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Background: An improved understanding of which gastroesophageal adenocarcinoma (GOA) patients respond to both
chemotherapy and immune checkpoint inhibitors (ICI) is needed. We investigated the predictive role and underlying
biology of a 44-gene DNA damage immune response (DDIR) signature in patients with advanced GOA.
Materials and methods: Transcriptional profiling was carried out on pretreatment tissue from 252 GOA patients treated
with platinum-based chemotherapy (three dose levels) within the randomized phase III GO2 trial. Cross-validation was
carried out in two independent GOA cohorts with transcriptional profiling, immune cell immunohistochemistry and
epidermal growth factor receptor (EGFR) fluorescent in situ hybridization (FISH) (n ¼ 430).
Results: In the GO2 trial, DDIR-positive tumours had a greater radiological response (51.7% versus 28.5%, P ¼ 0.022)
and improved overall survival in a dose-dependent manner (P ¼ 0.028). DDIR positivity was associated with a
pretreatment inflamed tumour microenvironment (TME) and increased expression of biomarkers associated with ICI
response such as CD274 (programmed death-ligand 1, PD-L1) and a microsatellite instability RNA signature.
Consensus pathway analysis identified EGFR as a potential key determinant of the DDIR signature. EGFR
amplification was associated with DDIR negativity and an immune cold TME.
Conclusions: Our results indicate the importance of the GOA TME in chemotherapy response, its relationship to DNA
damage repair and EGFR as a targetable driver of an immune cold TME. Chemotherapy-sensitive inflamed GOAs could
benefit from ICI delivered in combination with standard chemotherapy. Combining EGFR inhibitors and ICIs warrants
further investigation in patients with EGFR-amplified tumours.
Key words: gastroesophageal adenocarcinoma, DNA damage immune response, immune checkpoint inhibitors,
epidermal growth factor receptor, tumour microenvironment
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INTRODUCTION

Gastroesophageal cancer accounts for w1.3 million annual
deaths globally.1 The majority of patients have advanced dis-
ease at diagnosis2 and median survival in unselected trial
populations in this setting is less than a year.3 Although there
are more biomarker-driven novel therapies being approved,
including targeted therapies and immune checkpoint in-
hibitors (ICIs), cytotoxic chemotherapy remains an important
part of clinical management and there is an ongoing need to
identify biomarkers of treatment response.
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The GO2 trial investigated chemotherapy dose de-
escalation in an older and/or frailer population with
advanced gastroesophageal cancer (ISRCTN44687907). In
GO2, reduced dose doublet oxaliplatin/capecitabine (OX)
chemotherapy (60%of standard dose ofoxaliplatin 130mg/m2
on day 1, capecitabine 625mg/m2 on days 1-21, on a 21 day
cycle) had non-inferior progression-free survival (PFS) and
overall survival (OS) with improved patient experience
compared with standard dose.4 The use of different chemo-
therapy doses provided a unique translational opportunity to
investigate dose impact and potential biomarkers of response.

The DNA-damage immune response (DDIR) signature is a
44-gene transcriptional signature based on the loss of the
Fanconi anaemia/BRCA (FA/BRCA) DNA-damage response
pathway. Developed in breast cancer, the DDIR signature
identifies patients who respond well to DNA-damaging neo-
adjuvant chemotherapy.5,6 The signature can be expressed as
a continuous score or dichotomized into positive or negative.
DDIR-positive tumours (exhibiting defective DNA damage
repair) are characterized by an inflammatory tumour micro-
environment (TME), up-regulation of interferon signalling
genes, high lymphocytic infiltration,7,8 and enhanced signal-
ling through the cGAS/STING pathway.9

In a subset of gastroesophageal adenocarcinoma (GOA)
patients, chemotherapy promotes antitumour inflammation
within the TME by reorganizing the T-cell compartment and
inducing innate signalling pathways, including cGAS/STING
in tumour cells, which is associated with chemotherapy
response.10 Supporting this, DDIR-positive early-stage GOAs
benefit more from neoadjuvant platinum-based chemo-
therapy with improved pathological response and survival.7

This has not been investigated in advanced-stage disease.
DNA-damaging chemotherapeutic agents, e.g. platinums,

target vulnerabilities inherent in tumours with defective
DNA damage repair machinery, leading to neoplastic cell
death and improved outcomes for example in tumours with
homologous recombination deficiency.11 Investigation in
GOA indicates no association between homologous
recombination deficiency and response to platinum-based
chemotherapy, however, suggesting that defective DNA
damage repair in tumours alone may have a limited impact
on chemotherapy response in GOAs.12

Given these findings, and the emerging role of an
inflamed TME in chemotherapy and ICI response, we hy-
pothesized that the combination of defective DNA damage
repair and an inflammatory TME, captured by the DDIR
signature, could predict response and long-term survival to
the DNA-damaging agent oxaliplatin within the GO2 trial
population and provide further understanding of the bio-
logical basis of response to both chemotherapy and ICIs.
METHODS

This study was carried out according to the REporting rec-
ommendations for tumour MARKer prognostic studies
(REMARK) (Supplementary Table 1, available at https://doi.
org/10.1016/j.esmoop.2024.103450).13
2 https://doi.org/10.1016/j.esmoop.2024.103450
Patient samples

Formalin-fixed paraffin-embedded (FFPE) pre-chemo-
therapy tumour samples from 395 patients recruited to the
GO2 trial4 were obtained. Samples were registered within
NHS Tayside [Research Ethics Committee (REC) approval 17/
ES/0130] and Grampian (REC 16/NS/0055) biorepositories.
Only those with histologically confirmed adenocarcinoma
and in whom RNA sequencing was successful were included
in DDIR analysis. Radiological response was graded ac-
cording to RECIST v1.1.14

For independent in silico validation, RNA sequencing
from 306 oesophageal adenocarcinoma tumours was ob-
tained from the Oesophageal Cancer Clinical and Molecular
Stratification (OCCAMS) consortium. In addition, 124 pre-
treatment samples from patients with adenocarcinoma
treated in NHS Grampian underwent EGFR FISH and
immunohistochemistry (IHC) for CD8, CD4, FOXP3 and
programmed death-ligand 1 (PD-L1).

Gene expression profiling

Biopsies were reviewed for pathological subtype before
marking for macrodissection and samples containing at
least 10% adenocarcinoma tissue by area were taken for-
ward. Where tumour material was limited, endoscopic bi-
opsy fragments from the same patient were pooled.
Methodology for RNA extraction and analysis was carried
out as previously described.7 Further details can be found in
the Supplementary Materials, available at https://doi.org/
10.1016/j.esmoop.2024.103450.

Microenvironment cell population analysis

The ‘MCPcounter’ (version MCPcounter_1.1.0) R package
was downloaded from GitHub (https://github.com/ebecht/
MCPcounter) and was used to generate microenvironment
cell population (MCP) estimation scores for 10 stromal and
immune cell infiltrates from the transcriptomic data of the
cohorts.15 Estimates were compared between DDIR-positive
and DDIR-negative to determine their stromal/immune
content and the differences in cellular composition be-
tween the cancer types. MCP estimation scores were also
generated according to EGFR FISH status.

EGFR fluorescence in situ hybridisation

EGFR FISH was carried out and scored using an established
protocol16 in NHS Grampian. Further details can be found in
the Supplementary Materials, available at https://doi.org/
10.1016/j.esmoop.2024.103450.

IHC

IHC was carried out on tissue microarray (TMA) as previously
described.17 Antibodies used are detailed in Supplementary
Materials, available at https://doi.org/10.1016/j.esmoop.
2024.103450. QuPath was carried out using published meth-
odology18,19 and QuPath Version 0.3.2. Whole slide images
(WSI) of immunostained TMA slides for CD4, CD8, FOXP3 and
PD-L1 were imported. Further details can be found in the
Volume 9 - Issue 5 - 2024

https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://github.com/ebecht/MCPcounter
https://github.com/ebecht/MCPcounter
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450
https://doi.org/10.1016/j.esmoop.2024.103450


Table 1. Demographics of the GO2 adenocarcinoma population according
to DDIR status.

DDIR-negative
(n [ 221)

DDIR-positive
(n [ 31)

P value

Age (years)
Mean (SD) 75.0 (6.50) 78.4 (5.43) <0.001
Median (Min, Max) 76.0 (52.0, 90.0) 80.0 (65.0, 87.0)

Sex

M. A. Baxter et al. ESMO Open
Supplementary Materials, available at https://doi.org/10.
1016/j.esmoop.2024.103450. PD-L1 was scored manually by
two independent observers, one ofwhomwas an experienced
gastrointestinal pathologist. Further details canbe found in the
Supplementary Materials, available at https://doi.org/10.
1016/j.esmoop.2024.103450 and examples in
Supplementary Figure S1, available at https://doi.org/10.
1016/j.esmoop.2024.103450.
Male 166 (75.1%) 21 (67.7%) 0.51
Female 55 (24.9%) 10 (32.3%)

ECOG PS
0 30 (13.6%) 6 (19.4%) 0.346
1 121 (54.8%) 19 (61.3%)
2þ 69 (31.2%) 6 (19.4%)
Missing 1 (0.5%) 0 (0%)

Dose level
100% OX (Level A) 74 (33.5%) 11 (35.5%) 0.876
80% OX (Level B) 67 (30.3%) 8 (25.8%)
60% OX (Level C) 80 (36.2%) 12 (38.7%)

Primary site
Oesophagus 78 (35.3%) 8 (25.8%) 0.212
GOJ 65 (29.4%) 7 (22.6%)
Gastric 78 (35.3%) 16 (51.6%)

HER2 IHC status
Positive 18 (8.1%) 4 (12.9%) 0.168
Negative 150 (67.9%) 24 (77.4%)
Unavailable 53 (24.0%) 3 (9.7%)

MMR IHC status
Deficient 10 (4.5%) 3 (9.7%) 0.414
Proficient 157 (71.0%) 20 (64.5%)
Unavailable 64 (29.0%) 8 (25.8%)

Metastases present
Yes 151 (68.3%) 19 (61.3%) 0.563
No 70 (31.7%) 12 (38.7%)

GO2 frailty score
Mean (SD) 2.75 (1.40) 2.94 (1.09) 0.008
Median (Min, Max) 3.00 (0, 8.00) 3.00 (1.00, 5.00)
Missing 1 (0.5%) 0 (0%)

GO2 frailty group
Not frail 46 (20.8%) 2 (6.5%) 0.139
Slightly frail 52 (23.5%) 10 (32.3%)
Severely frail 122 (55.2%) 19 (61.3%)
Missing 1 (0.5%) 0 (0%)

Bold indicates significant (P-value <0.05). GO2 Frailty Score and Group4 are defined
by the number of geriatric domains with a deficit. Not frail ¼ 0-1 domains, slightly
frail ¼ 2 domains, and severely frail ¼ 3 or more domains. DDIR, DNA damage
immune response; ECOG PS, Eastern Cooperative Oncology Group performance
status; GOJ, gastroesophageal junction; HER2, human epidermal growth factor re-
ceptor 2; IHC, immunohistochemistry; MMR, mismatch repair; OX, oxaliplatin/
capecitabine; SD, standard deviation.
Statistical analysis

Statistical analyses were conducted according to pre-
specified statistical analysis plans that were agreed upon
before the inspection of any DDIR-stratified outcome data.
Further details can be found in the Supplementary
Materials and Supplementary Table 2, available at https://
doi.org/10.1016/j.esmoop.2024.103450.

RESULTS

GO2 trial advanced gastroesophageal cancer translational
cohort

The GO2 trial (n ¼ 559) demonstrated the non-inferiority of
reduced dose chemotherapy in an older and/or frail popu-
lation with advanced gastroesophageal cancer.4 From this
patient cohort, RNA-sequencing data (and DDIR status) were
obtained from252 adenocarcinomapatients (Supplementary
Methods, available at https://doi.org/10.1016/j.esmoop.
2024.103450 and Supplementary Figure S2, available at
https://doi.org/10.1016/j.esmoop.2024.103450).

A comparison of baseline characteristics demonstrated
that the DDIR-analyzed cohort was representative of the
whole adenocarcinoma trial population (n ¼ 492) and a
comparison between those patients with and without
available RNA sequencing data revealed that there was no
evidence of selection biases based on the GO2 stratification
factors (Supplementary Table S3, available at https://doi.
org/10.1016/j.esmoop.2024.103450) or difference in OS
[hazard ratio (HR) 0.95, 95% confidence interval (CI) 0.76-
1.17; P ¼ 0.6] (Supplementary Figure S3, available at
https://doi.org/10.1016/j.esmoop.2024.103450).

A total of 31/252 (12.3%) patients were classified as
DDIR-positive, and the proportion of patients across the
dose levels A, B and C was 33.7%, 29.8% and 36.5%,
respectively. The DDIR-positive population was significantly
older, as previously reported in the neoadjuvant setting,
and frailer (Table 1).
Outcomes according to DDIR status in the GO2 trial

Patients were followed up for a mandated 12 months after
the commencement of systemic therapy.4 Radiological
response and survival were analyzed in the 243 of the 252
patients who received chemotherapy.

A total of 21 (of 243; 8.6%) patients had no measurable
disease on baseline scan and were excluded from response
analysis (Supplementary Figure S4, available at https://doi.
org/10.1016/j.esmoop.2024.103450). Progression or death
before first scan was classed as progressive disease. The
Volume 9 - Issue 5 - 2024
response rate was 31.5% (70/222) and the disease control
rate was 66.7% (148/222). DDIR-positive patients had a
significantly higher response rate than DDIR-negative pa-
tients; 51.7% versus 28.5% (P ¼ 0.022) (Supplementary
Figure S5, available at https://doi.org/10.1016/j.esmoop.
2024.103450). Disease control rates were similar between
the groups, 69.0% versus 66.3%, P ¼ 0.944. There was no
relationship between dose level and response rate
(Supplementary Tables S4 and S5, available at https://doi.
org/10.1016/j.esmoop.2024.103450).

During follow-up, there were a total of 207 PFS and 182
OS events (Supplementary Figure S6, available at https://
doi.org/10.1016/j.esmoop.2024.103450). No difference in
PFS was observed between the DDIR groups; 4.9 months
(95% CI 4.3-5.8 months) in DDIR-negative versus 4.3 months
(95% CI 3.8-7.4 months) in DDIR-positive, (HR 1.00, 95% CI
0.66-1.51, P ¼ 0.99) (Figure 1A).
https://doi.org/10.1016/j.esmoop.2024.103450 3
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Figure 1. KaplaneMeier curves stratified by DDIR status for (A) progression-free and (B) overall survival for 243 patients with advanced gastroesophageal
adenocarcinoma treated with platinum-based chemotherapy in the GO2 trial and (C) progression-free and (D) overall survival for the subgroup of 82 patients
treated with full dose platinum-based chemotherapy.
CI, confidence interval; DDIR, DNA damage immune response; HR, hazard ratio; OS, overall survival; PFS, progression-free survival.

ESMO Open M. A. Baxter et al.
There was also no significant difference in OS observed
between the DDIR groups; 7.7 months (95% CI 7.1-8.6
months) in DDIR-negative versus 10.7 months in DDIR-
positive (95% CI 7.0-not applicable), HR 0.76 (95% CI 0.47-
1.23), P ¼ 0.27 (Figure 1B). In Cox regression analysis, DDIR
positivity had HRs for PFS and OS of 1.13 (95% CI 0.75-1.72),
P ¼ 0.56) (Supplementary Figure S7, available at https://doi.
org/10.1016/j.esmoop.2024.103450) and 0.88 (95% CI 0.55-
1.43, P ¼ 0.62), respectively (Supplementary Figure S8A,
available at https://doi.org/10.1016/j.esmoop.2024.103450).

In the DDIR-positive population, survival (Supplementary
Figures S9 and S10, available at https://doi.org/10.1016/j.
esmoop.2024.103450) and Cox regression analysis suggested
an improved OS (but not PFS) with non-dose de-escalated
chemotherapy; dose level C (60% OX) was associated with an
HRof 4.35; 95% CI 1.18-16.1, P¼ 0.028 (Supplementary Figure
S8B, available at https://doi.org/10.1016/j.esmoop.2024.
103450). Importantly, there was no difference in the quality
of life or the overall treatment utility [OTU; a composite clinical
outcome measure of the effect of palliative treatments on
individuals (7)] between dose levels (Supplementary Figure
4 https://doi.org/10.1016/j.esmoop.2024.103450
S11, available at https://doi.org/10.1016/j.esmoop.2024.
103450 and Supplementary Table S6, available at https://
doi.org/10.1016/j.esmoop.2024.103450).

Investigating all patients treated with dose level A (100%
OX) (Supplementary Table S7, available at https://doi.org/
10.1016/j.esmoop.2024.103450), although numerically
longer, there was no significant improvement in OS in the
DDIR-positive populationdmedian OS 11.8 months (95% CI
6.8 months-not applicable) versus 7.1 months (95% CI 6.1-
8.5 months) in DDIR-negative; HR 0.45 (95% CI 0.18-1.13),
P ¼ 0.088 (Figure 1D). There was also no significant dif-
ference in median PFS according to DDIR status (HR 0.83;
95% CI 0.41-1.67, P ¼ 0.6) (Figure 1C).

In the DDIR-negative population, there was no dose level
relationship with survival and also no difference in quality
of life between dose levels (Supplementary Figures S12 and
S13, available at https://doi.org/10.1016/j.esmoop.2024.
103450), however, dose level A (100% OX) was associated
with a poorer OTU (P < 0.001) (Supplementary Figure S14,
available at https://doi.org/10.1016/j.esmoop.2024.
103450).
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Given the observed higher response rate, longer OS in
DDIR-positive patients receiving dose level A (100% OX) and
the known biology of the DDIR signature in other tumour
types, we proceeded to investigate the association between
DDIR score and immune/stromal composition, using gene
expression profiles and MCP analysis.15

The DDIR-positive TME reflects an immune-rich subtype

Using MCP analysis,15 we identified significant differences in
several immune cell types according to DDIR status
(Figure 2A). In addition, there were consistent correlations
between DDIR scores and T-cell, B-cell, and monocytic im-
mune lineages, confirming an increase in immune cell
infiltration in DDIR-positive advanced GOA [Figure 2B.
Pearson r; T cells ¼ 0.646 (P < 0.001), B lineage ¼ 0.4396 (P
< 0.001), monocytic lineage ¼ 0.5657 (P < 0.001)]. There
was a strong correlation between the DDIR score and the
cytotoxic T-lymphocyte score (Figure 2C).

Increasing DDIR score was also associated with an in-
crease in CD274 (PD-L1) expression and microsatellite
instability (MSI) signature score20 (Figure 3A and B). The
MSI signature was validated internally using IHC
(Supplementary Figure S15, available at https://doi.org/10.
1016/j.esmoop.2024.103450). DDIR-positive patients had
significantly higher expression levels of both CD274 and the
MSI signature than DDIR-negative patients. Together, this
supports the hypothesis that DDIR-positive advanced GOAs
may also be more sensitive to ICI.

Association between DDIR and ClaraT signature clusters

To extend this analysis of the underlying tumour biology of
DDIR-positive GOAs, we carried out hierarchical clustering
using the 92 individual gene signatures (of which DDIR is
one), based on 10 hallmarks of cancer21 within the Almac
ClaraT report. This identified six unique clusters
(Supplementary Figure S16, available at https://doi.org/10.
1016/j.esmoop.2024.103450 and Supplementary Table S8,
available at https://doi.org/10.1016/j.esmoop.2024.103450).
Cluster 2 had the highest proportion of DDIR-positive pa-
tients and the highest raw DDIR score (Supplementary
Table S9, available at https://doi.org/10.1016/j.esmoop.
2024.103450 and Supplementary Figure S17, available at
https://doi.org/10.1016/j.esmoop.2024.103450). It was
associated with homologous recombination deficits, cell cy-
cle checkpoints and inflammatory and immune-oncology
signatures. Analysis of the other 91 ClaraT signatures,
considering those which predicted radiological response and
a dose-dependent survival at a significance level of P < 0.05,
identified the nuclear factor-kappa B (NFkB),22 T-cell
inflamed GEP,23 TGCA CSF1 response24 and CTLA4 response25

signatures (Supplementary Table S10, available at https://
doi.org/10.1016/j.esmoop.2024.103450).

Gene comparison analysiswas carried out to identify shared
genes between the significant predictive signatures (https://
bioinformatics.psb.ugent.be/webtools/Venn). No genes
were shared between all five signatures (Supplementary
Table S11, available at https://doi.org/10.1016/j.esmoop.
Volume 9 - Issue 5 - 2024
2024.103450); however, two genes, CXCL10 and IDO1, were
shared between three of the signatures. Both CXCL10 and
IDO1 genes are significant contributors to the DDIR signature.
CXCL9 and CXCL11, the other CXCR3-related chemokines and
CCL5, the other chemokine associated with the cGAS-STING
pathway, were shared by two signatures.

As anticipated, there was a very good correlation be-
tween the DDIR score and CXCL10 RNA expression (R ¼
0.72, P < 0.001) (Figure 4A). High RNA expression of CXCL10
(defined as the top 25%) was associated with a survival
advantage in the population as a whole (Figure 4B) and this
benefit was maintained on Cox regression analysis; high
expression of CXCL10 was associated with an OS benefit in
those who received dose level A (HR 0.45; P ¼ 0.02)
(Figure 4C).

The correlation between T-cell signatures and the DDIR
signature,CXCL10 expression alone or CXCL10 in combination
with CCL5 or IDO1, was confirmed using The Cancer Genome
Atlas (TCGA) publicly available repository. The combined
CXCL10/CCL5 signature performed as well as the DDIR
signature in predicting T-cell signatures (Supplementary
Table S12, available at https://doi.org/10.1016/j.esmoop.
2024.103450). There was also a good correlation between
this combined signature and the DDIR score (R ¼ 0.78, P <
0.0001) in the GO2 population (Figure 4D) and high expres-
sion was associated with significantly higher TME infiltration
of inflammatory immune cells on MCP analysis
(Supplementary Figure S18, available at https://doi.org/10.
1016/j.esmoop.2024.103450). The combined CXCL10/CCL5
signature was also associated with improved OS and
response rate (Supplementary Table S13, available at https://
doi.org/10.1016/j.esmoop.2024.103450 and Supplementary
Figure S19, available at https://doi.org/10.1016/j.esmoop.
2024.103450).

Given the findings in the GO2 cohort, the association
between CXCL10 (as a key determinant of DDIR status) and
the TME was subsequently explored in transcriptomic data
from an external cohort of 306 oesophageal and gastro-
esophageal junctional adenocarcinoma samples obtained
from the OCCAMS consortium (Supplementary Table S14,
available at https://doi.org/10.1016/j.esmoop.2024.
103450). CXCL10 gene expression was significantly corre-
lated with cytotoxic T-lymphocyte abundance within the
TME; Pearson R ¼ 0.587, P < 0.001 (Supplementary Figure
S20, available at https://doi.org/10.1016/j.esmoop.2024.
103450).
Consensus pathway analysis and EGFR

We have observed a relationship between the DDIR signa-
ture, ORR and survival in advanced GOA patients treated
with platinum-based chemotherapy. There is also an asso-
ciation of the DDIR signature with increased immune infil-
trate and biomarkers of response to ICIs. This may indicate
the potential importance of the DDIR signature in predicting
clinical outcomes for patients treated with chemotherapy
and ICIs which form the basis of first-line standard-of-care
treatments.
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Therefore, we investigated the potential upstream
targetable determinants of the DDIR signature using
consensus pathway analysis (http://cpdb.molgen.mpg.de/).
This analysis identified EGFR as a key hub (Supplementary
Figure S21, available at https://doi.org/10.1016/j.esmoop.
2024.103450). EGFR gene RNA expression had no associa-
tion with ORR, PFS or OS in the GO2 cohort (Supplementary
Figure S22, available at https://doi.org/10.1016/j.esmoop.
2024.103450), however, it was negatively associated with
DDIR score (Supplementary Figure S23, available at https://
doi.org/10.1016/j.esmoop.2024.103450). None of the tu-
mours with EGFR expression above 6 fragments per kilo-
base of tanscript per million mapped reads were DDIR-
positive. EGFR-amplified GOAs are known to have higher
EGFR RNA expression levels and are also known to benefit
from treatment with EGFR inhibitors.26,27 This may there-
fore suggest that the DDIR-negative tumours with high
EGFR RNA expression are EGFR-driven and targetable.

We proceeded to investigate the role of EGFR in relation
to the DDIR signature and immune cell infiltrates in GOAs
by measuring EGFR gene copy number using FISH testing,
which is a predictive biomarker for EGFR inhibitors in
GEAs.16

EGFR FISH was carried out on blindly stratified (based on
baseline characteristics) GOA samples from the GO2 pop-
ulation (n ¼ 143; 31 DDIR-positive and 112 DDIR-negative)
scores with a line of best fit for each immune infiltrate. The black dashed horizonta
correlated with DDIR scores in the GO2 population. The black horizontal line denot
DDIR-positive and -negative status in the cohort.
DDIR, DNA damage immune response; NEG, DDIR-negative; NK, natural killer; POS, D
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(Supplementary Figure S24, available at https://doi.org/10.
1016/j.esmoop.2024.103450). The selected samples were
demographically similar to the GOA population as a whole
(Supplementary Table S15, available at https://doi.org/10.
1016/j.esmoop.2024.103450). Results were obtained for
124 (86.8%) samples. Of these, 30 (24.2%) were EGFR FISH-
positive (defined as amplification or high polysomy) and 94
(75.8%) were EGFR FISH-negative (Supplementary
Table S16, available at https://doi.org/10.1016/j.esmoop.
2024.103450).16

Baseline demographics were well balanced
(Supplementary Table S16, available at https://doi.org/10.
1016/j.esmoop.2024.103450). Consistent with our previ-
ous findings, the EGFR FISH-positive cohort, and in partic-
ular EGFR amplification, had significantly lower DDIR scores
and proportion of DDIR-positive patients (Supplementary
Table S16, available at https://doi.org/10.1016/j.esmoop.
2024.103450). There was no impact on OS according to
FISH status (HR 1.34, P ¼ 0.2).

EGFR FISH results according to DDIR status are shown in
Supplementary Table S17, available at https://doi.org/10.
1016/j.esmoop.2024.103450. Only 12% of EGFR FISH-
positive were also DDIR-positive, contrasting with 27.3%
of EGFR FISH-negative patients also being DDIR-positive,
P ¼ 0.183. Importantly, none of the DDIR-positive pa-
tients were EGFR amplified.
l line denotes the DDIR positivity cut-off. (C) Cytotoxic lymphocyte MCP scores
es the cut-off for DDIR positivity. Boxplot denotes the distribution of values for

DIR-positive.
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Next, we assessed EGFR FISH in relation to immune
phenotype based on transcriptomic MCP analysis. On MCP
analysis, tumours with EGFR amplification had a signifi-
cantly lower abundance of cytotoxic T cells compared with
FISH-negative tumours (P ¼ 0.0036) (Supplementary
Figures S25 and S26, available at https://doi.org/10.1016/
j.esmoop.2024.103450).

Validation of EGFR status and immune cell phenotype by
immunohistochemistry. To validate the association be-
tween EGFR amplification (by FISH) and immune cell infil-
tration (by IHC), 124 GOA FFPE pretreatment tumour
specimens within a TMA were analyzed as previously pub-
lished.17,28 The TMA was an external patient cohort ob-
tained from NHS Grampian, Scotland. Two cores per patient,
from the centre of the tumour, were taken. QuPath Image
analysis19 was carried out on sections from the same
tumour blocks to investigate CD8, CD4 and FOXP3 infiltra-
tion (Supplementary Figure S1, available at https://doi.org/
10.1016/j.esmoop.2024.103450). These markers were
selected due to the relationship between T cells and
response to ICI.29,30 The sections were also scored manually
for IHC PD-L1 combined positivity score (CPS).

The demographics of the TMA population are shown in
Supplementary Table S18, available at https://doi.org/10.
1016/j.esmoop.2024.103450. Within this population, 31
(25%) were EGFR FISH-positive; 9 (7.3%) were EGFR amplified.
Like the findings in GO2, EGFR amplification was associated
with an immunecoldTME (Supplementary Table S19, available
at https://doi.org/10.1016/j.esmoop.2024.103450).

A total of 103 samples were available for analysis of PD-
L1 CPS; 87 (83.7%) samples had a score <1%
(Supplementary Table S20, available at https://doi.org/10.
1016/j.esmoop.2024.103450). EGFR FISH status was not
significantly associated with PD-L1 CPS. PD-L1 CPS was
associated with an immune hot TME (Supplementary
Table S21, available at https://doi.org/10.1016/j.esmoop.
2024.103450).
DISCUSSION

Advanced GOA is associated with a very poor prognosis.
There is a need to identify biomarkers of response and
the underlying biology. In this study, we present a mo-
lecular analysis in samples from a completed randomized
clinical trial and an investigation of underlying biology
relevant to both chemotherapy and immunotherapy with
our findings being validated in independent patient
cohorts.

We demonstrate that the 44-gene DDIR signature, which
captures a combination of defective DNA damage repair
mechanisms and an inflammatory TME, is associated with a
higher response rate to platinum-based chemotherapy and
improved OS. While the increased response rate was
observed across all dose levels from the GO2 trial, improved
survival, potentially via stimulation of immune surveillance,
appears to require the non-de-escalated chemotherapy
Volume 9 - Issue 5 - 2024
dose (level A, 100% OX). A higher DDIR signature score was
also associated with an inflamed TME and, like triple-
negative breast and colorectal cancer,8,31 increased
expression of biomarkers of ICI response. In contrast, EGFR
amplification was associated with the reduction of expres-
sion of the DDIR signature and an immune cold TME.

The DDIR signature has predictive value for response to
DNA-damaging chemotherapy in breast cancer and oeso-
phageal adenocarcinoma in the curative setting,5,7 but not
in advanced colorectal cancer.8 Our investigation is the first
to determine the interaction of chemotherapy dose with
DDIR and, in doing so, has provided novel insights for the
application of DDIR as a predictive biomarker as well as the
underlying therapeutically relevant tumour biology.

DDIR positivity was observed in 12.3% of the GO2 cohort.
This was lower than the observed 24% in the curative
setting.7 It was also lower than the rates observed in triple-
negative breast cancer (62%),6 ovarian cancer (30%)32 and
colorectal cancer (19%-35%).8,33

The lower rates of DDIR positivity seen in the advanced
gastroesophageal setting compared with the neoadjuvant
setting may be due to the older/frailer patient population in
GO2 (i.e. a changing disease biology with age). It may also
reflect the impact of a differing biology across stage, which
would support recent data in oesophageal adenocarcinoma,
suggesting differences in mutational signatures with
stage.34 Interestingly, advanced-stage colorectal cancer pa-
tients also have lower rates of DDIR positivity than in the
localized setting.33

There may also be a contribution of a greater benefit of
DDIR-positive tumours following DNA-damaging systemic
therapy in the neoadjuvant/adjuvant setting.7 Accordingly,
the DDIR phenotype impact on the TME may produce an
initial improved response to neoadjuvant and adjuvant
chemotherapy, but also results in longer-term disease
control and immune surveillance.7 Additionally, previous
platinum chemotherapy may alter the biology of the
tumour or select out subgroups, for example, DDIR-negative
that are resistant to chemotherapy.35 Supporting this
concept, the DEBIOC study in oesophageal adenocarcinoma
found that the post-neoadjuvant therapy DDIR signature
score was significantly reduced.36

Within the GO2 cohort, DDIR-positive patients had a
better response rate and a non-de-escalated dose of
chemotherapy was associated with improved OS (HR, 0.23;
95% CI 0.06-0.85, P ¼ 0.028). This improved OS occurred
despite these patients being older and frailer (assessed by
the GO2 frailty score), which has clinical relevance as
reduced-dose chemotherapy is now widely adopted in this
population. Of note, older adults (aged >75) had improved
survival, independent of frailty, which may again indicate a
different tumour biology according to age.

Importantly, the higher chemotherapy dose did not have
a negative impact on patient experience or quality of life in
the DDIR-positive population, suggesting that, overall, it
was tolerated as well as the lower dose. This may be
explained by the increased response with the higher dose,
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resulting in reduced tumour burden and improved symp-
tom control. Together, these would improve treatment
tolerance in the population. In addition, as toxicity report-
ing is capturing disease-related symptoms as well as
treatment-related toxicity,37 the impact of the higher dose
on experienced toxicity will be reduced.

The DNA damage-induced DDIR signature represents an
inflamed baseline TME5,9 associated with increased T-cell,
B-cell and monocytic immune lineages in both breast and
colorectal cancer;8 this was tested in the GO2 population,
which confirmed an increase in lymphocytic infiltration with
an increasing DDIR score. This suggests that in this popu-
lation, DNA-damaging chemotherapy induces a radiological
response. For long-term disease control and thus improved
survival, however, a higher dose of chemotherapy may be
required to stimulate immune surveillance. This might
explain the observed increased response rate to platinum-
based chemotherapy in DDIR-positive GOAs across all
dose levels from the GO2 trial, but improved survival only in
those treated with non-de-escalated higher chemotherapy
dose (level A, 100% OX).

Biologically, the DDIR effect in GOA, similar to breast
cancer, appears to be driven by the chemokines CXCL10
and CCL5, the pro-inflammatory functions of which include
T-cell recruitment and expansion.38 The relationship be-
tween CXCL10 and DDIR score is also observed in advanced
colorectal cancer.8 The combined CXCL10/CCL5 signature
performed as well as the DDIR signature in predicting TCGA
T-cell signatures. There was also a good correlation be-
tween this combined signature and the DDIR score, and it
was also prognostic (both of response rate and survival).
Together this suggests CXCL10/CCL5 expression may war-
rant further investigation as a narrowed biomarker of DDIR
status and chemosensitivity. A similar finding is observed in
triple-negative breast cancer where CXCL10 expression is
related to a favourable prognosis.39 Importantly, CXCL10
appears to be an important prognostic marker for response
to ICIs,40-42 including in advanced oesophageal
adenocarcinoma.43

As mentioned already, CXCL10 expression is associated
with improved response to ICI therapy. Other predictors of
ICI response and improved outcome are PD-L1 and MSI, as
well as the presence of tumour-infiltrating lymphocytes
(TILs).44 In the GO2 population, both PD-L1 (CD274) and the
MSI signature (which includes CXCL10) are expressed at
significantly higher levels in DDIR-positive patients. CXCL10
had a good correlation to both PD-L1 (CD274) and MSI
signature scores, however, they appear to represent distinct
populations. Therefore, it could be inferred that DDIR-
positive patients are most likely to benefit from ICI therapy.

Overexpression of EGFR and gene CNG detected by FISH
was associated with a less inflamed and immunologically
colder TME. This may be a result of the known correlation
between immune cold CIN tumours and EGFR amplification
or a direct impact of EGFR signaling.45 Our consensus
pathway analysis demonstrated that EGFR was a key hub
and driver of the DDIR signature supporting a direct role for
EGFR signalling.
10 https://doi.org/10.1016/j.esmoop.2024.103450
The potential immunosuppressive role of EGFR is sup-
ported by evidence in other tumour groups. In breast can-
cer, EGFR positivity has been associated with increased
FOXP3þ regulatory T cells,46 which are known to suppress
antitumour immunity. In non-small-lung cancer, EGFR sig-
nalling, via interferon regulatory factor 1 (IRF1), reduces the
expression of both CXCL10 and CCL5 while also increasing
regulatory T-cell recruitment via CCL22.47 Therefore, the
mechanism of an EGFR signalling-induced immune cold
TME could be via alteration of the chemokine milieu.

Importantly, this process could potentially be counter-
acted by EGFR blockade which has been shown to promote
the secretion of proinflammatory chemokines in both head
and neck and breast cancer, as well as to improve respon-
siveness to anti-programmed cell death protein 1 (PD-1)
blockade.47-49 This has not been investigated in advanced
GOA and is the subject of ongoing research within our
group.

The strengths of this study are that it is a clinical trial
cohort and thus the clinical outcome data are reliable, and
findings have been validated in independent cohorts. We
present data from a large sample size which is unique in
being from an older population which better represents the
patients we see in clinical practice.

However, our study has several limitations. Firstly, there
was an unexpectedly low prevalence of DDIR positivity, and
therefore the survival findings should be interpreted with
caution. In addition, the limited tumour tissue available on
FFPE blocks resulted in reduced sample size for subsequent
IHC analysis (e.g. HER2). The rates of PD-L1 positivity within
the TMA were lower than expected; this may be a conse-
quence of sampling during the creation of the TMA, with
samples more likely to be taken from the centre of the
tumour specimen or the result of age-related deglycosylation
of the extracellular domain of PD-L1,50 and indicates that
caution needs to be taken in the interpretation of these
particular results.

We must also acknowledge that despite the DDIR
signature containing several features which are known to
be prognostic, it had no impact on PFS or OS in the pop-
ulation as whole. Added to this, the clinical significance of
improved response rate can be questioned as it is not a
good surrogate for the main outcomes of PFS and OS. The
improvement in response rate, however, does imply
increased sensitivity to chemotherapy, and the lack of clear
survival benefit findings may reflect the impact of different
dose levels, an underpowered study or the impact of the
treatment on an older frailer cohort of patients. As such
the clinical utility of the DDIR signature may be in fitter
patients and also in giving an insight into underlying
biology.
Conclusions

In summary, our study shows that in advanced GOA, the
DDIR signature can predict an improved response to oxali-
platin treatment. The OS benefit may require the standard,
non-dose de-escalated chemotherapy regime. We have
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identified that the underlying biology of the DDIR signalling
in GOA, similar to breast cancer, is associated with consti-
tutive gene up-regulation of the chemokines CXCL10 and
CCL5 and an inflamed TME. EGFR copy number gain and in
particular amplification may have an inhibitory effect on
this signalling; however, this needs further investigation.

This work also underscores the importance of the
connection between DNA damage repair components and
inflammation in the TME in determining GOA patient out-
comes. Our data may provide rationale for the mechanistic
investigation of the combination of ICI with EGFR inhibition
in tumours with EGFR CNG as a means to enhance anti-
cancer immune responses and improve the efficacy of
immunotherapies.
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