iterative process.

The procedure for derivation is explained in detail as follows. The fist step is the preparation 

of the native and decoy protein structures for the training set, which will be described in the 

next subsection. Notice that decoy generation/preparation is a one-time step.

The second step is the initialization of the potentials, uij
0 r , for an iterative process. A good 

initial guess of the pairwise potentials will make the iterative process efficient by avoiding 

traps of local minima. In this study, uij
0 r  is set to the potential of mean force (PMF) — a 

crude approximation for true potentials45 as

uij
0 r = − kBT ln gij

* r

(1)

where gij
* r  is the experimentally observed pair distribution function and can be calculated 

from the native structures as follows.

gij
* r = 1

K k = 1

K
gij

k * r

(2)

where K is the number of the proteins in the training database. gij
k * r  is the pair distribution 

function of the k-th native structure and can be calculated as

gij
k * r = ρij

k * r /ρij, bulk
k *

(3)

where

ρij
k * r = nij

k0 r
4πr2Δr

and ρij, bulk
k * = Nij

k0

V Rmax

(4)
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are the densities of the ij atom pairs from non-neighboring residues in a spherical shell of 

radius from r − Δr/2 to r + Δr/2 and in a reference sphere of radius Rmax, respectively. nij
k0 r

is the number of ij pairs in the spherical shell at distance r and Nij
k0 is the total number of ij

pairs in the reference sphere for the k-th native structure. In the present work, the bin size Δr
was set to 0.2 Å and the radius of the reference sphere Rmax was set to 15 Å.

During the iteration, the pair distribution functions gij
n r  predicted with a set of trial 

potentials uij
n r  at the n-th iteration cycle can be calculated by using statistical mechanical 

principles45 as follows. We consider each protein conformation (l) as a microstate, 

and consider the native structure l = 0  and the pre-generated decoy conformations 

l = 1,2, 3, ⋯, L  for the k-th protein of the training set as the k-th subsystem. The partition 

function for the k-th protein (or subsystem) is defined as

Zk = ∑
l = 0

L
e−βEk

l
, withEk

l = ∑
ij

r < rcut
uij

n r

(5)

where β = 1/kBT , kB is the Boltzmann constant, and T  is the absolute temperature. Ek
l  is the 

folding energy of the l-th conformation/microstate for the k-th protein, and the summation 

is over all possible atom pairs from non-neighboring residues in the protein conformation 

within a distance cutoff rcut. Thus, the probability for the k-th protein to occupy the l-th 

microstate/conformation is

Pk
l = e−βEk

l

Zk

(6)

Then, we can calculate the average pair distribution function gij
n r  of atom pair ij for the 

whole system (i.e., all the proteins in the training set) that consists of K proteins as

gij
n r = 1

K k = 1

K

l = 0

L
Pk

lgij
kl r

(7)

where gij
kl r  is the pair distribution function for atom pair ij observed in the l-th 

conformation/microstate of the k-th protein and can be calculated similar to Eq. (3). 

Apparently, gij
kl r l = 0 = gij

k * r .

Next, we use an iterative process to optimize the pairwise potentials uij r . Specifically, 

using the initial trial potentials uij
0 r , we calculate the (predicted) average pair distribution 

functions gij
0 r  using Eqs. (5–7). Notice that gij

0 r  involves both native and decoy structures. 
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gij
0 r  is a function of uij

0 r , which determines the predicted occupancy of each conformer 

state.

Due to the considerable difference between uij
0 r  and (true) uij

* r , the calculated gij
0 r  is 

expected to significantly differ from (true) gij
* r . Then, we introduce the following potential 

correction term to uij
0 r  :

Δuij
0 r = λkBT ln gij

0 r − ln gij
* r

(8)

where λ represents a convergence parameter with 0 < λ ≤ 1. Here, λ is set to the optimized 

value (e.g. 0.5 in the present study) for an optimal convergence. With the corrections, we 

obtain a set of improved potentials as

uij
1 r = uij

0 r + Δuij
0 r = uij

0 r + λkBT ln gij
0 r − ln gij

* r

(9)

To avoid possible numerical overflow due to the logarithm function log() at low/zero atom-

pair frequency at some distances for gij r , we replace ln gij
0 r − ln gij

* r  with gij
0 r − gij

* r
as follows:

uij
1 r = uij

0 r + λkBT gij
0 r − gij

* r

(10)

The second reason for this replacement is to avoid amplifying the sparse data errors by the 

logarithm function at low pair frequencies.

After each iteration, the pair potentials were truncated by setting 

uij r = uij r × rcut − r / rcut − 10  for 10 Å ≤ r ≤ rcut so that the potentials gradually approach 

zero at the cutoff of rcut. Repeating the above iterative procedure (step n = 1,2, ⋯ , the pair 

potentials uij
n r  converge to the effective pair potentials uij

* r .

Using the derived effective pairwise potentials uij
* r , our new energy scoring function for 

structure prediction takes the following form:

energy score =
ij

uij
* r

(11)

2.2 The statistical-mechanical basis of the iterative method

In the last section, we have presented an iterative method to derive the effective pair 

potentials uij
* r . The reason why the resulting potentials uij

* r  can discriminate the native 
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structures from the decoys after the pair distribution function converges (i.e. gij
n r gij

* r  is 

explained as follows.

As aforementioned, at the end of the iteration, gij
n r , written as gij r  for short, converges to 

the experimentally observed pair distribution function gij
* r  :

gij r ≃ gij
* r

(12)

Substituting the expressions of gij r  in Eq. (7) and gij
* r  in Eq. (2) into the above equation, 

we have

1
K k = 1

K

l = 0

L
Pk

lgij
kl r ≃ 1

K k = 1

K
gij

k * r = 1
K k = 1

K
gij

k0 r

(13)

where

Pk
l = e−βEk

l

Zk
, Ek

l =
ij

r < rcut

uij
* r

(14)

Because the sum of the probabilities ∑l = 0
L Pk

l = 1.0, the right-hand side of Eq. (13) can be 

expressed as

1
K k = 1

K
gij

k0 r = 1
K k = 1

K

l = 0

L
Pk

lgij
k0 r

(15)

Substituting Eq. (15) into Eq. (13), we have

1
K k = 1

K

l = 0

L
Pk

lgij
kl r ≃ 1

K k = 1

K

l = 0

L
Pk

lgij
k0 r

(16)

Then, the above equation becomes

1
K k = 1

K

l = 0

L
Pk

l gij
kl r − gij

k0 r = 1
K k = 1

K

l = 1

L
Pk

l gij
kl r − gij

k0 r ≃ 0

(17)
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One solution to Eq. (17) is

Pk
l

l = 1,2, 3, ⋯, L ≃ 0

(18)

According to Henderson’s uniqueness theorem for fluid systems,57 if a set of effective pair 

potentials uij
* r  between atom types i and j can reproduce the pair distribution functions 

gij
* r  of a system, uij

* r  is a unique solution. Assuming the uniqueness theorem holds in the 

complex protein systems, the potentials would be unique if the pair potentials uij
* r  reproduce 

the pair distribution gij
* r  of the system. Since Pk

l  is determined by uij
* r , the solution given by 

Eq. (18) would be the unique solution to Eq. (17). We therefore have

Pk
l

l = 0 =
l = 0

L
Pk

l −
l = 1

L
Pk

l ≃ 1.0

(19)

Substituting Eq. (19) into Eq. (14), we have

Pk
0 = e−βEk

0

Zk
≃ 1.0

(20)

for the system at the end of the iteration. Eq. (20) can be rewritten as

Zk ≃ e−βEk
0

(21)

Combining Eqs. (14) and (21), we have

Pk
l

l = 1,2, 3, ⋯, L = e−βEk
l

Zk
≃ e−βEk

l

e−βEk
0 = e−β Ek

l − Ek
0

(22)

Substituting Eq. (22) into Eq. (18), we have

e−β Ek
l − Ek

0
≃ 0

(23)

Re-organizing Eq. (23) gives

−β Ek
l − Ek

0
l = 1,2, 3, ⋯, L ≪ 0

(24)
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The above equation can be rewritten as

Ek
0 ≪ Ek

l
l = 1, 2, 3, ⋯, L, whereEk

l = ∑
ij

r < rcut
uij

* r

(25)

Namely, if the pair distribution function converges, i.e. gij r gij
* r , the resulting effective 

potentials uij
* r  will be able to discriminate the native structures from the decoys by the 

calculated energies. As shown in Eq. (25), uij
* r  will yield a much lower energy score 

to the native structure Ek
0  than to the decoys Ek

l
l = 1,2, 3, ⋯, L , which is consistent with the 

commonly-accepted funnel theory of protein folding.58–60

2.3 Protein database used for iteration

The high-resolution decoy set prepared by Floudas and colleagues36 were used in the present 

study. The set contains 1225 non-homologous proteins that were selected by Zhang and 

Skolnick61. Each protein has 500 1600 decoy conformations that were generated with the 

NMR structure refinement program DYANA62 by retaining distance information among the 

residues within the hydrophobic core of the protein.36,63 To exclude the possible effect of the 

homologous proteins, we removed the proteins that have a sequence similarity above 35% 

to any protein in the test sets, yielding a total of 1201 non-homologous proteins to be used 

in our iterative procedure. To save the computer memory, we took every other decoys (i.e. 

the decoys with odd identification numbers) for the iteration. Therefore, each protein in our 

training set has one native structure and up to 800 decoys.

Only the heavy atoms are considered in our scoring function. To increase the statistics of the 

atomic pairs, the 167 heavy atoms in the 20 standard protein residues are grouped into 20 

atom types, following their physicochemical properties and chemical environments64 (Table 

1). Our large training database results in significant statistics of frequencies >2000 for all 

of the 210 possible pairs by the 20 atom types. For example, the frequency is 29,618,116 

for C3C-C3C pair. The huge number of pair occurrences for most atom pairs in the training 

set warrants sufficient statistics to derive the distance-dependent pair potentials despite the 

limited number of decoys for each protein. Moreover, the global, physics-based iterative 

function we used which improves the potentials through the comparison of the predicted and 

observed pair distribution functions poses significant constraints on the degrees of freedom 

in the parameter space and therefore reduces the actual degrees of freedom, compared to the 

empirical mathematical functions used by general parameter optimization methods. Finally, 

our use of potentials of mean force as the initial guess of the pair potentials further helps the 

fast convergence of iterations for deriving the potentials.

To test the dependence of the derived potentials on the training set, we also used all the 1225 

proteins and the other set of decoys that have even identification numbers for our iterative 

procedure. The results are described in Supporting Information. The derived potentials 

resulted in little difference for the test sets, which is consistent with our previous finding 

that the presence of a small portion of homologous proteins/complexes in the training set 
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compared to the test sets would not significantly change the derived potentials and the test 

results.64 The robustness of our iteration method can also be demonstrated by the fact that 

the derived potentials based on two different sets of decoys yielded no significant results on 

the test sets (Supporting Information).

2.4 Test sets to evaluate our scoring function

Numerous decoy sets have been constructed for evaluation and development of scoring 

functions in protein structure prediction. They serve as different benchmarks, according 

to the algorithms used for decoy generation. The decoy sets in which the structures are 

fully minimized and the bonds and torsions are fully relaxed are ideal to test scoring 

functions that consider only non-bonded potentials. Other decoy sets such as RosettaAll,12 

RosettaTsai,65 and four sets from the Decoys ‘ R ‘ Us66 including 4state,67 lmds,68 

fisa,12 and vhp_mcdm69 are designed to test those scoring functions with both the bond-

related (e.g. stretching and torsional) and non-bonded interactions; in these test sets some 

conformations exhibit high stretching/torsional energies.70 Improper selection of the test sets 

may cause a bias to the evaluation of a scoring function.70 Considering that the present 

scoring function consists of the non-bonded pair potentials, we used the following three 

decoy sets with sufficiently relaxed torsions:

The first test set is the high resolution (HR) decoy datasets prepared by Floudas and 

colleagues.36 It includes 148 non-homologous proteins with 500~1600 high resolution (HR) 

decoys for each protein. Most of the decoys have an rmsd less than 6 7 Å. This set is to test 

the ability of a scoring function to distinguish between similar structures with low rmsds, 

which has useful application to structural refinement to obtain a high-resolution protein 

structure for drug design. Both this test set of 148 proteins and our training set of 1225 

proteins belong to a well represented collection of 1489 non-homologous proteins with a 

sequence similarity cutoff of 35% prepared by Zhang and Skolnick.61

The second test set is the AMBER benchmarking decoy set prepared by Wroblewska 

and Skolnick,26 which were generated via AMBER molecular dynamic simulations. The 

set consists of 47 non-homologous proteins with lengths from 41 to 200 residues below 

35% sequence similarity. Each protein includes 1040 decoy structures that are minimized 

snapshots from AMBER/GBSA molecular dynamics simulations.

The third test set is the CASP8 server decoys for 123 proteins. All the decoys generated 

by the servers participated in CASP8 were downloaded from the official site of CASP8 

(http://predictioncenter.org/). Only those decoys with full length prediction were considered. 

We also deleted those residues in the decoys that do not present in the native structure for 

comparability. This yielded a total of 25003 decoys, with an average of 203 decoys per 

protein.

3 Results

3.1 Extracted potentials

With the iterative method described in the Materials and Methods, we derived a set of 

210 effective pair potentials on the basis of 20 protein atom types (Table 1). During the 
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iteration, the potentials of mean force were used as the initial guess of the potentials as 

shown in Eq. (1) and the cutoff distance for the potentials was set to 12 . Å To reduce 

the local correlation effects of covalent bonds, only the interatomic interactions between 

non-neighboring residues were considered when evaluating the energy score of a protein 

structure. After each iterative cycle, say the n-th step, the following convergence criterion 

was checked

Δgmax
n = max Δgij

n ≤ η where Δgij
n = 1

S s = 1

S
gij

n rs − gij
* rs  and i, j = 1,2, ⋯, 20

(26)

Here, gij
n  are the predicted pair distribution functions at the n-th iterative cycle. S = Rmax/Δr is 

the number of the distance bins for calculating gij
n , where Rmax is the radius of the reference 

sphere and Δr is the bin size. Details are described in the Materials and Methods and Figure 

1. The convergence parameter η was set to 0.01. Our iterative procedure converges rapidly 

within 20 steps.

Figure 2 shows a selected set of the derived potentials. Several notable features can 

be observed from the figure, which are physicochemically consistent with experimental 

findings. For the atom pairs of Car-Car and C3C-C3C, the interaction potentials are 

favorable around 4 Å, agreeing with the hydrophobic interactions between these atom types. 

The Car-Car interaction is slightly stronger at a shorter distance than the C3C-C3C pair 

because the Car-Car pair is involved in an additional aromatic π − π  interaction. For the 

N2C-OC, N3C-OC, N2N-O2M, and O3H-O3H pairs, there exists a minimum between 2.8 Å
and 3.0 Å because these atom pairs may form hydrogen bonds. The N2C-OC and N3C-OC 

pairs shows a stronger and wider interaction than the N2N-O2M and O3H-O3H pairs, 

because the two atom types in the N2C-OC and N3C-OC pairs are oppositely charged 

and result in an additional, favorable electrostatic interaction. It is also reasonable that the 

N3C-OC interaction is stronger than the N3C-OC interaction because the atom type N3C 

carries more partial charges than N2C.

3.2 Validation of our scoring function

3.2.1 Test set 1: the high resolution decoys generated by Rajgaria et al.
—We first evaluated our scoring function, referred to as ITScore/Pro, using the high 

resolution (HR) decoy sets constructed by Rajgaria et al.,63 which includes a total of 

148 proteins with 500~1600 high resolution decoys for each protein. The performance is 

summarized in Table 2, in which six criteria were adopted for evaluation. For reference 

purpose, the table also lists the results of nine published scoring functions for protein 

structure prediction,34,36,48,63,71–74 our previously derived scoring function ITScore/PP for 

protein-protein interactions,64 and the potentials of mean force (PMF) derived from an 

atom-randomized reference state.

It can be seen from Table 2 that our scoring function ITScore/Pro obtains a significant 

improvement compared to the other scoring functions. Of six assessment parameters, 
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ITScore/Pro achieves the best performance in five criteria except in Z-Score (the best 

Z-Score value of 6.02 is achieved by dDFIRE). Specifically, of the 148 proteins, our scoring 

function identifies 146 native structures as rank #1, yielding a success rate of 98.7% if only 

the top structure is considered for each protein (Table 2, Column 3).

A second useful scoring criterion is the correlation coefficient (CC) between the energy 

score and the rmsd of decoys, which is an indicator of the ability of a scoring function to 

refine a model from a high-rmsd structure to a low-rmsd conformation.27 On this aspect, 

ITScore/Pro gives the highest average score-rmsd correlation coefficient (CC=0.82) with the 

148 proteins (Table 2, Column 5). Detailed analysis shows that 71.0% of the proteins have a 

CC>0.8 and 91.2% have a CC>0.6. The score vs. rmsd relationships for 12 example proteins 

selected by a random number generator program are plotted in Figure 3.

A third notable feature in Table 2 is that our scoring function gives the lowest average 

rank (1.05) for the native structures (see Column 2). Ideally, a perfect scoring function 

should achieve an average rank of 1, representing that all the native structures are top ranked 

compared with their respective decoy structures. Detailed analysis of our results show that 

there are only two proteins whose native structures have a rank >1 (i.e., 7 for 1g1xC and 2 

for 2u1a_).

Finally, it is noticeable in Table 2 that the performance of ITScore/PP ranks the second 

and is similar to the performance of ITScore/Pro for this test set. It is not surprising that 

ITScore/Pro and ITScore/PP share some similarities as they both characterize non-covalent 

interactions among protein atoms. However, ITScore/PP, which was derived from protein-

protein complexes, is not optimized for structure prediction of isolated proteins (see below).

3.2.2 Test set 2: the AMBER benchmarking decoy set—Next, we tested our 

scoring function using the AMBER benchmarking decoy set constructed by Wroblewska 

and Skolnick.26 The test set includes 47 proteins, each of which has 1040 decoys. In the 

original study,26 this decoy set was designed to test the ability of the AMBER/GBSA force 

field75–77 in distinguishing the native structures from decoys. Both the native structures and 

the decoys were relaxed by 2ns of molecular dynamic simulations with AMBER/GBSA. 

The decoy set is therefore challenging because all the atoms in each conformation form good 

atomic contacts through the AMBER simulation.

Figure 4 shows the success rate of our scoring function ITScore/Pro in discriminating the 

native structures from the decoys. For validation purpose, the results of the scoring functions 

PMF, AMBER/GBSA, MODELLER/DOPE,48 DFIRE 2.0,73 dDFIRE,74 and ITScore/PP64 

are also shown in the figure. It can been seen that ITScore/Pro yields a success rate of 

55.3% in recognizing the native structures as the top rank, vs 8.5% for ITScore/PP,64 20% 

for AMBER/GBSA26, 29.8% for DFIRE 2.0,73 34% for MODELLER/DOPE,48 42.6% for 

PMF, and 57.5% for dDFIRE.74 This suggests the potential use of our scoring function in 

structure refinement.

The fact that ITScore/PP performs significantly worse than ITScocre/Pro on the AMBER 

benchmarking decoy set indicates that the two scoring functions cannot replace each 
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other. The difference in the two sets of potentials might arise from different degrees 

of solvation and entropic effects at the protein surface and inside the protein core. In 

addition, the structure of an isolated protein is fully optimized, whereas the protein-protein 

interface is not necessarily and depends on the surface structures of each protein partner. 

Therefore, ITScore/PP performs better for predicting protein-protein complex structures and 

ITScore/Pro works better for isolated globular proteins.

3.2.3 Test set 3: the CASP8 server decoys—We further applied our scoring 

function ITScore/Pro to a more realistic test case - the decoy set of 123 proteins downloaded 

from the server predictions at the CASP8 site (http://www.predictioncenter.org/). 

Considering that the experimental structures are not known during CASP competitions, 

the native structures were not included in test set 3. For an automated structure prediction 

algorithm based on energy ranking, a commonly-used index is the correlation between 

the scores and the native structural similarity (e.g., rmsd) of the generated decoys.27 A 

significant correlation is requisite for a scoring function to rank the decoys and select a 

protein conformation close to the native structure during the conformational search.

Table 3 lists the results of ITScore/Pro with the CASP8 decoy set. For benchmark purpose, 

we also showed the results of PMF, MODELLER/DOPE,48 DFIRE 2.0,73 dDFIRE,74 and 

ITScore/PP64 in the table. It can be seen that our scoring function ITScore/Pro yields a good 

score-rmsd correlation with an average Pearson coefficient of 0.672, compared to 0.634 for 

DFIRE 2.0, 0.595 for DOPE, 0.562 for ITScore/PP, 0.555 for dDFIRE, and 0.394 for PMF. 

The improvement is more significant when considering the percentage of the proteins in the 

CASP8 decoy set that receive a high correlation coefficient (i.e., above 0.8): The percentage 

is 40.7% for ITScore/Pro, vs 26.8% for DFIRE 2.0, 22.0% for DOPE, 17.9% for ITScore/PP, 

0.07% for dDFIRE, and 0.02% for PMF, respectively (Figure 5). Correspondingly, the top 

selected models from our scoring function have a better quality, with an average TM-Score 

of 0.600 and GDT_TS score of 0.517 (Table 3). TM-Score and GDT_TS are measurements 

of the similarity between a mode and the native structure.78

It can also be seen from Table 3 that the best models in CASP8 were not identified by 

ITScore/Pro. To test whether the derived potentials score mainly the level of compactness 

of the structural models, we introduced a control scoring function that uses simple contact-

based potentials. In the control, the interaction potential was set to −1.0 (favorable) for an 

atom pair within a distance of 5 Å, and 0 (no interaction) otherwise. The definition of atom 

pairs was the same as the definition for ITScore/Pro. The contact-based score is expected to 

be proportional to the compactness of the structure. Table 3 shows that the contact potentials 

yielded significantly worse results than the other scoring functions, implying the physics 

behind the derived potentials of ITScore/Pro.

Again, ITScore/Pro is found to perform better than ITScore/PP for the CASP8 decoy set, 

indicating the difference between surface potentials and intra-globular potentials.

3.3 How the reference state affects the pairwise potentials

To test how a randomized reference state may affect the predictions, we developed a 

knowledge-based scoring function referred to as PMF which uses an atom-randomized 
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reference state. We applied PMF to the three test sets. The results are shown in Table 2, 

Table 3, Figure 4 and Figure 5. PMF did not perform as well as the other knowledge-based 

scoring functions (ITScore/Pro, MODELLER/DOPE, DFIRE 2.0, dDFIRE and ITScore/

PP), as ITScore/Pro and ITScore/PP circumvent the reference state problem through a 

statistical mechanics-based iteration method, and DFIRE 2.0, dDFIRE, and MODELLER/

DOPE introduce a corrected reference state.48

Then, an intriguing question is how and why the choice of the reference state makes a 

difference on the performances of knowledge-based scoring functions. Elucidation of the 

underlying mechanism could provide valuable information for the development of other 

physical scoring functions. To address this question, it is necessary to compare pairs 

of interaction potentials between our new scoring function and PMF. However, direct 

comparisons of every pair of interaction potentials are neither practical nor interpretable, 

because there are 20 atom types and therefore 400 distance-dependent interaction pair 

potentials. In the present study, we developed the following strategies.

First, as each derived interaction potential is a continuous function of the inter-atom 

distance, for simplicity, we used a single parameter ϵij to roughly represent each potential 

where ϵij is the well depth. ϵij reflects the interaction strength between the atom pair ij.

Next, we introduced the following sensitivity variable for each atom type (say, type) in 

terms of standard deviation to characterize how sensitive the pairwise interaction potentials 

(represented by ϵij  are to different atom type j :

σi = 1
Ntyp 

∑
j = 1

Ntyp
ϵij − ϵ‾i

2, ϵ‾i = 1
Ntyp

∑
j = 1

Ntyp
ϵij

(27)

where Ntyp is the total number of atom types in a scoring function. A knowledge-based 

scoring function with interaction potentials that exhibit poor atom sensitivity is not expected 

to be helpful to protein structure prediction.

Figure 6 shows the selectivity parameters σi of the twenty atom types in our new scoring 

function. For comparison, the figure also lists the corresponding selectivity parameters for 

PMF. Several common characteristics can be observed from the figure, which are consistent 

with the experimental findings: Both our model and PMF show low selectivity for the 

nonpolar atom types such as C2M, C2S, Car, C3C, and C3A because these carbon atom 

types are mainly involved in the non-selective van der Waals interactions. The polar atom 

types such as N2C, N3C, O2C, and S31 exhibit high selectivity because they are involved 

in strong electrostatics interactions and/or direction-dependent hydrogen bonding. The atom 

types C2+ and C2− also manifest higher selectivity than other carbon atom types because 

C2+ and C2− belong to selective charged groups. However, overall speaking, Figure 6 

shows that our model have significantly higher atom selectivity than PMF. In other words, 

the reference state may alter the performance of a knowledge-based scoring function by 
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changing the selectivity of its potentials. The finding of the difference in the atom selectivity 

of the potentials may explain the significantly better performance of our model than PMF.

4 Conclusion and Discussion

In the present study, we have presented a statistical mechanics-based iterative method to 

extract distance-dependent, all-atom potentials by utilizing the physical pair distribution 

functions. With the method, we developed a new scoring function for protein structure 

prediction. The derived scoring function has been validated using three test sets on its 

ability to discriminate native/near-native conformations and to rank the decoys. Comparisons 

between our model and a PMF that uses an atom-randomized reference state have 

revealed that the better performance of our scoring function may attribute to the higher 

atom selectivity for the derived interaction potentials in our scoring function than the 

selectivity for the potentials in PMF. The differences in atom sensitivity could provide useful 

guidance for developing/improving other knowledge-based and physical scoring functions. 

Underestimated or over-amplified atom sensitivity in potentials may lead to failure in 

scoring functions on predictions.

Future studies are outlined as follows. The first issue is to search for the best procedure for 

decoy generation if one plans to use a larger training database of known protein structures 

to re-derive the effective potentials. This is also a common problem in deriving potentials 

based on decoys.27 The-oretically, two ideal approaches can be used to construct ensembles 

of decoy conformations for our iterative method, which would give an accurate definition of 

the system partition function. The first approach is to generate an ensemble of conformations 

for each protein with the current potentials at every iterative step, using Monte Carlo or 

molecular dynamics simulations.56 Then, the pair distribution functions are calculated from 

the ensembles of conformations generated on the fly. The other approach is to exhaustively 

generated all the possible folding conformations before iteration.44 However, both methods 

are computational impractical because the system contains tens of atom types, thousands 

of atoms, and thousands of proteins. Performing Monte Carlo simulations at every iterative 

cycle or exhaustively generating all the possible conformations of a protein are both beyond 

the current computational power. A future procedure for decoy generation should achieve 

the following three requirements: First, the generated decoy conformations should be well 

sampled so as to cover the entire protein conformational space. Second, the correlation 

between native similarity and radius of gyration should be small.27 Otherwise, the native 

structures could be easily identified in the first iterative step and no adjustment will be made 

for the potentials. Third, as our iterative method does not include bonding and torsional 

potentials, the generated decoys should contain no distorted bonds or torsional angles. 

Otherwise, the conformational artifact effect may be introduced into the pair potentials due 

to the high bonding or torsional energies.

The second issue for improvement is to include the bond-related potentials (such as bonding 

or torsional energies) in the present non-bonded pair potentials. As shown in the Results 

Section, the success rate of our scoring function for the HR decoy sets is significantly 

higher than that for the AMBER benchmarking decoys. Part of the reasons may be that 

the AMBER benchmarking decoys are generated via AMBER simulations26 in which some 
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of the bonds could be distorted to form good atomic contacts, leading to higher bonding 

or torsional energies. However, no bonding or torsional energy penalties are considered in 

our present scoring function, leading to artificially lower energy scores for some distorted 

decoys. Moreover, the bond-related energies are also important in structure refinement.27 

Therefore, it will be necessary to include the bonding and torsional potentials in future 

studies.

Thirdly, as shown in the derivations using statistical mechanical principles (see Materials 

and Methods), our iterative method warrants that the energy scores of native structures are 

considerably lower than those of the decoys by using the convergence of the pair distribution 

functions. A future study could be to introduce an additional optimization process in our 

iterative procedure to maximize the correlation of the energy score with the native similarity 

such as rmsd or TM-score,27,28 though this new process may make the potential derivation 

more artificial and less physical.

Other future directions to improve the present scoring function include considering multi-

body (e.g. three-body and four-body) potentials,80–83 orientational dependence of inter-

atomic interactions,18,49,74 and conformational entropy effects.84

It should also be noted that the present pair potentials are effective interaction potentials 

between atom pairs, rather than the free energies. They represent the overall effect of 

different energy components such as VDW energies, electrostatic energies, hydrogen 

bonding, solvation and entropy. However, some energy terms such as solvation and entropy 

are not pairwise additive and thus the pair potentials may not effectively incorporate the 

effects of these energies. Therefore, accounting for solvation and entropy in addition to the 

pair interaction potentials may improve the scoring performance.79

Finally, although ITScore/Pro is proposed for the purpose of structural selection in protein 

structure prediction, it would be interesting to test how good ITScore/Pro performs in 

protein folding simulations. The latter is a more challenging task, which requires correct 

ranking of not only the lowest energy state but also the full energy landscape.

It is emphasized that all the tests performed in the present study are used for validation of 

our scoring functions. The results do not serve for competing interests.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An illustration of our iterative procedure.
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Figure 2: 
A set of selected pair potentials extracted by our iterative method.
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Figure 3: 
The score vs. rmsd scatter plots for the decoys of twelve randomly selected proteins in the 

high resolution (HR) decoy set.
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Figure 4: 
Success rates of our model ITScore/Pro, DFIRE 2.0,73 dDFIRE,74 MODELLER/DOPE,48 

AMBER/GBSA,75–77, ITScore/PP64 and PMF on recognizing the native structures for the 

AMBER benchmarking decoy set prepared by the Skolnick lab. The result for AMBER/

GBSA was obtained from the original paper.26
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Figure 5: 
Percentage of the proteins in the CASP8 decoy set that have a score-rmsd correlation 

coefficient above 0.8, calculated with our scoring function ITScore/Pro, DFIRE 2.0, 

dDFIRE, MODELLER/DOPE, ITScore/PP64 and PMF. See the text for detailed 

explanations.
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Figure 6: 
Comparison of the selectivity parameters σ of the potentials for 20 atom types between our 

model and PMF.
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Table 1:

Twenty atom types for the heavy atoms of proteins.

No. Symbol Atom name

1 C2+ ARG_CZ

2 C2− *_C (on terminal residues), ASP_CG, GLU_CD

3 C2M *_C (not on terminal residues)

4 C2S ASN_CG, GLN_CD

5 Car HIS_CD2, HIS_CE1, HIS_CG, PHE_CD1, PHE_CD2, PHE_CE1, PHE_CE2, PHE_CG, PHE_CZ, TRP_CD1, TRP_CD2, 
TRP_CE2, TRP_CE3, TRP_CG, TRP_CH2, TRP_CZ2, TRP_CZ3, TYR_CD1, TYR_CD2, TYR_CE1, TYR_CE2, 
TYR_CG, TYR_CZ

6 C3C ALA_CB, ARG_CB, ARG_CG, ASN_CB, ASP_CB, GLNL_CB, GLNL_CG, GLU_CB, GLLL_CG, HIS_CB, ILE_CB, 
ILE_CD1, ILE_CG1, ILE_CG2, LEU_CB, LEU_CD1, LELL_CD2, LEU_CG, LYS_CB, LYS_CD, LYS_CG, MET_CB, 
PHE_CB, PRO_CB, PRO_CG, SER_CB, THR_CG2, TRP_CB, TYR_CB, VAL_CB, VAL_CG1, VAL_CG2

7 C3A *_CA

8 C3X ARG_CD, CYS_CB, LYS_CE, MET_CE, MET_CG, PRO_CD, THR_CB

9 N2N * _N (not on terminal residues)

10 N2X *_N (on terminal residues), ASN_ND2, GLN_NE2

11 Nar HIS_ND1, HIS_NE2, TRP_NE1

12 N2C ARG_NH1, ARG_NH2

13 N21 ARG_NE

14 N3C LYS_NZ

15 O2M *_O (not on terminal residues)

16 O2S ASN_OD1, GLN_OE1

17 O3H SER_OG, THR_OG1, TYR_OH

18 OC *_O or *_OXT (on terminal residues), ASP_OD1, ASP_OD2, GLU_OE1, GLU_OE2

19 S31 CYS_SG

20 S30 MET_SD

“*”
stands for any residue.
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Table 2:

Summary of the testing results of our scoring function ITScore/Pro and eleven other scoring functions on the 

high resolution decoy set prepared by Rajgaria et al.36 The results for HRSC, HR, TE13, HL, and LKF were 

taken from the original paper36 and the references therein. The results for DFIRE 2.073 and dDFIRE74 were 

obtained from our calculations with the executables provided by the Zhou Lab. The results for DOPE48 were 

calculated with Modeller 9v1.11.

Scoring function Avg ranka No of firstsb Avg Z-scorec Avg CCd Avg Cα-rmsde Avg Cα-rmsdf

ITScore/Pro 1.05 146/148 (98.7%) 4.48 0.82 0.028 1.64

ITScore/PP64 1.09 146/148 (98.7%) 4.61 0.76 0.041 2.02

DFIRE 2.073 8.59 142/148 (96.0%) 4.29 0.81 0.095 1.65

dDFIRE74 9.26 140/148 (94.6%) 6.02 0.72 0.117 1.64

DOPE48 18.18 134/148 (90.5%) 4.76 0.72 0.201 1.68

6bin-HRSC36 2.49 128/148 (86.5%) 3.62 0.70 0.298 1.82

7bin-HRSC36 2.01 125/148 (84.5%) 3.39 0.70 0.321 1.83

PMFg 48.47 112/148 (75.7%) 3.30 0.40 0.60 1.86

HR63 1.87 113/150 (75.3%) 2.11 0.80 0.451 1.76

TE1334 19.94 92/148 (62.2%) 3.15 0.63 0.813 1.89

HL72 44.93 70/150 (46.7%) 2.34 0.59 1.092 1.84

LKF71 39.45 17/150 (11.3%) 1.55 0.52 1.721 1.93

a
The average rank of the native conformations. The best rank is 1.

b
The number of the proteins with native structures as rank #1 in terms of the calculated energy scores.

c
The average Z-score for all the tested proteins, measuring the relative energetic separation of the native structure of a protein with respect to its 

decoys.

d
The average Pearson correlation coefficients (CC) between the energy scores and the rmsd of decoys.

e
The average rmsd of the best predicted structures with the lowest energy scores (native structures included).

f
The average rmsd of the best predicted structures with the lowest energy scores with native structures excluded.

g
PMF is a knowledge-based scoring function we derived with an atom-randomized reference state for test purpose. See Section 3.3 for detail.
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Table 3:

The performance of our scoring function ITScore/Pro on the test set of the server predictions in CASP8. 

The results of DFIRE 2.0,73 dDFIRE,74 MODELLER/DOPE,48, ITScore/PP64, PMF and simple contact-based 

potentials are also listed as references.

Method Avg CCa Avg TM-score Avg GTD_TS

Best modelb - 0.677 0.585

ITScore/Pro 0.672 0.600 0.517

DFIRE 2.0 0.634 0.598 0.515

DOPE 0.595 0.583 0.502

ITScore/PP 0.562 0.587 0.504

dDFIRE 0.555 0.586 0.504

PMF 0.394 0.542 0.467

Contact Potentials 0.392 0.419 0.344

a
The average Pearson correlation coefficients (CC) between the energy scores and the rmsd of the decoys.

b
For each protein in the CASP8 test set, the best model refers to the decoy structure that is closest to the native structure and thus has the highest 

TM-score and GTD_TS value compared to other decoy structures of the protein. The average TM-score and GTD_TS values of the best models 
(first row) represent the highest values that a scoring function can achieve.
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