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Abstract
Malaria is a vector-borne disease that exacts a grave toll in the Global South. The
epidemiology of Plasmodium vivax, the most geographically expansive agent of
human malaria, is characterised by the accrual of a reservoir of dormant parasites
known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise
the majority of the blood-stage infection burden, with implications for the acquisi-
tion of immunity and the distribution of superinfection. Here, we construct a novel
model for the transmission of P. vivax that concurrently accounts for the accrual of
the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immu-
nity. We begin by using an infinite-server queueing network model to characterise
the within-host dynamics as a function of mosquito-to-human transmission inten-
sity, extending our previous model to capture a discretised immunity level. To model
transmission-blocking and antidisease immunity, we allow for geometric decay in
the respective probabilities of successful human-to-mosquito transmission and symp-
tomatic blood-stage infection as a function of this immunity level. Under a hybrid
approximation—whereby probabilistic within-host distributions are cast as expected
population-level proportions—we couple host and vector dynamics to recover a deter-
ministic compartmental model in line with Ross-Macdonald theory. We then perform
a steady-state analysis for this compartmental model, informed by the (analytic) distri-
butions derived at thewithin-host level. To characterise transient dynamics, we derive a
reduced system of integrodifferential equations, likewise informed by our within-host
queueing network, allowing us to recover population-level distributions for various
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quantities of epidemiological interest. In capturing the interplay between hypnozoite
accrual, superinfection and acquired immunity—and providing, to the best of our
knowledge, the most complete population-level distributions for a range of epidemi-
ological values—our model provides insights into important, but poorly understood,
epidemiological features of P. vivax.

Keywords Hypnozoite · Superinfection · Immunity · Vivax Malaria · Hybrid model ·
Infinite server queue

Mathematics Subject Classification 92D30

1 Introduction

Despite decades of concerted control and elimination efforts,malaria persists as a grave
cause ofmorbidity andmortality in theGlobal South, yielding an estimated 241million
cases and 627,000 deaths in 2020 alone (WHO 2021). The global malaria burden is
largely driven by the parasites Plasmodium falciparum and Plasmodium vivax, with
the transmission of both parasites mediated by Anopheles mosquito vectors. In light
of its expansive geographical distribution, over three billion people are thought to be
at risk of P. vivax infection (Battle 2019; Battle and Kevin Baird 2021).

The difficulty of eliminatingP. vivax, in particular, is compounded by the fact that an
infected individual can acquire a reservoir of dormant parasites, known as hypnozoites,
hidden within their liver. The consequences of mosquito inoculation for P. vivax are
two-fold: in addition to causing a primary (blood-stage) infection, an infective bite
can lead to the establishment of an (undetectable) batch of hypnozoites in the liver.
Following an indeterminate dormancy period, the activation of a single hypnozoite can
give rise to (blood-stage) relapse. Long latency periods (in the order of 6 to 9 months)
are characteristic of temperate strains, while short latency periods (typically spanning
3 to 6 weeks) tend to be more common in tropical settings (Battle 2014; White et al.
2016). Hypnozoite activation is believed to be a key driver of superinfection—which
involves the co-circulation of multiple parasite broods in the bloodstream (Popovici
2018), and has potential consequences for the overall duration of blood-stage infection,
ergo, opportunties for onward human-to-mosquito transmission.

The hypnozoite reservoir also has important implications for the acquisition of
immunity (Mueller et al. 2013). Relapse-driven exposure to a large number of
genetically-distinct clones in early childhood is believed to underpin the dynamics
of acquired immunity to Plasmodium vivax (Koepfli et al. 2013). The mechanisms of
immune protection for P. vivax are multi-faceted and highly complex, but are known
to be stage-specific (see Antonelli et al. (2020) for a recent review). The majority of
the immune response to P. vivax is believed to be targeted towards asexual blood-stage
parasites. Here, we distinguish twomanifestations of (asexual) blood-stage immunity:

• Clinical/antidisease immunity reduces the risk or severity of clinical symptoms
during a blood-stage infection, with epidemiological data suggesting rapid acqui-
sition (Mueller et al. 2013, 2015).
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• Antiparasite immunity modulates the clearance of blood-stage infection (Deroost
et al. 2016), and is typically modelled through accelerated parasite clearance rates
and/or reduced parasite densities (Griffin 2010; White 2018a).

Transmission-blocking immunity, which modulates the infectivity of sexual blood-
stage parasites (gametocytes) to mosquitoes, is also of note, with the mitigation of
mosquito-stage development curtailing onward transmission (Gamage-Mendis et al.
1992; Mueller et al. 2013, 2015; de Jong et al. 2020). There is evidence to suggest
that the gametocyte circulation is not hampered by clinical and antiparasite immunity
(Joyner 2019).

Other forms of immunity are thought to be of comparatively limited consequence in
natural transmission settings. Pre-erythrocytic immunity targets parasite forms (sporo-
zoites) established directly through mosquito inoculation, prior to further liver-stage
development of the parasite. Due to the potential for each sporozoite to develop into
a hypnozoite, pre-erythrocytic immune protection has been hypothesised to substan-
tially mitigate the relapse burden (Mueller et al. 2013; White et al. 2017); exposure
to sporozoites in natural transmission settings, however, is believed to be insufficient
to induce strong pre-erythrocytic immune protection (Mueller et al. 2013). Likewise,
immune responses targeted towards liver-stage parasites, particularly hypnozoites, are
poorly understood (Galinski and Barnwell 2008), but are generally considered to be
relatively minor.

The joint dynamics of immunity and the hypnozoite reservoir are of epidemio-
logical interest. The dichotomisation of both hypnozoite carriage and immune status
(Kammanee et al. 2001; Ishikawa et al. 2003;Aguas et al. 2012; Roy et al. 2013) yields,
in some senses, the simplest approach for characterising population-level transmission
dynamics. Various models of immunity have been proposed under these dichotomised
frameworks, ranging from imperviousness to reinfection (until immunity is lost) (Kam-
manee et al. 2001), to an elevated rate of recovery (antiparasite) (Ishikawa et al. 2003);
reduced infectiousness to mosquitoes (transmission-blocking) (Roy et al. 2013); and
necessarily asymptomatic blood-stage infection (clinical) (Aguas et al. 2012). A
slightly extended model of transmission-blocking immunity, superinfection and hyp-
nozoite accrual has been proposed by De Zoysa et al. (1991)—with the limitation that
each individual can harbour up to two broods of hypnozoites and two overlapping
relapses, and a discrete immunity level {0, 1, 2}.

A more comprehensive characterisation of immunity and the hypnozoite reservoir
has recently beenperformedbybyWhite (2018a).Under a hypnozoite ‘batch’model—
whereby hypnozoites are stratified into ‘batches’, each characterised by a constant rate
of relapse over the span of an exponentially-distributed lifetime,with an imposed upper
bound K on concurrent batch carriage—White (2018a) account for the acquisition of
both antidisease immunity (which reduces the probability of symptomatic infection)
and antiparasite immunity (which results in an elevated rate of parasite clearance and a
reduced probability of detection via light miscroscopy). In addition to being restricted
to short-latency strains, the framework of White (2018a) ignores size variation in
parasite inocula, as we noted in Mehra et al. (2022). Further, White (2018a) do not
explicitly account for superinfection.
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Here, we seek to characterise the interplay between hypnozoite accrual, superinfec-
tion and acquired immunity, for both short- and long-latency strains. In Mehra et al.
(2023), we have recently proposed a transmission model for P. vivax that explicitly
accounts for superinfection and (short-latency) hypnozoite accrual; both hypnozoite
density and the multiplicity of blood-stage infection are specifically included in the
state space. Under the deterministic model derived in Mehra et al. (2023), we can
recover population-level distributions for various quantities of epidemiological inter-
est without encountering the computational overheads that have curtailed previous
efforts to model explicit hypnozoite densities (White 2018a). The conceptual under-
pinning of the model detailed in Mehra et al. (2023) is the within-host framework
we introduced in Mehra et al. (2022), which captures hypnozoite and superinfection
dynamics as a function of mosquito-to-human transmission intensity, or the force of
reinfection (FORI), in a general transmission setting. In the present paper, we adopt an
analogous mathematical construction to Mehra et al. (2023), extending our previous
work to allow for long-latency (temperate) strains and the acquisition of transmission-
blocking and antidisease immunity.

This paper is structured as follows. Section2 focuses on the characterisation of
within-host dynamics as a function of the FORI. We begin by extending the open net-
work of queues introduced in Mehra et al. (2022), which describes the joint dynamics
of superinfection and the hypnozoite reservoir, to include a discretised immunity level
(Sect. 2.1); as observed inMehra et al. (2022), this immunity level is governed by a shot
noise process, akin to a previous model of antibody dynamics we introduced in Mehra
et al. (2021). Rather than solving for the state probabilities based on the Kolmogorov
forward differential equations for the queueing network (Sect. 2.2), wemake use of the
fact that the hypnozoites experience independent trajectories to derive a time depen-
dent probability generating function (PGF) as in our previous work (Mehra et al. 2021,
2022) (Sect. 2.3). Specificmodels for antidisease and transmission-blocking immunity
are proposed in Sects. 2.4 and 2.5 respectively. Section3 concerns the construction of
a novel hybrid transmission model (Nåsell 2013; Henry 2020), predicated on the cou-
pling of expected host and vector dynamics. To recover the expected dynamics of the
vector population, we consider the Kolmogorov forward differential equations for an
underlying birth-death process (Sect. 3.1); while observing that the within-host proba-
bilitymass function (PMF) can be regarded as the expected population-level frequency
distribution of hypnozoite, superinfection and immunity states (Henry 2020). We then
couple host and vector dynamics in an infinite compartment model (Sect. 3.2). Steady
state analysis—including the identification of a bifurcation parameter governing the
existence of endemic equilibria (Sect. 3.2.1) and a sensitivity analysis of endemic
equilibrium solutions (Sect. 3.2.2)—is performed using the within-host distributions
derived in Mehra et al. (2022). To characterise transient population-level dynamics,
we adopt the approach detailed in Mehra et al. (2023) to derive a reduced system of
IDEs—comprising an integral equation for the immunity-modulated probability of
human-to-mosquito transmission (per bloodmeal), and a set of ordinary differential
equations (ODEs) governing the number of (un)infected and latent mosquitoes over
time (Sect. 3.3). As a function of the FORI derived under the reduced system of IDEs,
we recover population-level distributions for various quantities of epidemiological
interest—including the size of the (non)-latent hypnozoite reservoir; superinfection;
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the prevalence of clinical infection and the relative contribution of relapses to the
infection burden—using the distributions derived in Mehra et al. (2022). We make
some concluding remarks in Sect. 4.

2 Within-host human dynamics: hypnozoite accrual, superinfection
and immunity

We have previously derived the functional dependence within a given human host
between the FORI, and the joint dynamics of blood-stage infection and the hypnozoite
reservoir by constructing an open network of infinite server queues (Mehra et al. 2022).
Here, we extend this model to allow for the acquisition of immunity. Following the
approach detailed in Appendix C.3 of Mehra et al. (2022), we assume that the within-
host acquisition of immunity is described by a generalised shot noise process such
that:

• the clearance of each primary infection/relapse elicits a boost of unit magnitude;
• the lifetime of each boost is exponentially-distributed with mean 1/w; and
• the overall immunity level is given by the cumulative sum of boosts over the
entirety of an individual’s infection history.

As noted in Mehra et al. (2022), this discretised model of immunity can be considered
a variation of the antibody model proposed in Mehra et al. (2021), in which the
clearance of each primary infection/relapse elicits a boost of random magnitude that
is then subject to exponential decay at a fixed (deterministic) rate.

In Sect. 2.1 below, we propose an open network of infinite server queues to capture
the within-host dynamics of superinfection, hypnozoite accrual and immune acquisi-
tion (Mehra et al. 2022). The Kolmogorov forward differential equations governing
the time evolution of the joint PMF for the network are stated in Sect. 2.2. Instead
of directly solving the Kolmogorov forward differential equations (which comprise
an infinite-dimensional set of ODEs), we derive a joint PGF for the state of the net-
work following a similar approach to Mehra et al. (2022) (Sect. 2.3). Specific models
for transmission-blocking and antidisease immunity are detailed in Sects. 2.4 and 2.5
respectively. To elucidate the dynamics captured by our within-host model, we discuss
an illustrative sample path in Sect. 2.6.

2.1 An open network of infinite server queues

To capture the within-host acquisition of immunity, we extend the open network of
queues detailed in Mehra et al. (2022) to include an additional node I , such that the
occupancy of queue I represents the immunity level. Specifically, we construct an
open network of infinite server queues, labelled 1, . . . , k, NL, A, D, I ,C, P (Fig. 1),
where we define the compartments/nodes

• i ∈ {1, . . . , k} to represent hypnozoites that are present in latency compartment i
(that is, part of the hidden liver-stage reservoir but unable to activate);

• NL to represent non-latent hypnozoites (that is, part of the hidden liver-stage
reservoir and able to activate);
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Fig. 1 Schematic of open network of infinite server queues governing within-host hypnozoite and infection
dynamics, allowing for the acquisition of immunity. Extended from Mehra et al. (2022) to include states
related to immunity

• A to represent ongoing relapses from activated hypnozoites;
• D to represent hypnozoites that have died prior to activation;
• P to represent ongoing primary infections;
• I to represent cleared blood-stage infections (primary infections or relapses) that
have given rise to an immunity increment of unit magnitude;

• C to represent the loss of immune memory.

As such, the state space for each hypnozoite is Sh = {1, . . . , k, NL, A, D, I ,C},
while the state space for each primary infection is Sp = {P, I ,C}. A state vector
specifies the number of hypnozoites in each of compartments 1, . . . , k, NL, A, D, the
number of primary stage infections in compartment P , together with the total amount
of immunity gained from the clearance of blood stage immunity in compartment I
and the total amount of immune memory that has been lost in compartment C .

Arrivals into the network, which represent infective bites, are modelled to follow a
non-homogeneous Poisson process with rate λ(t). The consequences of each infective
bite are two-fold:

• a primary infection is immediately triggered, that is, a single “customer” enters
queue P;

• a geometrically-distributed batch of hypnozoites (with mean size ν) is established
in the liver, entering latency compartment 1 in the case of long-latency strains
(k > 0); and the non-latent compartment NL in the case of short-latency strains
(k = 0).

Each hypnozoite/infection is assumed to flow independently through the network.
Latent hypnozoites in the liver (that is, states i ∈ {1, . . . , k}) may either die
at rate μ, or shift to successive latency compartments at rate δ. This equates to
exponentially-distributed service times, with mean duration 1/(δ + μ), in each of
queues i ∈ {1, . . . , k}. A departure from queue i is routed to either queue D (repre-
senting hypnozoite death) with probability μ/(δ + μ); or queue (i + 1) (representing
progression to the next dormancy compartment) with probability δ/(δ + μ).

In contrast, non-latent hypnozoites (state NL) undergo death at rate μ, and
activation at rate α. As such, service times in queue NL are modelled to be
exponentially-distributed with mean 1/(α + μ), with departures routed either into
queue A (in which case hypnozoite activation has triggered a relapse) with probability
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α/(α + μ), or queue D (in which case the hypnozoite has died prior to activation)
with probability μ/(α + μ).

The clearance of each blood-stage infection is assumed to be independent, and
modelled to occur at some constant rate γ , amounting to exponentially-distributed
service times (with mean duration 1/γ ) in both queues A and P (representing relapses
and primary infections respectively).

To capture the boosting of immunitywith exposure,we assume that queue I receives
all departures from queues A and P (corresponding to cleared blood-stage infections);
that is, an immune boost of unit magnitude is acquired upon the clearance of each pri-
mary infection or relapse. To capture the waning of immune memory with time, we
assume that each immune boost is retained for an exponentially-distributed period of
timewithmean 1/w—coinciding precisely with the service time in queue I . The occu-
pancy of queue I therefore acts as a measure of within-host immunity. All departures
from queue I are routed to queue C , where they remain indefinitely.

In a natural generalisation of this queueing network, the stratification of blood-
stage infection and immunity into different compartments could allow us to capture
additional stages of the parasite lifecycle and further biological realism.

2.1.1 Modelling correlates of immunity

We can formulate correlates of immune protection as time-dependent functionals of
the state of the open network, with the host immunity level NI (t) mapped to the
degree of immune protection at time t . To preserve the independence structure of the
queueing network, however, these functionals cannot have any direct feedback into the
within-host model. This limits the forms of immunity that are analytically tractable
under our model.

A key assumption of the within-host model is that the arrival process is inde-
pendent of the state of the network. As such, we cannot capture pre-erythrocytic
immunity, which modulates the probability of successful mosquito-to-human trans-
mission, whereby the arrival process, comprising mosquito bites, would depend on
the occupancy NI (t) of node I . The assumption of independence between service
rates within each node and the state of queueing network is equally important. We are
thus unable to account for the potential modulation of (blood-stage) parasite clearance
rates—or equivalently, the service rate for nodes A and P—as a function of the host
immunity level NI (t), that is, the occupancy of node I . We could, however, introduce
deterministic time variation in the rate of clearance of blood-stage infection γ tomodel
age-related physiological factors.

Immune correlates that are amenable under our within-host framework include:

• The probability of exhibiting clinical symptoms or high-density parasitemia, as a
manifestation of antidisease immunity (Sect. 2.4).

• The probability of human-to-mosquito transmission when an uninfected mosquito
takes a bloodmeal from a blood-stage infected human host, as a measure of
transmission-blocking immunity (Sect. 2.5).

There is evidence to suggest that these forms of immunity are acquired on different
time scales. Transmission-blocking immune memory, for instance, is believed to be
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relatively short-lived,with boosting driven largely by successive blood-stage infections
in intervals of < 4 months (Gamage-Mendis et al. 1992); antidisease immunity, in
contrast, is believed to be more robust and longer-lived (Mueller et al. 2013). By
augmenting the rate of decay of the probability of symptomatic blood-stage infection
(antidisease) as a function of NI (t), relative to the probability of human-to-mosquito
transmission (transmission-blocking), we allow for strong antidisease protection to
develop more rapidly than transmission-blocking protection, and be maintained at
lower transmission intensities. Before discussing these immune correlates, however,
wederive an analytic expression for the distributionof the state of the queueingnetwork
at time t (Mehra et al. 2022).

2.2 Kolmogorov forward differential equations

Denote by Ns(t) the number of hypnozoites/infections in each state s ∈ S := Sh ∪ Sp
at time t and set

Hi1,...,ik ,iN L , j,k(t) = P(N1(t) = i1, . . . , Nk(t) = ik, NNL(t) = iN L ,

NA(t) + NP (t) = j, NI (t) = k).

Then by the Kolmogorov forward differential equations, the time evolution of the
state probabilities Hi1,...,ik ,iN L , j,k(t) is governed by the countable system of ODEs

dHi1 ,...,ik ,iN L , j,k

dt
= λ(t)

[
− Hi1 ,...,ik ,iN L , j,k (t) +

i1∑
�=0

1

ν + 1

( ν

ν + 1

)i1−�

H�,...,ik ,iN L , j−1,k (t)

]

︸ ︷︷ ︸
reinfection (geometric batch of hypnozoites + primary infection triggered)

+ μ

[
−

( k∑
�=1

i� + iN L

)
Hi1 ,...,ik ,iN L , j,k (t) +

k∑
�=1

(i� + 1)Hi1 ,...,i�−1 ,i�+1,i�+1 ,...ik ,iN L , j,k (t) + (iN L + 1)Hi1 ,...,ik ,iN L+1, j,k (t)

]

︸ ︷︷ ︸
death of a hypnozoite in the liver (latent or non-latent) prior to activation

+ δ

[
−

k∑
�=1

i�Hi1 ,...,ik ,iN L , j,k (t) +
k−1∑
�=1

(i� + 1)Hi1 ,...,i�−1 ,i�+1,i�+1−1,...ik ,iN L , j,k (t) + (ik + 1)Hi1 ,...ik+1,iN L−1, j,k (t)

]

︸ ︷︷ ︸
progression of a latent hypnozoite to the next latency compartment

+ α
[

− iN L Hi1 ,...,ik ,iN L , j,k (t) + (iN L + 1)Hi1 ,...,ik ,iN L+1, j−1,k (t)
]

︸ ︷︷ ︸
activation of a non-latent hypnozoite, triggering a relapse

+ γ
[

− j Hi1 ,...,ik ,iN L , j,k (t) + ( j + 1)Hi1 ,...,ik ,iN L , j+1,k−1(t)
]

︸ ︷︷ ︸
clearance of blood-stage infection + gain of immunity increment

+ w
[

− kHi1 ,...,ik ,iN L , j,k (t) + (k + 1)Hi1 ,...,ik ,iN L , j,k+1(t)
]

︸ ︷︷ ︸
waning of immune memory

. (1)

Consider a human population of fixed size PH , with each individual taken to be
immune- and infection-naive at time zero. In the absence of demography (that is,
human births and deaths), we can re-interpret the within-host PMF Hi1,...,ik ,iN L , j,k(t)
as the expected proportion of humanswith im hypnozoites in statem ∈ {1, . . . , k, NL};
a blood-stage infection comprising j parasite broods and having an immunity level k.
Equation (1) can therefore be viewed as governing the expected proportion of humans
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in each hypnozoite/infection/immunity state (Henry 2020). In Sect. 3.2, we will draw
on Eq. (1) to construct a hybrid transmission model, comprising a countably infinite
system of ODEs. Our aim in the present section, however, is to characterise the within-
host PMF Hi1,...,ik ,iN L , j,k(t). While the infinite-dimensional system of ODEs given by
Eq. (1) is difficult to solve, we can readily derive the joint PGF governing the state of
the network following similar reasoning to Mehra et al. (2022).

2.3 The joint PGF for the state of the network

Rather than solving Eq. (1) to yield the probability mass function (PMF) for the state
of the queue directly, we derive a joint PGF

E
[ ∏
s∈S

zNs (t)
s

]

=
∞∑

i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=0

∞∑
k=0

zi11 · · · · · zikk · ziN L
N L · z jAzkI · Hi1,...,ik ,iN L , j,k(t)

for the state of the network from first principles, using an argument which is an
extension of that in Mehra et al. (2022). Like the PMF, the PGF can be viewed as an
alternative way of characterising the time-dependent distribution of the network. A
description of the properties of PGFs can be found in Chapter XI of Feller (1968).
Under the assumption of geometrically-distributed batch arrivals, we can invert the
marginal PGF to recover PMFs for quantities of epidemiological interest, as discussed
in Mehra et al. (2022).

Treating the dynamics of each hypnozoite/infection to be independent (Harrison and
Lemoine 1981), we begin by characterising the probability mass function for a single
hypnozoite/primary infection that enters the network at time zero. Here, we extend the
activation-clearance model proposed by White et al. (2014)—and discussed in detail
in Mehra et al. (2020)—to allow for the clearance of blood-stage infection (which was
also examined in Mehra et al. (2022)) and the gain/loss of immunity (as introduced in
the present manuscript). To characterise hypnozoite dynamics, we consider the flow of
an arrival into either queue NL (for short-latency strains) or queue 1 (for long-latency
strains) through the queueing network shown in Fig. 1. Similarly, the dynamics of
each primary infection are described by the flow of an arrival into queue P through
the network.

Denote by ph,s(t) the probability that a hypnozoite established at time zero is in
compartment s ∈ Sh at time t . By the Kolmogorov forward differential equations, it
follows that

dph,1

dt
= −(δ + μ)ph,1(t) (2)

dph,�

dt
= −(δ + μ)ph,�(t) + δ ph,�−1(t) for � ∈ {2, . . . , k} (3)

dph,NL

dt
= −(α + μ)ph,NL(t) + δ ph,k(t) (4)
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dph,A

dt
= −γ ph,A(t) + α ph,NL(t) (5)

dph,I

dt
= −wph,I (t) + γ ph,A(t) (6)

dph,C

dt
= wph,I (t) (7)

dph,D

dt
= μ

( k∑
i=1

ph,i (t) + ph,NL(t)

)
(8)

with the initial condition

ph(0) =
{

(ph,1(0), . . . , ph,k(0), ph,NL (0), ph,A(0), ph,C (0), ph,D(0)) if k > 0

(ph,NL (0), ph,A(0), ph,C (0), ph,D(0)) if k = 0

=
{

(1, 0, . . . , 0, 0, 0, 0, 0) if k > 0

(1, 0, 0, 0) if k = 0
(9)

Following similar reasoning to Mehra et al. (2020, 2022), we can solve the system
of ODEs given by Eqs. (2)–(6) analytically; solutions are given in Eqs. (33) to (36) in
Appendix A. Since we do not require the distribution of dead hypnozoites or cleared
infections over time for further analysis presented, we do not provide solutions to the
ODEs (7) and (8).

Likewise, we can characterise the probabilistic time course for each primary infec-
tion. Denote by pp,s(t) the probability that a primary infection triggered at time zero
is in state s ∈ Sp at time t . We can solve the Kolmogorov forward equations

dpp,P
dt

= −γ pp,P (t)
dpp,I
dt

= −wpp,I (t) + γ pp,P (t)
dpp,C
dt

= wpp,I (t)

with initial condition

pp(0) = (pp,P (0), pp,I (0), pp,C (0)) = (1, 0, 0)

to yield

pp,P = e−γ t pp,I = γ

γ − w

(
e−wt − e−γ t

)

pp,C (t) = 1 − pp,P (t) − pp,I (t). (10)

Embedding these state probabilities in an epidemiological framework, as elucidated
in Mehra et al. (2022), the joint PGF for

N(t) = (N1(t), . . . , Nk(t), NNL(t), NA(t), ND(t), NI (t), NC (t), NP (t))
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is given by

G(t, z1, . . . , zk, zN L , zA, zD, zC , zI , zP ) := E
[ ∏
s∈S

zNs (t)
s

]

= exp

{
−

∫ t

0
λ(τ)

[
1 −

∑
s∈Sp zs · pp,s(t − τ)

1 + ν
(
1 − ∑

s∈Sh zs · ph,s(t − τ)
)
]
dτ

}
. (11)

In Mehra et al. (2022), we recovered analytic expressions for the distributions
of several biologically-relevant quantities—encompassing the size of the (non)-latent
hypnozoite reservoir; the number of parasite broods co-circulating in the bloodstream;
the relative contribution of relapses to the infection burden and the cumulative number
of recurrences (that is, primary infections and relapses) experienced over time—using
the joint PGF given by Eq. (11). Formulae relevant to the present manuscript are
recapitulated in Appendix B.

2.4 Antidisease immunity

While the number of broods co-circulating in the bloodstream at time t is given by
the total occupancy of nodes A and P , that is, NA(t)+ NP (t), a large proportion of P.
vivax infections in endemic settings are asymptomatic, with implications for treatment
and elimination strategies (Almeida 2018; Tadesse 2018; Ferreira 2022). The relative
burden of (a)symptomatic blood-stage infection, which is a function of antidisease
immunity, is therefore of epidemiological interest.

Conditional on the presence of blood-stage infection,we assume that the probability
of an individual exhibiting clinical symptoms decreases by a factor of pc for each
increment of immunity they harbour. As such, the probability of an individual with
state N(t) exhibiting clinical symptoms is given by

pclin(t) = pNI (t)
c · 1{NA(t)+NP (t)>0}.

Accounting for stochasticity in within-host hypnozoite and infection dynamics, the
probability of an individual exhibiting clinical symptoms at time t can be written

pclin(t) :=
∞∑

i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pkc Hi1,...,ik ,iN L , j,k(t)

= E
[
pNI (t)
c

∣∣NA(t) + NP (t) > 0
]

· P(
NA(t) + NP (t) > 0

)

= E
[
pNI (t)
c

]
− E

[
pNI (t)
c

∣∣NA(t) + NP (t) = 0
]

· P(
NA(t) + NP (t) = 0

)
(12)
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using the law of total expectation. Setting zi = 1 for i ∈ S\I in Eq. (11) to recover
the marginal PGF for NI (t), we can write

E
[
pNI (t)
c

]
= G(t, z1 = 1, . . . , zk = 1, zN L = 1, zA = 1, zD = 1, zC = 1, zI = pc, zP = 1).

(13)

ByXekalaki (1987),we can recover the unnormalisedPGF for NI (t), conditional on
the absence of blood-stage infection (that is, NA(t)+NP (t) = 0), byfirstly setting zi =
1 for i ∈ S\{A, P, I } in Eq. (11) (to recover the joint PGF for (NA(t), NP (t), NI (t)),
and then setting zA = zP = 0 (to exclusively consider the case NA(t) + NP (t) = 0),
yielding the expression

E
[
pNI (t)
c

∣∣NA(t) + NP (t) = 0
]

· P(
NA(t) + NP (t) = 0

)
= G(t, z1 = 1, . . . , zk = 1, zN L = 1, zA = 0, zD = 1, zC = 1, zI = pc, zP = 0).

(14)

Substituting Eqs. (13) and (14) into Eq. (12), we recover an expression for pclin(t)
as a function of the FORI λ(τ) in the interval τ ∈ [0, t):

pclin(t) = exp

{
−

∫ t

0
λ(τ)IM (τ )

[
1 − 1 − (1 − pc)pp,I (t − τ)

1 + ν(1 − pc)ph,I (t − τ)

]
dτ

}

− exp

{
−

∫ t

0
λ(τ)

[
1 − 1 − (1 − pc) · pp,I (t − τ) − pp,A(t − τ)

1 + ν(1 − pc)ph,I (t − τ) + ν ph,A(t − τ)
dτ

}

(15)

where we have used the joint PGF given by Eq. (11). In a similar vein, we can intro-
duce analogous models linking the probabilities of (sub)microscopic parasitemia and
detectability (through light microscopy versus rapid diagnostic tests versus qPCR
assays) to the immunity level NI (t).

2.5 Transmission-blocking immunity

Here, we propose a model for transmission-blocking immunity by introducing a
functional dependence between the probability of successful human-to-mosquito
transmission and the immune status of a blood-stage infected individual.

For an immune-naive, blood-stage infected individual, we set the probability of
successful human-to-mosquito transmission to be p0. We further assume that the
probability of successful human-to-mosquito transmission is reduced by a factor of
ptb ∈ [0, 1] for each increment of immunity. Suppose a mosquito takes a bloodmeal
from a human with state N(t) at time t . Conditional on the state of a human host
N(t), we thus define the probability of successful human-to-mosquito transmission
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ph→m(t) to be

ph→m(t) = p0 · pNI (t)
tb · 1{NA(t)+NP (t)>0}.

Under our stochastic epidemiological framework, following similar reasoning to
Sect. 2.4, we can recover the probability of successful human-to-mosquito transmis-
sion when a mosquito bites an individual at time t as a function of the FORI λ(τ) in
the interval τ ∈ [0, t)

ph→m(t) := p0

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbHi1,...,ik ,iN L , j,k

= p0
(
E

[
pNI (t)
tb

]
− E

[
pNI (t)
tb

∣∣NA(t) + NP (t) = 0
]

· P(
NA(t) + NP (t) = 0

))

= p0
[
G(t, z1 = 1, . . . , zk = 1, zN L = 1, zA = 1, zD = 1, zC = 1, zI = pc, zP = 1)

− G(t, z1 = 1, . . . , zk = 1, zN L = 1, zA = 0, zD = 1, zC = 1, zI = pc, zP = 0)
]

= p0

[
exp

{
−

∫ t

0
λ(τ)

[
1 − 1 − (1 − ptb)pp,I (t − τ)

1 + ν(1 − ptb)ph,I (t − τ)

]
dτ

}

− exp

{
−

∫ t

0
λ(τ)

[
1 − 1 − (1 − ptb) · pp,I (t − τ) − pp,A(t − τ)

1 + ν(1 − ptb)ph,I (t − τ) + ν ph,A(t − τ)
dτ

}]
. (16)

Note that Eq. (16) accounts for both the acquisition of immunity and the probability
of blood-stage infection.

The quantity ph→m(t) is of particular importance since it underpins the coupling
between host and vector dynamics; the time evolution of the expected number of
infected mosquitoes (and consequently, the FORI) is dependent only on ph→m(t)
and several (known) transmission parameters (see Sect. 3.1). Equation (16) will be of
particular use in Sect. 3.3, where we construct a reduced hybrid transmission model.

2.6 An illustrative sample path

A simulated sample path illustrating temporal variation in the relapse rate, superinfec-
tion status (that is, the number of co-circulating parasite broods in the bloodstream)
and immunity level, is shown in Fig. 2, as an extension of previous simulations pre-
sented in Mehra et al. (2021, 2022). We assume that the individual is both immune-
and infection-naive at time zero, and is subject to a constant FORI λ = 2 year−1. Each
bite is modelled to establish a geometrically-distributed batch of hypnozoites of mean
size ν = 6.4 (White et al. 2016), with activation rate α = 1/334 day−1 (White et al.
2014), death rate μ = 1/442 day−1 (White et al. 2014) and a long-latency character-
istic (k = 2, δ = 1/100 day−1). Each blood-stage infection is modelled to undergo
clearance at rate γ = 1/24 day−1 (White 2018b), and confer an immunity increment
of mean duration 1/w = 250 days with the probability of clinical infection decaying
geometrically by a factor of pc = 0.65 per immune increment.

Over the course of 10 years, the simulated individual is subject to 17 infective
mosquito bites (shownwith vertical dashed lines). The temporal variation in the relapse
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Fig. 2 Sample path, obtained through direct stochastic simulation, for an individual subject to a constant
FORI (λ = 2 year−1) over a period of 10 years. At time zero, the individual is immune-naive, and harbours
neither liver- or blood-stage infection. Each infective bite (indicated with a dashed vertical line) triggers a
primary infection, in addition to establishing a geometrically-distributed batch of hypnozoites in the liver,
with mean size ν = 6.4, as per White et al. (2016). We consider long-latency hypnozoites, with k = 2 and
δ = 1/100 day−1. Values for the hypnozoite activation α = 1/334 day−1 and death μ = 1/442 day−1

rates are drawn from White et al. (2014). Blood-stage infections (primary and relapse) are assumed to be
cleared at constant rate γ = 1/24 day−1, as per estimates fromWhite (2018b). Under the discretised model
of immunity, the lifetime of each immunity boost is assumed to be exponentially-distributed with mean
duration 1/w = 250 days, with the probability of clinical symptoms (conditional on the presence of blood-
stage infection) assumed to decrease by a factor of pc = 0.65 for each increment of immunity. A The rate
of relapse αNNL (t). B The number of parasite broods NA(t)+ NP (t) co-circulating in the bloodstream.C

The discretised immunity level NI (t). D The probability of clinical infection p
NI (t)
c 1{NA(t)+NP (t)>0}. E

The antibody level, as per the model introduced inMehra et al. (2021), whereby the clearance of each blood-
stage infection is associated with a unit boost of immunity that then decays exponentially (deterministically)
with rate 1/250 day−1

rate (Fig. 2A), which is proportional to the size of the non-latent hypnozoite reservoir,
arises from the interplay between hypnozoite replenishment (through mosquito inoc-
ulation) and clearance (through either activation or death). Blood-stage infections
include both primary infections (triggered immediately upon mosquito inoculation)
and relapses (triggered by hypnozoite activation), with temporally proximate rein-
fection and/or hypnozoite activation events yielding multiple blood-stage infections
(Fig. 2B). The discretised immunity level (shown in Fig. 2C) likewise fluctuates, with
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the clearance of each blood-stage infection eliciting a unit boost that is retained for an
exponentially-distributed period of time. The probability of clinical infection (which
serves as a correlate of antidisease immunity) decays geometrically with the discre-
tised immunity level (Fig. 2D). For comparison, in Fig. 2E, we illustrate the simplest
case of our previous (continuous) models of antibody dynamics (Mehra et al. 2021),
whereby the clearance of each blood-stage infection is associated with a unit boost
of immunity that decays exponentially (deterministically). Both the discrete (Fig. 2C)
and continuous (Fig. 2E) models of immunity yield qualitatively similar results in this
case.

3 Hybrid transmissionmodels: coupling expected host and vector
dynamics

We now construct hybrid transmission models (Nåsell 2013; Henry 2020) to couple
host and vector dynamics. To the best of our knowledge, these models are novel in
structure, in that hypnozoite densities, the multiplicity of blood-stage infection and an
immunity level are explicitly included in the state space.

We restrict our attention to a homogeneously mixing population of humans and
mosquitoes. While the size of the human population PH is taken to be fixed (with
no age structure), we allow for time-variation in the size of the mosquito population
(e.g. due to climactic variation or the implementation of vector-based control). Vector
dynamics are detailed in Sect. 3.1.

In Mehra et al. (2023), for a simpler model structure—accounting only for super-
infection and short-latency hypnozoite accrual—we began by constructing a Markov
population process (with countably many types) to couple host and vector dynamics.
Using the work of Barbour and Luczak (2012), we then recovered a deterministic (infi-
nite) compartmental model as a functional law of large numbers; that is, we showed
that the sample paths of the Markov process converged to a deterministic sample path
in the infinite population size limit, when the number of mosquitoes per human was
held fixed. We noted there, however, that an identical deterministic compartmental
model could be recovered under a “hybrid approximation”, whereby host and vec-
tor dynamics are coupled through expected values, as per the construction of Nåsell
(2013); Henry (2020). This hybrid construction is the focus of Sect. 3.2; by regarding
the within-host PMF as the expected population-level frequency distribution (Henry
2020), we recover a compartmental model (comprising an infinite-dimensional system
of ODEs) that can be viewed as natural extension of the Ross-Macdonald model to
allow for superinfection, hypnozoite accrual and immune acquisition. We characterise
endemic equilibria for this compartmental model by drawing on results derived at the
within-host level (Sect. 3.2.1), before performing a sensitivity analysis (Sect. 3.2.2).

To characterise the transient dynamics of the hybridised system, we adopt the
strategy we introduced in Mehra et al. (2023). Specifically, we collapse the infinite-
dimensional compartmental model into a reduced system of IDEs—with a set of ODEs
governing the time evolution of the number of (un)infected and latent mosquitoes
over time; and an integral equation governing the (transmission-blocking) immunity-
modulated probability of successful human-to-mosquito tranmsmission (Sect. 3.3).
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Based on the time evolution of the number of infected mosquitoes under the reduced
system of IDEs, we can recover population-level distributions for several quantities
of epidemiological interest using our derived within-host distributions.

3.1 Vector dynamics: birth, death and infectivity

Here, we characterise the dynamics of the vector population. We assume mosquito-
dynamics are described by a Markovian birth-death process, whereby:

• Mosquito births follow a time-dependent rate ω(t) (reflecting, for instance, cli-
mactic variation)

• Mosquito lifetimes are exponentially-distributed with mean duration 1/g;
• Each mosquito bites humans (within a population of fixed size PH ) at a potentially
time-varying rate β(t) (reflecting, for instance, the relaxation/intensification of
vector-based control measures);

• Following successful human-to-mosquito transmission (due to a bloodmeal from
a blood-stage infected human), a mosquito undergoes sporogony (that is, the
development of ingested malaria parasites into sporozoites that can be transmitted
onwards to other humans) at rate η;

• After sporogony has occured, a mosquito remains infective to humans until death.

Amosquito that is undergoing sporogony following successful human-to-mosquito
transmission is hereafter considered to be latent.

Denote by IM (t), LM (t), UM (t) the expected number of infected, latent and unin-
fected mosquitoes respectively at time t . By the Kolmogorov forward differential
equations for the Markovian birth-death process governing the vector population (see
Appendix C for details), we obtain the system of coupled ODEs

d IM
dt

= ηLM (t) − gIM (t) (17)

dLM

dt
= β(t)ph→m(t)UM (t) − (g + η)LM (t) (18)

dUM

dt
= ω(t)

[
IM (t) + LM (t) +UM (t)

] − [
β(t)ph→m(t) + g

]
UM (t) (19)

governing the time evolution of IM (t), LM (t), UM (t) as a function of the probability
of human-to-mosquito transmission ph→m(t) per bloodmeal.

3.2 A countable system of ODEs

Under a hybrid approximation, we seek to couple expected host and vector dynamics
(Nåsell 2013; Henry 2020). Here, we recall two key observations:

• As we noted in Sect. 2.2, for a human population of fixed size PH , the system
of ODEs given by Eq. (1) governs the expected proportion of humans in each
hypnozoite/infection/immunity state as a function of the FORI (Henry 2020).
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• The time evolution of the expected number of (un)infected mosquitoes in the
population is governed by Eqs. (17) and (19) conditional on the probability of
successful human-to-mosquito transmission per bloodmeal.

To construct a hybrid transmission model, as per the approach of Nåsell (2013),
it remains to characterise the FORI, and the probability of human-to-mosquito trans-
mission.

We assume that mosquito-to-human transmission occurs with fixed probability
pm→h when a human is bitten by an infected mosquito. As a function of the number
of infected IM (t) mosquitoes over time, the FORI can therefore be written

λ(t) = β(t)pm→h IM (t)

PH
. (20)

Likewise, as a function of the proportion of humans Hi1,...,ik ,iN L , j,k(t) with i� hyp-
nozoites in state � ∈ {1, . . . , k, NL}; j co-circulating broods in the bloodstream; and
immunity level k at time t , the probability of successful human-to-mosquito transmis-
sion ph→m(t) can be written

ph→m(t) = p0

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbHi1,...,ik ,iN L , j,k(t)

as per the model of transmission-blocking immunity detailed in Sect. 2.5.
Then following a similar approach to Nåsell (2013), we recover the countable

system of ODEs

dHi1,...,ik ,iN L , j,k

dt
= β(t)pm→h

IM (t)

PH

[
− Hi1,...,ik ,iN L , j,k(t) +

i1∑
�=0

1

ν + 1

( ν

ν + 1

)i1−�

H�,...,ik ,iN L , j−1,k(t)

]

+ μ

[
−

( k∑
�=1

i� + iN L

)
Hi1,...,ik ,iN L , j,k(t) +

k∑
i=1

(i� + 1)Hi1,...,i�−1,i�+1,i�+1,...ik ,iN L , j,k(t)

+ (iN L + 1)Hi1,...,ik ,iN L+1, j,k(t)

]

+ δ

[
−

k∑
�=1

i�Hi1,...,ik ,iN L , j,k(t) +
k−1∑
i=1

(i� + 1)Hi1,...,i�−1,i�+1,i�+1−1,...ik ,iN L , j,k(t)

+ (ik + 1)Hi1,...ik+1,iN L−1, j,k(t)

]

+ α
[

− iN L Hi1,...,ik ,iN L , j,k(t) + (iN L + 1)Hi1,...,ik ,iN L+1, j−1,k(t)
]

+ γ
[

− j Hi1,...,ik ,iN L , j,k(t) + ( j + 1)Hi1,...,ik ,iN L , j+1,k−1(t)
]

+ w
[

− kHi1,...,ik ,iN L , j,k(t) + (k + 1)Hi1,...,ik ,iN L , j,k+1(t)
]

(21)

d IM
dt

= ηLM (t) − gIM (t) (22)

dLM

dt
= β(t)p0

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbHi1,...,ik ,iN L , j,k(t)UM (t) − (g + η)LM (t) (23)
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Fig. 3 Schematic of hybrid transmission model structure, predicated on the coupling of expected host
and vector dynamics (Nåsell 2013; Henry 2020). Here, the probabilistic distribution of the open network of
infinite server queues governingwithin-host dynamics (Sect. 2.1) is re-interpreted as the expected proportion
of humans in each hypnzoite/superinfection/immunity state. The coupling of host and vector dynamics
is predicated on the force of reinfection λ(t) (Eq. (20)), which is a function of the number of infected
mosquitoes at time t ; and the probability of successful human-to-mosquito transmission ph→m (t) per
bloodmeal (Eq. (16)),which ismodulated both by the prevalence of blood-stage infection and the distribution
of immunity in the human population at time t

dUM

dt
= ω(t)(IM (t) + LM (t) +UM (t))

−
(
g + β(t)p0

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbHi1,...,ik ,iN L , j,k(t)

)
UM (t), (24)

where we have used Eqs. (1) and (17)–(20). A schematic of this model is provided in
Fig. 3.

Equations (21) and (24) could also have been written down as a deterministic com-
parmental model, representing a natural extension of the Ross-Macdonald framework
to allow for hypnozoite accrual, superinfection and transmission-blocking immunity.
In the special case of short-latency strains (k = 0) with no transmission-blocking
immunity (ptb = 1); no time variation in the vector parameters β(t) = β and
ω(t) = ω; and instantaneous sporogony (that is, in the limit η → ∞), our model
structure collapses down to the simpler model developed in Mehra et al. (2023). We
can also view Eqs. (21) and (24) as an extension of the transmission model proposed
by White et al. (2014) to allow for long-latency hypnozoites, immunity and explicit
superinfection dynamics (as opposed to the approximation of superinfection through
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Table 1 Summary of model parameters

Parameter Interpretation Value Source

α Hypnozoite activation rate 1/334 day−1 White et al. (2014)

μ Hypnozoite death rate 1/442 day−1 White et al. (2014)

δ Rate of progression through hypnozoite latency
compartments

1/100 day−1 Assumed

k Number of hypnozoite latency compartments 0, 1, 2 Assumed

ν Mean number of hypnozoites established per bite 6.4 White et al. (2016)

γ Rate at which each blood-stage infection is cleared 1/24 day−1 White (2018b)

w Rate at which each immune increment/boost is lost 1/250 day−1 Assumed

pc Factor by which the probability of clinical/symptomatic
blood-stage infectiondecreases per unit level of immunity

Various Assumed

p0 Probability of human-to-mosquito transmission when a
mosquito bites a blood-stage infected, immune-naive
human

0.25, 0.65 Assumed

ptb Factor by which the probability of human-to-mosquito
transmission decreases per unit level of immunity when
a mosquito bites a blood-stage infected human

0.9 Assumed

ph→m (t) Probability of human-to-mosquito transmission when an
uninfected mosquito takes a bloodmeal at time t

Calculated Eq. (16)

pm→h Probability of mosquito-to-human transmission when an
infected mosquito bites a human

0.25 White (2018a)

β(t) Bite rate per mosquito 0.21 day−1 Garrett-Jones (1964)

g Mosquito death rate 0.1 day−1 Gething et al. (2011)

ω(t) Mosquito birth rate at time t Various Assumed

1/η Mean duration of sporogony 12 days Gething et al. (2011)
PM
PH

Ratio of mosquito and human population size
assuming ω(t) = g

1.2 Assumed

λ(t) Force of reinfection (FORI) at time t Calculated Eq. (20)

Source values for parameters have been provided where possible, but we have assumed some values other-
wise

an appropriate recovery rate). A summary of model parameters, and their respective
interpretations, is provided in Table 1.

3.2.1 The stationary solution

Here, we seek to characterise steady state solutions to the system of ODEs given by
Eqs. (21)–(24). As such, we restrict ourselves to a setting where:

• The bite rate per mosquito β(t) = β remains constant over time; and
• The mosquito population size IM (t) + LM (t) +UM (t) = PM is fixed, that is, the
birth rate ω(t) = g exactly balances the (constant) death rate.

Denote by H∗
i1,...,ik ,iN L , j,k , U

∗
M , L∗

M I ∗
M the stationary solution to the system of

IDEs given by Eqs. (21) to (24), recovered by setting all time derivatives to zero.
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We focus on the quantities H∗
i1,...,ik ,iN L , j,k and I ∗

M since the overarching effect of
sporogony is to introduce a scaling factor η/(g + η) in the fraction of mosquitoes
that, in the event of successful mosquito-to-human transmission, survive latency to
transition from an uninfected to infected state. Setting the time derivative in Eq. (22)
to zero and using the assumption that the mosquito population size is fixed, we can
formulate the number of latent L∗

M and uninfected U∗
M mosquitoes at steady state as

functions of I ∗
M and PM :

L∗
M = g

η
I ∗
M U∗

M = PM −
(
1 + g

η

)
I ∗
M .

We observe that the disease (and immunity) free equilibrium H∗
0,...,0,0,0,0 =

1, I ∗
M = 0 always exists. Here, we seek to characterise the existence of endemic

equilibrium solutions.
We begin by setting the time derivatives in Eqs. (22) and (24) to zero to yield

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbH
∗
i1,...,ik ,iN L , j,k = gI ∗

M

β p0
( PM
1+g/η − I ∗

M

) . (25)

We then note that Eq. (21) is precisely the set of Kolmogorov forward differential
equations for the open network of infinite server queues introduced in Sect. 2. The
PGF for the stationary limiting distribution of this queueing network, given a constant
FORI λ(t) = β pm→h I ∗

M/PH , can be recovered by taking the limit t → ∞ in Eq. (11).
Therefore, using Eq. (16)—which we derived from Eq. (11) in Sect. 2.5—it must be
the case that

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbH
∗
i1,...,ik ,iN L , j,k

= p0

(
exp

{
− β pm→h I ∗

M

PH

∫ ∞

0

[
1 − 1 − (1 − ptb)pp,I (τ )

1 + ν(1 − ptb)ph,I (τ )

]
dτ

}

− exp

{
− β pm→h I ∗

M

PH

∫ ∞

0

[
1 − 1 − (1 − ptb) · pp,I (τ ) − pp,A(τ )

1 + ν(1 − ptb)ph,I (τ ) + ν ph,A(τ )
dτ

})
.

(26)

Using a simple geometric argument (Appendix D), we can show that Eqs. (25) and
(26) have at most one non-zero intersection (corresponding to an endemic equilibrium
solution), and that this intersection exists if and only if

R2
0 := β2 p0 pm→h PM

g(1 + g/η)PH∫ ∞

0

[
1 − (1 − ptb)pp,I (τ )

1 + ν(1 − ptb)ph,I (τ )
− 1 − (1 − ptb) · pp,I (τ ) − pp,A(τ )

1 + ν(1 − ptb)ph,I (τ ) + ν ph,A(τ )

]
dτ > 1.

(27)
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The bifurcation parameter R2
0 is amenable to interpretation. Denote by Th→m

the total expected duration of transmissible blood-stage infection following a given
mosquito bite, allowing for the contribution of both relapse and primary infection, and
the progressive acquisition of transmission-blocking immunity attributable to the bite
itself. In Appendix D.1, we show that

Th→m = p0

∫ ∞

0

[
1 − (1 − ptb)pp,I (τ )

1 + ν(1 − ptb)ph,I (τ )
− 1 − (1 − ptb) · pp,I (τ ) − pp,A(τ )

1 + ν(1 − ptb)ph,I (τ ) + ν ph,A(τ )

]
dτ.

Therefore, using Eq. (27), we can write the quantity R2
0 in the form

R2
0 =

contribution of mosquito-to-human transmission︷ ︸︸ ︷
β pm→h︸ ︷︷ ︸

mosq-to-human
bite rate

· η

η + g︸ ︷︷ ︸
prob of surviving

sporogony

· 1

g︸︷︷︸
duration of
infectivity

·

contribution of human-to-mosquito transmission︷ ︸︸ ︷
β
PM
PH︸ ︷︷ ︸

human-to-mosq
bite rate

· Th→m︸ ︷︷ ︸
expected duration of

human-to-mosq transmissible
infection per bite

as a product of interpretable components. The quantity R0 is thus a reproduction
number (Diekmann et al. 1990; Mehra et al. 2023).

Assuming that R0 > 1 (Eq. (27)), an endemic equilibrium solution necessarily
exists. As a function of the FORI λ∗ = β pm→h I ∗

M/PH at the endemic equilibrium,
which, in turn, is a function of the non-trivial solution I ∗

M ∈ (0, PM ] to Eqs. (25) and
(26), we can recover population-level distributions for various quantities of epidemi-
ological interest using the stationary limiting PGF recovered by setting λ(t) = λ∗ for
all t ≥ 0 and taking the limit t → ∞ in Eq. (11). Relevant formulae (based on the
derivations presented in Mehra et al. (2022)) are provided in Appendix B.

3.2.2 Sensitivity analysis for endemic equilibrium solutions

We now perform a sensitivity analysis for the endemic equilibrium solutions. In
Sect. 3.2.2.1, we examine endemic equilibrium solutions in the absence of immunity.
Endemic equilibria, allowing for transmission-blocking and antidisease immunity, are
detailed in Sect. 3.2.2.2.

3.2.2.1 Short-latency vs long-latency strains in the absence of transmission-
blocking immunity We begin by examining steady state solutions for both short-
latency (k = 0) and long-latency (k > 0) strains in the absence of transmission-
blocking immunity (ptb = 1).

Figure4A depicts a sensitivity analysis for the bifurcation parameter R0 (Eq. (27))
as a function of the hypnozoite activation α, death μ and latency k parameters, with
the other parameter values given in Table 1. Recall that an endemic equilibrium exists,
and is unique, if R0 > 1; if R0 < 1, only the disease-free equilibrium exists. The
bifurcation boundary R0 = 1 for parameters (α, μ) is shown in white in Fig. 4A.
In the absence of hypnozoite accrual (ν = 0), no endemic equilibria exist for the
set of transmission parameters considered here; the existence of endemic equilibrium
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Fig. 4 Three-way sensitivity analysis (with respect to μ, α and k) for steady state solutions solutions in
the absence of transmission-blocking immunity (ptb = 1) for both short-latency (k = 0) and long-latency
(k > 0) strains. We fix p0 = 0.25 and parameters γ, ν, g = ω(t), β, pm→h , PM/PH as per Table 1. A
Sensitivity analysis for R0 (Eq. (27)). Here, we consider μ ∈ [0, 0.015) day−1 and α ∈ [0, 0.08) day−1,
each in increments of 0.00055day−1; and k = 0, 1, 2,whilefixing δ = 1/100day−1.Values ofμ considered
in B are indicated with dashed horizontal lines. B Sensitivity analysis for (B1) the number of co-circulating
parasite broods (Eqs. (39)–(41)); and (B2) the relapse rate conditional on superinfection status (Eqs. (44)–
(47)) at the endemic equilibriumsolution. The prevalence of blood-stage infection and the number of infected
mosquitoes I∗M at the endemic equilibrium are given by the non-trivial solution to Eqs. (26) and (25) (which
exists, and is unique, iff R0 > 1); endemic equilibrium solutions for quantities of epidemiological interest
are recovered as functions of I∗M . Here, we consider μ ∈ {0, 0.0011, 0.0022, 0.0044} day−1; α ∈ [0, 0.08)
day−1 in increments of 0.00055 day−1; and k = 0, 1, 2, while fixing δ = 1/100 day−1

solutions is therefore contingent on the relapse burden. The interplay between hyp-
nozoite activation α and death μ rates governs the expected number of relapses per
bite να/(α + μ) (White et al. 2014). As such, when the hypnozoite activation rate α

is low relative to the hypnozoite death rate μ, there are insufficient relapses to sustain
transmission and no endemic equilibrium solution exists, that is, R0 < 1 (Fig. 4A).

In the case of short-latency strains (k = 0), we further observe that excessively
high activation rates α preclude the existence of endemic equilibrium solutions (that
is, yield R0 < 1) (Fig. 4A); similar observations have been posited by White et al.
(2016) and Anwar et al. (2022), albeit in the absence of superinfection. Without an
enforced dormancy period, an elevated activation rate α gives rise to a high risk of
relapse immediately after each infective bite. The rapid depletion of the hypnozoite
reservoir following each bite—driven by temporally proximate hypnozoite activation
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events—leads to a divergence in relapse risk conditional on status of blood-stage
(super)infection (Fig. 4B2). To justify why a high relapse rate for (blood-stage) super-
infected individuals is a weaker driver of onward transmission than a high relapse rate
for blood-stage uninfected individuals, we observe that the expected time to clearance
for j parasite broods is γ (1 + 1/2 + · · · + 1/ j); as such, an additional relapse for
an individual with m pre-existing broods in their bloodstream increases the expected
time to (blood-stage) recovery by an increment of γ /(m+1). We deduce that the strat-
ification of relapse risk, conditional on the status of blood-stage infection, is driven
by the time to the most recent infective bite in the case of fast-activating short-latency
hypnozoites: while recently-inoculated individuals experience a high burden of both
liver- and blood-stage infection, there is a limited burden of liver- and blood-stage
infection between successive mosquito bites, yielding a population-level reduction in
the overall burden of blood-stage infection (Fig. 4B1). Hence, for elevated activation
rates α, there is a limited window of time following each infective bite for which
an individual remains blood-stage infected, and therefore infective to mosquitoes; if
the activation rate α is sufficiently high, then these windows of human-to-mosquito
infectivity may be insufficient to sustain transmission in the steady state, in which case
R0 < 1 and no endemic equilibrium solution exists (Fig. 4A).

For long-latency strains (k > 0), stochasticity in the enforced dormancy period pre-
vents excessive overlap between hypnozoite activation events arising from the same
bite, thereby reducing the sensitivity of the endemic equilibrium burden of blood-
stage infection to elevated hypnozoite activation rates α (Fig. 4B1). Decreasing the
variance of the dormancy period k/δ2, whilst fixing the expected duration k/δ, would
presumably increase the sensitivity of endemic equilibria to the hypnozoite activation
rate α, since hypnozoites would be more likely to emerge from dormancy at simi-
lar times. We observe that the assumption of independent dormancy, introduced in
Mehra et al. (2020), underpins this observation for long-latency strains; the collective
dormancy assumption of White et al. (2014)—whereby synchronicity in the latency
phase means that hypnozoites established through the same infective bite emerge col-
lectively fromdormancy—leads to greater sensitivity of endemic equilibrium solutions
to elevated hypnozoite activation rates α. Indeed, under a ‘binary’ hypnozoite model
predicated implicitly on the assumption of collective dormancy, White et al. (2016)
predict stronger constraints on the hypnozoite activation rate α than we predict in
Fig. 4 under the assumption of independent dormancy.

Elevated hypnozoite activation rates α, however, give rise to a stratification of
relapse risk by superinfection status, even in the case of long-latency strains (k >

0) (Fig. 4B2). In the absence of hypnozoite death (that is, μ = 0), the burden of
blood-stage infection at the endemic equilibrium is maximised for low hypnozoite
activation rates α (Fig. 4B1), which yield broad temporal relapse distributions for
each infective bite, and a population-level relapse risk that does not vary strongly by
superinfection status (Fig. 4B2). For non-zero death ratesμ > 0, however, hypnozoite
death during the enforced dormancy period—during which activation is prohibited—
serves as a key constraint. As such, elevated activation rates α (up to a point) yield an
increasing burden of blood-stage infection for long-latency strains (k > 0, Fig. 4B1),
even as the risk of relapse stratified by superinfection status becomesmore unbalanced
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Fig. 5 Endemic equilibrium solutions for for short-latency strains (k = 0) allowing for transmission-
blocking immunity (0 < (1 − ptb) ≤ 1). We fix p0 = 0.65 and parameters α, μ, γ , ν, g = ω(t), β,
pm→h , PM/PH as per Table 1. The probability of human-to-mosquito transmission (per bloodmeal) and
the number of infected mosquitoes I∗M at the endemic equilibrium are given by the non-trivial solution to
Eqs. (26) and (25) (which exists, and is unique, iff R0 > 1). Endemic equilibrium solutions for quantities
of epidemiological interest are recovered as functions of I∗M . A Two-way sensitivity analysis (with respect
to (1− ptb) and w) for A1 prevalence of blood-stage infection (Eq. (39)) and A2 the mean immunity level
(Eq. (48)) at the endemic equilibrium. Here, we consider w ∈ [0.001, 0.02) day−1 in increments of 0.001
day−1 and (1− ptb) ∈ [0, 1) in increments of 0.005. B One-way sensitivity analysis (with respect to ptb)
for the number of co-circulating parasite broods in the bloodstream (Eqs. (39)–(41)), with w = 1/250
day−1 fixed and (1 − ptb) ∈ [0, 1) in increments of 0.005. C Two-way sensitivity analysis (with respect
to ptb and pc) for the prevalence of clinical infection (Eq. (15)) at the endemic equilibrium, where we
consider (1 − ptb) ∈ [0, 1) in increments of 0.005 and pc ∈ [0.5, 1) in increments of 0.025.

and proportionately higher for individuals with pre-existing blood-stage infections
(Fig. 4B2).

3.2.2.2 Short-latency strains with transmission-blocking immunity We now
performa sensitivity analysis for endemic equilibrium solutions allowing for the acqui-
sition of transmission-blocking and antidisease immunity (Fig. 5). Here, we restrict
ourselves to short-latency strains (k = 0). For a fixed set of hypnozoite activation and
death rates (α, μ), long-latency strains (k > 0) yield similar qualitative patterns as a
function of the immunity parameters w, ptb and pc. In the absence of transmission-
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blocking and clinical immunity (that is, ptb = pc = 1), we revert to the setting
examined in Sect. 3.2.2.1; we highlight this case with closed circles in Fig. 5.

A two-way sensitivity analysis, with respect to parameters w and (1 − ptb), is
shown in Fig. 5A, with remaining parameter values detailed in Table 1. Recall that the
probability of human-to-mosquito transmission (when an uninfected mosquito takes a
bloodmeal from a blood-stage infected human) decays geometrically, with factor ptb,
as a function of an individual’s immunity level (Sect. 2.5); since protection rises as
ptb → 0, we think of (1 − ptb) as a transmission-blocking protection parameter. In
contrast, the parameter 1/w governs the time scale forwhich immunity is retained,with
the limiting casew = 0 corresponding to a scenario where immunity is never lost. The
endemic equilibrium prevalence of blood-stage infection (Fig. 5A1) decreases both as:

• immunity becomes longer-lived (that is, w → 0), whereby a larger subset of an
individual’s infection history is expected to contribute to their current immunity
level; and

• the protective effect associated with each cleared blood-stage infection is aug-
mented (that is, (1 − ptb) → 1).

Mitigation of the blood-stage infection burden in light of transmission-blocking immu-
nity, however, necessarily limits exposure; reductions in the prevalence of blood-stage
infection are therefore accompanied by reductions in the population-level distribution
of immunity. Themean immunity level at the endemic equilibrium thereforedecreases,
even as the rate of immune decay w decreases, and immunity accrues over a larger
time scale (Fig. 5A2). Likewise, augmenting the transmission-blocking effect of each
immunity increment (1 − ptb)—whereby the probability of human-to-mosquito is
suppressed strongly, even at low immunity levels—leads to a reduction in the mean
immunity level at the endemic equilibrium (Fig. 5A2).

In particular, we see a substantially reduced burden of (blood-stage) superinfec-
tion at the endemic equilibrium as the transmission-blocking effect of each immune
increment (1 − ptb) increases (Fig. 5B). The suppression of superinfection explains
the stronger decay in the mean immunity level (Fig. 5A2), relative to the prevalence of
blood-stage infection (Fig. 5A1), as the transmission-blocking protection parameter
(1 − ptb) is strengthened: since the clearance of each primary infection and relapse
yields an immunity boost, irrespective of temporal overlap with other blood-stage
infections, superinfection is an important driver of acquired immunity.

We also observe a trade-off between transmission-blocking and antidisease immu-
nity. Themitigation of transmission as the transmission-blocking protection parameter
(1 − ptb) is augmented leads to a lower population-level distribution of immunity at
the endemic equilibrium (Fig. 5A2). If the distribution of immunity at the endemic
equilibrium is sufficiently reduced, then an increasingly strong transmission-blocking
effect per immune increment (1− ptb) can give rise to an increasing prevalence of clin-
ical infection at the endemic equilibrium (Fig. 5C), even as the burden of blood-stage
infection continues to decline (Fig. 5B).
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3.3 A reduced system of IDEs to study transient behaviour

Thehybrid transmissionmodel givenbyEqs. (21)–(24) yields population-level dynam-
ics of superinfection, the hypnozoite reservoir and acquired immunity. However, the
countable system of ODEs given by Eqs. (21)–(24) is not necessarily readily amenable
to numerical solution; truncating the system at reasonable endpoints could yield thou-
sands of coupled ODEs, since the size of the hypnozoite reservoir (and, by extension,
the immunity level) could reasonably be expected to range up to 30 in moderate to
high transmission settings (see Figure 4 of White et al. (2014) and Figure 6 of Anwar
et al. (2022)).

Here,we propose a reduced systemof integrodifferential equations (IDEs) to couple
host and vector dynamics, following the approach detailed in Mehra et al. (2023). In
particular, we observe that:

• The dependence of the human population on vector dynamics can be distilled
into the FORI, which is proportional to the number of infected mosquitoes in the
population IM (t) (see Eq. (20)).

• The dependence of the vector population on the state of the human population
can be distilled into the probability of successful human-to-mosquito transmission
ph→m(t)when an uninfectedmosquito bites any human in the population; note that
the quantity ph→m(t) accounts for both the prevalence of blood-stage infection and
the distribution of (transmission-blocking) immunitywithin the human population.

At time t = 0,wemake the assumption that each individual in the human population
(of fixed size PH ) has immunity level zero; carries no hypnozoites; and harbours no
ongoing blood-stage infections, whereby ph→m(0) = 0. As such, we consider the
introduction of a number of infected mosquitoes into an otherwise infection- and
immune-naive human population.

Recall from Sect. 2.5 that

ph→m(t) = p0

∞∑
i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=1

∞∑
k=0

pktbHi1,...,ik ,iN L , j,k(t)

where the population-level proportions Hi1,...,ik ,iN L , j,k(t) satisfy Eq. (21), which
constitutes the Kolmogorov forward differential equation for the queueing network
analysed in Sect. 2. Under the initial condition

H0,...,0,0,0,0(0) = 1, Hi1,...,ik ,iN L , j,k(0) = 0 for all i1 + · · · + ik + iN L + j + k > 0,
(28)

given a time-varying function λ(t) := β(t)pm→h IM (t)/PH , the integral expression
given by Eq. (16) constitutes the time-dependent state distribution that satisfies the
Kolmogorov forward differential Eqs. (21). Rather than monitoring the time evolution
of the population-level proportions Hi1,...,ik ,iN L , j,k(t), we can directly substitute the
weighted sum pm→h(t) into Eqs. (23) and (24) to collapse the countable system of
ODEs given by Eqs. (21) to (24) into a reduced system of IDEs.
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We can motivate this construction under a hybrid approximation as follows. As a
function of the FORI, the probability of successful human-to-mosquito transmission
ph→m(t) is governed by Eq. (16). Likewise, as a function of the probability of suc-
cessful human-to-mosquito transmission ph→m(t) per bloodmeal, the time evolution
of the expected number of infected mosquitoes over time IM (t) is governed by the
coupled system of ODEs given by Eqs. (22) to (24), which also captures the time
evolution of the expected number of latent LM (t) and uninfected UM (t) mosquitoes
over time.

Coupling expected host and vector dynamics under a hybrid approximation thus
yields the system of IDEs

d IM
dt

= ηLM (t) − gIM (t) (29)

dLM

dt
= β(t)ph→m(t)UM (t) − (g + η)LM (t) (30)

dUM

dt
= ω(t)

[
IM (t) + LM (t) +UM (t)

] − [
g + β(t)ph→m(t)

]
UM (t) (31)

ph→m(t) = p0

(
exp

{
−

∫ t

0
β(τ)pm→h

IM (τ )

PH

[
1 − 1 − (1 − ptb)pp,I (t − τ)

1 + ν(1 − ptb)ph,I (t − τ)

]
dτ

}

− exp

{
−

∫ t

0
β(τ)pm→h

IM (τ )

PH

[
1 − 1 − (1 − ptb) · pp,I (t − τ) − pp,A(t − τ)

1 + ν(1 − ptb)ph,I (t − τ) + ν ph,A(t − τ)
dτ

})

(32)

with initial condition IM (0), LM (0),UM (0) ≥ 0, where we have used Eqs. (16) and
(22)–(24). Recall that

• ph,A(x) denotes the probability that a hypnozoite has activated to give rise to a
relapse that is ongoing time x after inoculation (Eq. (35));

• ph,I (x) denotes the probability that immune memory has been gained (following
the clearance of a relapse) time x after a hypnozoite is established in the liver
(Eq. (36));

• pp,A(x) denotes the probability that a primary infection is ongoing time x after
onset (Eq. (10));

• pp,I (x) denotes the probability that immune memory has been gained time x after
the onset of a primary infection (Eq. (10)).

Interpretations for each transmission/within-host parameter are detailed in Table 1.
The system of IDEs given by Eqs. (29)–(32) couples the expected host and vector

dynamics, whilst concurrently capturing the accrual of the hypnozoite reservoir (either
short- or long-latency strains); superinfection; transmission-blocking immunity and
fluctuations in the mosquito population size (due to seasonality or the implementation
of vector-based control measures). Given the human population is both immune- and
infection-naive at time zero (initial condition (28)), the time evolution of the FORI and
the probability of human-to-mosquito transmission per bloodmeal are the same under
the system of IDEs given by Eqs. (29)–(32), and the countable system of ODEs given
by Eqs. (21)–(24). In the absence of time variation in the mosquito bite β(t) = β

and death ω(t) = ω rates, the bifurcation parameter R0 (Eq. (27)) governing the
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existence of endemic equilibria, and the stationary solutions to the system of ODEs
given by Eqs. (21)–(24), therefore also apply to the reduced system of IDEs given by
Eqs. (29)–(32).

While the quantities IM (t), LM (t), UM (t) and ph→m(t) are sufficient to couple
host and vector dynamics, we ultimately seek to characterise population-level distri-
butions for quantities of epidemiological interest. We note, however, that the complete
population-level distribution of superinfection, immunity and hypnozoite states can be
recovered conditional on the FORI using the results derived in Mehra et al. (2022). To
reiterate the premise of the hybrid approximation, the population-level transmission
models discussed here have been constructed by regarding thewithin-host probabilistic
distribution as being the same as the population-level frequency distribution (Henry
2020). Given the time evolution of the FORI λ(t) = β(t)pm→h IM (t)/PH derived
from the system of IDEs given by Eqs. (29)–(32), we can recover population-level
distributions for quantities of epidemiological interest using the formulae derived in
Mehra et al. (2022). Granted the human population is initially infection- and immune-
naive, the time evolution of these population-level distributions will be the same under
the countable system of ODEs given by Eqs. (21)–(24), and the reduced system of
IDEs given by Eqs. (29)–(32), since the time evolution the FORI itself is the same
under this initial condition.

Themethodology adoptedhere uses an integral system,withinwhichwecan enforce
time-dependence in the bite rate per mosquito β(t) and the mosquito birth rateω(t). In
Sect. 3.3.1 below, we present illustrative results for two scenarios: a constant transmis-
sion setting, where all transmission parameters are fixed (Sect. 3.3.1.1); and a seasonal
transmission setting, with a sinusoidal mosquito birth rateω(t) (Sect. 3.3.1.2). Vector-
based control interventions represent a natural extension (Le Menach et al. 2007;
Griffin 2010; White 2018a), but are not presented here.

3.3.1 Illustrative results for the reduced system of IDEs

To recover transient host and vector dynamics, we solve the system of IDEs given
by Eqs. (29) and (32) numerically, using Euler’s method (for the ODEs given by
Eqs. (29)–(31)) and the trapezoidal rule (for the integral given by Eq. (32)) with a
fixed time step; this procedure is a variation of the algorithm proposed by Anwar et al.
(2022). As a function of the FORI derived from Eqs. (29) and (32), we recover the
time evolution of several quantities of epidemiological interest. Relevant formulae (as
per (Mehra et al. (2022)) are provided in Appendix B, including:

• the mean and variance for the size of the (non)-latent hypnozoite reservoir
(Eqs. (37) and (38));

• the PMF for the number of co-circulating blood-stage broods (Eqs. (39)–(41));
• the relapse rate conditional on the blood-stage infection status (Eqs. (44)–(47));
• the distribution of immunity, as quantified by the mean and variance of the discrete
immunity levels (Eqs. (48) and (49));

• the prevalence of clinical infection (Eq. (15)).

Results are generated under the parameter values detailed in Table 1.

123



A hybrid transmission model for Plasmodium vivax… Page 29 of 45 7

Fig. 6 Transient host and vector dynamics forA short-latency (k = 0) andB long-latency (k = 2, δ = 1/100
day−1) strains. Here, we consider a constant transmission setting with β(t) = β and ω(t) = g. Model
parametersα, μ, γ, ν, w, g, η, β, pm→h , ptb are given in Table 1, with p0 = 0.65. At time zero, we assume
that the human population is both infection- and immune-naive, with IM (0)/PH = 0.012, LM (0)/PH =
0,UM (0)/PH = 1.2. We numerically solve the system over a period of 8 years, with a fixed time step of

0.1 days. The (A1/B1) FORI β pm→h
IM (t)
PH

and (A5/B5) probability of human-to-mosquito tranmission
ph→m (t) are governed by the system of IDEs given by Eqs. (29) and (32). Endemic equilibrium solutions

for the FORIβ pm→h
IM∗
PH

and human-to-mosquito transmission probability p∗
h→m , given by the non-trivial

solution to Eqs. (26) and (25), are indicated with dashed blue lines. All other quantities are calculated as a

function of the numerical solution for the FORI β pm→h
IM (t)
PH

, including
• (A2/B2): the PMF for the number co-circulating parasite broods (Eqs. (39)–(41))
• (A3/B3): the prevalence of clinical infection (Eq. (15)),with pc ranging from0.45 to 1 in increments of 0.05
• (A4/B4): the respective contributions of relapses and primary infections to the burden of blood-stage infec-
tion
• (A6/B6): the mean immunity level (Eq. (48)) (shading indicates one standard deviation (Eq. (49))
above and below the mean)
• (A7/B7, A8/B8): the expected size of the (non)-latent hypnozoite reservoir (Eq. (37)) (shading indicates
one standard deviation (Eq. (38)) above and below the mean)

3.3.1.1 Non-seasonal transmission We begin by considering host and vector
dynamics in the absence of seasonality (Fig. 6). At time zero, we consider the intro-
duction of several infected mosquitoes into an (blood- and liver-stage) infection and
immune naive human population. Predicted endemic equilibrium solutions, given by
the unique non-trivial solution to Eqs. (26) and (25), are shown with dashed blue lines
for the FORI (Figs. 6A1/B1) and the immunity-modulated probability of human-to-
mosquito transmission (Figs. 6A5/B5).

Illustrative dynamics for short latency strains (k = 0) are shown in Fig. 6A. The low
initial level of infection in the mosquito population constrains the transmission inten-
sity at early time points. Prior to the acquisition of extensive transmission-blocking
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immunity—with relatively low immunity levels harboured for a year following
the introduction of infected mosquitoes into an immune-naive human population
(Fig. 6A6)—human-to-mosquito transmission remains comparatively unconstrained,
leading to a sustained increase in the FORI (Fig. 6A1), and consequently, the blood-
stage infection burden (Fig. 6A2) and the size of the hypnozoite reservoir (Fig. 6A7). A
pronounced rise in the prevalenceof blood-stage infectionduring this early period leads
to an increase in both the probability of human-to-mosquito transmission (Fig. 6A5)
and the prevalence of clinical infection (Fig. 6A3). Intensified transmission, however,
is accompanied by the sustained acquisition of immunity (Fig. 6A6), which eventually
mitigates the probability of human-to-mosquito transmission (Fig. 6A5), leading to a
reduction in the FORI (Fig. 6A5), aswell as a slight reduction in the burden of (clinical)
blood-stage infection (Fig. 6A2, A3). These transient effects eventually subside, and
for the set of parameters considered here, the predicted endemic equilibrium (obtained
by numerically solving Eqs. (25)–(26), and indicated with dotted lines blue lines) is
reached within approximately 4 years.

Analogous results for long-latency strains (k > 0) are shown in Fig. 6B. As a
consequence of the enforced hypnozoite dormancy period (with expected duration
k/δ = 200 days and standard deviation

√
k/δ = 100

√
2 days), the non-latent hyp-

nozoite reservoir remains limited in size for approximately one year (Fig. 6B7); as
such, single-brood primary infections dominate the infection burden for an extended
period of time (Fig. 6B2, B4) relative to short-latency strains. In tandem with the
emergence of hypnozoites from dormancy, relapses eventually drive up the burden of
(clinical) blood-stage infection (Fig. 6B2, B4). As for short-latency strains (k = 0), the
acquisition of transmission-blocking immunity eventually mitigates onward human-
to-mosquito transmission (Fig. 6B5), leading to a slight reduction in transmission
intensity before the predicted endemic equilibrium (obtained by numerically solving
Eqs. (25) and (26), and indicated with dotted lines blue lines) is reached six years after
the introduction of infected mosquitoes into an infection- and immune-naive human
population.

3.3.1.2 Seasonal transmission To allow for seasonality, arising, for instance, from
external climactic variation,we impose sinusoidal forcing (with period one year) on the
mosquito birth rate. Illustrative dynamics for short-latency (k = 0) and long-latency
(k > 0) strains are shown in Fig. 7A, B respectively. With the imposition of seasonal
forcing, infection levels within both humans and mosquitoes exhibit oscillations (with
period one year) that eventually stabilise around a steady mean. The nature of these
oscillations within a season, however, varies between short- and long-latency strains.
Oscillations in the FORI (Fig. 7A1/B1) are driven strongly by seasonal fluctuations
in the size of the mosquito population. For short-latency strains (k = 0), the bur-
den of (clinical) blood-stage infection decays monotonically between seasonal peaks
(Fig. 7A2, A3) as the hypnozoite reservoir is depleted in light of limited mosquito-to-
human transmission (as quantified by the FORI, Fig. 7A1). For long-latency strains,
yearly maxima in the burden of (clinical) blood-stage infection (Fig. 7B2, B3) like-
wise coincide with seasonal peaks in the FORI (Fig. 7B1), with primary infections
contributing to the majority of the blood-stage infection burden during these peri-
ods of intensified mosquito-to-human transmission (Fig. 7B4). As a consequence
of the hypnozoite dormancy period—which introduces a delay between periods of
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Fig. 7 Transient host and vector dynamics for A short-latency (k = 0) and B long-latency (k = 2,
δ = 1/100 day−1) strains. Here, we consider a seasonal transmission setting with β(t) = β and ω(t) =
g
[
sin( 2π t365 + 3π

4 ) + 1
]
. Model parameters α,μ, γ, ν, w, g, η, β, pm→h , ptb are given in Table 1, with

p0 = 0.65 At time zero, we assume that the human population is both infection- and immune-naive, with
IM (0)/PH = 0.012, LM (0)/PH = 0,UM (0)/PH = 1.2. We numerically solve the system over a period

of 8 years, with a fixed time step of 0.02 days. The (A1/B1) FORI β pm→h
IM (t)
PH

and (A5/B5) probability
of human-to-mosquito tranmission ph→m (t) are governed by the system of IDEs given by Eqs. (29) and

(32). All other quantities are calculated as a function of the numerical solution for the FORI β pm→h
IM (t)
PH

,
including
• (A2/B2): the PMF for the number co-circulating parasite broods (Eqs. (39)–(41)).
• (A3/B3): the prevalence of clinical infection (Eq. (15)), with pc ranging from 0.45 to 1 in increments of
0.05.
• (A4/B4): the respective contributions of relapses and primary infections to the burden of blood-stage
infection.
• (A6/B6): the mean immunity level (Eq. (48)) (sharing indicates one standard deviation (Eq. (49)) above
and below the mean).
• (A7/B7, A8/B8): the expected size of the (non)-latent hypnozoite reservoir (Eq. (37)) (shading indicates
one standard deviation (Eq. (38)) above and below the mean)

intensified mosquito-to-human transmission and elevated relapse risk (as quantified
through the size of the non-latent hypnozoite reservoir, Fig. 7B7)—we observe bipha-
sic infection dynamics, whereby the burden of (clinical) blood-stage infection exhibits
a second, smaller peak approximately 6 months after the yearly maximum (Fig. 7B2,
B3) driven by relapses (Fig. 7B4) as hypnozoites established during the seasonal peak
of mosquito-to-human transmission emerge from dormancy. As such, we predict that
hypnozoite dormancy sustains the burden of blood-stage infection between seasonal
peaks in the FORI, in line with the hypothesis that long-latency phenotypes evolved in
temperate regions to sustain transmission despite of limited mosquito breeding during
the winter season (White 2016).
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4 Discussion

The interplay between the hypnozoite reservoir, superinfection and acquired immunity
is a key aspect of the epidemiology of P. vivax. Here, we have proposed novel hybrid
transmission models for P. vivax, accounting for hypnozoite accrual, (blood-stage)
superinfection and the acquisition of transmission-blocking and antidisease immu-
nity. To capture within-host dynamics as a function of the FORI, we have extended
the open network of infinite server queues constructed inMehra et al. (2022) to embed
a discretised version of the antibody model we introduced in Mehra et al. (2021).
By deriving the joint PGF for the state of the queueing network (Eq. (11)), we have
obtained an analytic description of within-host dynamics in a general transmission set-
ting. To couple host and vector dynamics,we have adopted the hybrid approximation of
Nåsell (2013) under which probabilistic within-host distributions are cast as expected
population-level proportions (Henry 2020). We have thus recovered a deterministic
compartmental model, comprising a countably infinite system of ODEs (Eqs. (21) and
(24)), which can be viewed as a natural extension of the Ross-Macdonald framework.
For a simpler system with countably many states, we demonstrated the equivalence of
the hybrid approximation to the functional law of large numbers (Barbour and Luczak
2012) for an appropriate Markov population process in Mehra et al. (2023).

We have drawn on distributions derived at the within-host level (Mehra et al. 2022)
to characterise both the transient and steady state behaviour of this compartmental
model. In particular, following the approach we developed in Mehra et al. (2023),
we have derived a reduced system of IDEs governing the time evolution of the num-
ber of (un)infected and latent mosquitoes; and the immunity-modulated probability of
human-to-mosquito transmission (Eqs. (29)–(32)).As a function of theFORIpredicted
under this reduced system of IDEs—which is equivalent to the complete compartmen-
tal model granted the human population is initially immune- and infection-naive—we
have recovered complete population-level distributions for various quantities of epi-
demiological interest, using the formulae derived inMehra et al. (2022) (see Appendix
B). By drawing on the within-host queueing models we introduced in Mehra et al.
(2021, 2022), and the construction developed in Mehra et al. (2023), we have cir-
cumvented the practical constraints that have previously limited the tractability of
hypnozoite density models (White 2018a).

Our model, to the best of our knowledge, provides the most complete description of
superinfection, immunity and hypnozoite dynamics forP. vivax thus far, while remain-
ing readily amenable to numerical solution and analysis. In Mehra et al. (2023), we
developed a framework to capture the dynamics of (short-latency) hypnozoite accrual
and superinfection, addressing a gap in the literature with respect to the rigorous anal-
ysis of superinfection; we have extended this framework in the present manuscript to
allow for acquired immunity and long-latency phenotypes. The joint population-level
dynamics of the hypnozoite reservoir and acquired immunity have been previously
examined by White (2018a). The construction of White (2018a) is predicated on
a continuous age- and exposure-dependent immunity level, which is subsequently
mapped (using Hill functions) to correlates of antidisease immunity (that is, a reduced
probability of clinical infection) and antiparasite immunity (including accelerated par-
asite clearance and mitigated parasite densities, manifesting in a reduced probability
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of detection via light microscopy). Here, we have instead considered a discretised
exposure-dependent immunity level, which we have mapped to correlates of antidis-
ease immunity and transmission-blocking immunity (that is, a reduced probability of
human-to-mosquito transmission) under the assumption of geometric decay. While
White (2018a) explicitly account for treatment, and age structure and heterogeneity in
the human population, we have restricted our attention to a homogeneous human pop-
ulation in the absence of treatment and age structure. Unlike White (2018a), however,
we monitor hypnozoite densities rather than broods (thereby capturing variation in
parasite inocula across bites), in addition to the population-level distribution of super-
infection; our framework can also be employed to analyse long-latency hypnozoite
strains, unlike the framework of White (2018a) which is restricted to short-latency
strains.

While most previous hypnozoite ‘batch’ and ‘density’ models (White et al. 2014;
White 2018a; Anwar et al. 2022) have relied on numerical solution to characterise
steady state properties, our sensitivity analyses are informed by the within-host dis-
tributions derived in Mehra et al. (2022). We recover a threshold phenomenon for the
hybrid model, deriving a bifurcation parameter (Eq. (27)) governing the existence of
endemic equilibria. In the absence of transmission-blocking immunity (ptb = 1) and
mosquito latency (1/η = 0), we were able to perform an asymptotic stability analysis
inMehra et al. (2023) for the first-order IDE governing the time-evolution of the FORI
using the stability criterion of Brauer (1978); the imposition of transmission blocking
immunity (ptb < 1) or mosquito latency (1/η > 0) yields a higher-order system of
IDEs governing the FORI, for which we are unaware of asymptotic stability criteria.

The transient and stationary results presented in this manuscript are underpinned
by analyticity at the within-host level, which, in turn, is predicated on the assumption
that each hypnozoite/infection is governed by an independent stochastic process. The
assumption of independent, spontaneous hypnozoite activation, as implemented by
White et al. (2014), is critical to our construction: external triggers of hypnozoite acti-
vation (e.g. febrile illness, arising from parasitic or bacterial infections (Dennis Shanks
and White 2013), particularly P. falciparum (Commons 2019)) necessarily introduce
synchronicity between activating hypnozoites, thereby violating the assumption of
independent hypnozoite behaviour. Our model does not readily accommodate interac-
tions between concurrent hypnozoites/infections, for instance, competition between
co-circulating parasite broods (De Roode 2005). Antiparasite immunity (manifest in
the modulation parasite clearance rates (White 2017)) and pre-erythrocytic immu-
nity (Mueller et al. 2013), which render hypnozoite/infection dynamics dependent
on the infection history, are likewise intractable. On a population-level, our model is
constrained by the assumption of homogeneity for the human population. We do not
account for age structure or demography within the human population; heterogene-
ity in the risk of relapse and immunity levels across individuals is driven purely by
stochastic fluctuations, rather than differences in the time over which the hypnozoite
reservoir has been accrued and immunity has been acquired.

Our formulation of immunity, moreover, is non-mechanistic and subject to a
number of simplifying assumptions. Adopting a discretised version of the model
presented in Mehra et al. (2021), we assume that the clearance of each blood-
stage infection is accompanied by an immunity boost with unit magnitude and an
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exponentially-distributed lifetime. Empirical characterisation of antibody titres, how-
ever, has revealed substantial heterogeneity in themagnitude of antibody boosts across
successive infections, and the temporal distribution of antibody boosts associated with
different antigens (White et al. 2014). A key omission in ourmodel is strain specificity;
while homologous challenge yields a strong immune response, immune protection fol-
lowing heterologous challenge is contingent on the degree of cross-reactivity between
strains (Mueller et al. 2013). As such, the discretised immunity level considered here
largely serves as a proxy for ‘recent’ exposure to blood-stage infection, with the
immune decay parameter w governing the time scale on which immunity is retained.

Nonetheless, in capturing the interplay between hypnozoite accrual, superinfection
and acquired immunity—and providing, to the best of our knowledge, the most com-
plete population-level distributions for a range of epidemiological values—our model
provides insights into important, but poorly understood, epidemiological features of P.
vivax, with natural extensions to explore the consequences of control and elimination
strategies.
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A State probabilities for a single hypnozoite

Here, we provide solutions to the system of ODEs given by Eqs. (2)–(6). We have
previously solved related models in Mehra et al. (2020, 2022):

• In Mehra et al. (2020), we analysed the activation-clearance model proposed by
White et al. (2014), but did not model the dynamics of blood-stage infection
following each hypnozoite activation event (that is, states A, I and C were not
distinguished).
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• In Mehra et al. (2022), we constructed a relapse-clearance model, extending the
model proposed inWhite et al. (2014) (and solved inMehra et al. (2020)) to accom-
modate a blood-stage infection (of exponentially-distributed duration) following
hypnozoite activation, but did not capture the acquisition/waning of immunity (that
is, states I and C were not distinguished).

As in Mehra et al. (2020) and Mehra et al. (2022), we solve the system of ODEs
successively using integration by parts, drawing on standard integral number 2.321.2
of Jeffrey and Zwillinger (2007), to give:

ph,m(t) = (δt)m−1

(m − 1)! e
−(μ+δ)t for m ∈ [1, k] (33)

ph,NL (t) = δk

(δ − α)k

[
e−(μ+α)t − e−(μ+δ)t

k−1∑
j=0

t j

j ! (δ − α) j
]

(34)

ph,A(t) = αδk

(δ − α)k

[
e−(μ+δ)t

μ + δ − γ

{ k−1∑
i=0

t i
[

(μ − γ + δ)i

i !
k−1∑
j=i

( δ − α

μ − γ + δ

) j
]}

− e−(μ+α)t

μ − γ + α

]

+ α

α + μ − γ

( δ

δ + μ − γ

)k
e−γ t (35)

ph,I (t) = α

α + μ − γ

( δ

δ − α

)k γ

α + μ − w
e−(μ+α)t

+ γ

w − γ

α

α + μ − γ

( δ

δ + μ − γ

)k
e−γ t

− γαδk

(δ − α)k

e−(μ+δ)t

(μ + δ − γ )(μ + δ − w){ k−1∑
�=0

t�
[

(μ + δ − w)�

�!
k−1∑
i=�

( μ + δ − γ

μ + δ − w

)i k−1∑
j=i

( δ − α

μ + δ − γ

) j
]}

+ γ

γ − w

α

α + μ − w

( δ

δ + μ − w

)k
(36)

Solutions for ph,m(t), m ∈ [1, k] and ph,NL(t) were intially presented in Mehra
et al. (2020), while solutions for ph,A(t) were initially derived in Mehra et al. (2022).

B Population-level distributions for quantities of epidemiological
interest

As a function of the FORI λ(t) in the interval τ ∈ [0, t), we can recover distributions
for various quantities of epidemiological interest at time t using the results derived in
Mehra et al. (2022). In the case of the open network of infinite server queues described
in Sect. 2, we assume a functional form for λ(t), and interpret these quantities as prob-
abilistic distributions at the within-host level. In the context of the hybrid transmission
models constructed in Sect. 3, where we capture the time evolution of λ(t) by coupling
host and vector dynamics, these quantities are instead interpreted as population-level
proportions (Henry 2020). We adopt the same notation for both situations, with Ns(t)
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denoting the marginal distribution for the number of hypnozoites/infections in state
s ∈ S at time t on either the within-host or population-level.

B.1 Size of the (non)-latent hypnozoite reservoir

The expected size of the (non)-latent hypnozoite reservoir at time t

E[N(N )L(t)] = ν

∫ t

0
λ(τ)ph,(N )L(t − τ)dτ (37)

and associated variance

Var[N(N )L(t)] = ν

∫ ∞

0
λ(τ)ph,(N )L(t − τ)

[
1 + 2ν ph,(N )L(t − τ)

]
dτ (38)

follow from Equations (39) and (74) of Mehra et al. (2022). Complete distributions
for S(N )L(t) can be recovered using Equations (75) and (76) of Mehra et al. (2022).
For short-latency strains (k = 0), a constant FORI λ(τ) = λ∗ yields the steady state
distribution

N∗
NL ∼ NegativeBinomial

( ν

1 + ν
,

λ∗

α + μ

)
,

as shown in Equation (36) of Mehra et al. (2022).

B.2 Blood-stage infection status

Equations (82) and (83) ofMehra et al. (2022) yield the complete population-level dis-
tribution for the number of co-circulating parasite broods. Here, we state the respective
probabilities of carrying n = 0, 1, 2 broods of co-circulating parasites at time t :

P(NA(t) + NP (t) = 0)

= exp

{
−

∫ t

0
λ(τ)

pp,A(t − τ) + ν ph,A(t − τ)

1 + ν ph,A(t − τ)
dτ

}
(39)

P(NA(t) + NP (t) = 1)

=
( ∫ t

0
λ(τ)

pp,A(t − τ) + ν ph,A(t − τ)

1 + ν ph,A(t − τ)
dτ

)

× exp

{
−

∫ t

0
λ(τ)

pp,A(t − τ) + ν ph,A(t − τ)

1 + ν ph,A(t − τ)
dτ

}
(40)

P(NA(t) + NP (t) = 2)

= 1

2

[( ∫ t

0
λ(τ)

pp,A(t − τ) + ν ph,A(t − τ)

1 + ν ph,A(t − τ)
dτ

)2
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+ 2
∫ t

0
λ(τ)

ν ph,A(t − τ)
(
pp,A(t − τ) + ν ph,A(t − τ)

)
(
1 + ν ph,A(t − τ)

)3 dτ

]

× exp

{
−

∫ t

0
λ(τ)

pp,A(t − τ) + ν ph,A(t − τ)

1 + ν ph,A(t − τ)
dτ

}
. (41)

B.3 Relapse rate conditional on blood-stage infection status

The joint PGF for the size of the non-latent hypnozoite reservoir NNL(t) and the
number of co-circulating parasite broods MI (t) := NA(t) + NP (t) can be written

E
[
xNL(t)yMI (t)]

= G(z1 = 1, . . . , zk = 1, zN L = x, zA = y, zC = 1, zD = 1, zP = y)

= exp

{
−

∫ t

0
λ(τ)

[
1 − 1 + (y − 1)pp,A(t − τ)

1 + ν(1 − x)ph,NL(t) + ν(1 − y)ph,A(t)

]
dτ

}
(42)

where we have used Eq. (11).
The (unconditional) relapse rate, which is proportional to the expected size of the

non-latent hypnozoite reservoir, can be written

r(t) := αE[NNL(t)] = αν

∫ t

0
λ(τ)ph,NL(t − τ)dτ (43)

as in Equation (39) of Mehra et al. (2022).
Conditional on the absence of blood-stage infection (MI (t) = 0), the relapse rate

is given by

r0(t) := αE[NNL(t)|MI (t) = 0] =
∂
∂x E

[
xNL(t)yMI (t)]|x=1,y=0

E
[
xNL(t)yMI (t)]|x=1,y=0

= α

∫ t

0
λ(τ)

ν ph,NL(t − τ)
(
1 − pp,A(t − τ)

)
(
1 + ν ph,A(t − τ)

)2 dτ (44)

as in Equation (78) of Mehra et al. (2022).
Likewise, by Xekalaki (1987), we recover the relapse rate conditional on a single-

brood blood-stage infection (MI (t) = 1),

r1(t) := αE[NNL(t)|MI (t) = 1] =
∂2

∂x∂ y E
[
xNL(t)yMI (t)]|x=1,y=0

∂
∂ y E

[
xNL(t)yMI (t)]|x=1,y=0

= α

[∫ t
0 λ(τ)

ν ph,NL (t−τ)[2ν ph,A(t−τ)+pp,A(t−τ)(1−ν ph,A(t−τ))]
(1+ν ph,A(t−τ))3

dτ

∫ t
0 λ(τ)

ν ph,A(t−τ)+pp,A(t−τ)

(1+ν ph,A(t−τ))2
dτ

+
∫ t

0
λ(τ)

ν ph,NL(t − τ)
(
1 − pp,A(t − τ)

)
(
1 + ν ph,A(t − τ)

)2 dτ

]
(45)
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as well as a double-brood blood-stage infection (MI (t) = 2)

r2(t) := αE [NNL (t)|MI (t) = 2] =
∂3

∂x∂ y2
E

[
xN L(t) yMI (t)]|x=1,y=0

∂2

∂ y2
E

[
xN L(t) yMI (t)]|x=1,y=0

= α

[( ∫ t

0
λ(τ)

2ν2 ph,NL (t − τ )ph,A(t − τ )[3ν ph,A(t − τ ) + pp,A(t − τ )(2 − ν ph,A(t − τ ))]
(1 + ν ph,A(t − τ ))4

dτ

+ 2
[ ∫ t

0
λ(τ)

ν ph,A(t − τ ) + pp,A(t − τ )

(1 + ν ph,A(t − τ ))2
dτ

][ ∫ t

0
λ(τ)

ν ph,NL (t − τ )[2ν ph,A(t − τ )+pp,A(t − τ )(1−ν ph,A(t−τ ))]
(1 + ν ph,A(t − τ ))3

dτ
])

×
( ∫ t

0
λ(τ)

2ν ph,A(t − τ )[ν ph,A(t − τ ) + pp,A(t − τ )

(1 + ν ph,A(t − τ ))3
dτ +

[ ∫ t

0
λ(τ)

ν ph,A(t − τ ) + pp,A(t − τ )

(1 + ν ph,A(t − τ ))2
dτ

]2)−1

+
∫ t

0
λ(τ)

ν ph,NL (t − τ )
(
1 − pp,A(t − τ )

)
(
1 + ν ph,A(t − τ )

)2 dτ

]
. (46)

By the law of total expectation, we can recover the relapse rate conditional on a
blood-stage infection comprising three or more parasite broods (MI (t) > 2):

r>2(t) := αE[NNL(t)|MI (t) > 2]
= r(t) − r0(t) · P(MI (t) = 0) − r1(t) · P(MI (t) = 1) − r2(t) · P(MI (t) = 2)

1 − P(MI (t) = 0) − P(MI (t) = 1) − P(MI (t) = 2)
(47)

using Eqs. (39)–(41) and (43)–(46).

B.4 Relative contribution of relapses to the infection burden

At time t , each individual in the human population has no ongoing primary infections
with probability

P(NP (t) = 0) = exp

{
−

∫ t

0
λ(τ)pp,I (t − τ)dτ

}

and no ongoing relapses with probability

P(NA(t) = 0) = exp

{
−

∫ t

0
λ(τ)

ν ph,A(t − τ)

1 + ν ph,A(t − τ)
dτ

}

as in Equations (40) and (41) of Mehra et al. (2022). The relative contribution of
relapses to the infection burden (that is, the proportion of blood-stage infections that
encompass at least one relapse) follows readily from the quantities P(NP (t) = 0),
P(NA(t) = 0) and P(NA(t) = NP (t) = 0) (that is, the probability that each individ-
ual has neither a primary infection, nor a relapse, at time t).
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B.5 Distribution of immunity

From the joint PGF given by Eq. (11), we recover the PGF governing the population-
level distribution of immunity I (t) at time t

E
[
zNI (t)] = G(t, z1 = 1, . . . , zk = 1, zN L = 1, zA=1, zD=1, zC=1, zI=z, zP=1)

= exp

{
−

∫ t

0
aIM (τ )

[
1 − 1 − (1 − z)pp,I (t − τ)

1 + ν ph,I (t − τ)(1 − z)

]
dτ

}
.

We can thus compute the expected immunity level

E[NI (t)] =∂ E
[
zPI (t)]
∂z

∣∣∣∣
z=1

=
∫ t

0
λ(τ)

[
ν ph,I (t − τ) + pp,I (t − τ)

]
dt (48)

in addition to the variance

Var[NI (t)] =∂2E
[
zNI (t)]

∂z2

∣∣∣∣
z=1

+ ∂ E
[
zNI (t)]
∂z

∣∣∣∣
z=1

−
(

∂ E
[
zNI (t)]
∂z

∣∣∣∣
z=1

)2

=
∫ t

0
λ(τ)

[
ν ph,I (t − τ) + pp,I (t − τ)

][
1 + 2ν ph,I (t − τ)

]
dt . (49)

The complete population-level distribution of immunity can be recovered using Faa
di Bruno’s formula and Leibiniz’s integral rule, using a similar approach toMehra et al.
(2022) (see Equations (82) and (83) of Mehra et al. (2022), which have an analogous
functional form to that consided here).

C Expected vector dynamics

Here, we characterise the dynamics of the vector population, as a function of the
probability of successful human-to-mosquito transmission ph→m(t). The structure
of the Markovian birth-death process governing the state of the vector population is
described in Sect. 3.1.

Denote by pi,l,u(t) the probability that the mosquito population comprises i
infected, l latent and u uninfected mosquitoes at time t . By the Kolmogorov forward
differential equations, it follows that

dpi,l,u
dt
= g

[ − (i + u + l)pi,l,u(t) + (i + 1)pi+1,l,u(t) + (u + 1)pi,l,u+1(t) + (l + 1)pi,l+1,u(t)]︸ ︷︷ ︸
mosquito death

+ ω(t)
[ − (i + l + u)pi,l,u(t) + (i + l + u − 1)pi,l,u−1(t)

]
︸ ︷︷ ︸

mosquito birth
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+ β(t)ph→m(t)
[ − upi,l,u(t) + (u + 1)pi,l−1,u+1(t)

]
︸ ︷︷ ︸

human-to-mosquito transmission

+ η
[ − lpi,l,u(t) + (l + 1)pi−1,l+1,u(t)

]
︸ ︷︷ ︸

sporogony complete

. (50)

Define the generating function

F(zi , zl , zu, t) =
∞∑
ji=0

∞∑
jl=0

∞∑
ju=0

p ji , jl , ju (t)z
ji
i z

jl
l z

j j
u .

Using the ODEs given by Eq. (50), we recover a PDE for the generating function
F

∂F

∂t
= + [

g(1 − zi ) + ω(t)zi (zu − 1)
] · ∂F

∂zi

+ [
g(1 − zl) + ω(t)zl(zu − 1) + η(zi − zl)

] · ∂F

∂zu

+ [
g(1 − zu) + ω(t)zu(zu − 1) + β(t)ph→m(t)(zl − zu)

] · ∂F

∂zu
. (51)

Denote by IM (t), LM (t), UM (t) the expected number of infected, latent and unin-
fected mosquitoes respectively at time t , that is,

IM (t) = ∂F

∂zi

∣∣∣
zi=zl=zu=1

LM (t) = ∂F

∂zl

∣∣∣
zi=zl=zu=1

UM (t) = ∂F

∂zu

∣∣∣
zi=zl zu=1

.

Then for s ∈ {i, l, u}, by differentiating the PDE given by Eq. (51) with respect to zs
and evaluating the resultant expression at zi = zl = zu = 1, we recover precisely the
systemofODEs given byEqs. (17)–(19) governing the time evolution of IM (t), LM (t),
UM (t) as a function of the probability of human-to-mosquito transmission ph→m(t)
per bloodmeal.More detailed vector dynamics canbe captured in an analogousmanner.

D The existence of endemic equilibrium solutions

For notational convenience, let

A := β pm→h

PH

∫ ∞

0

1 − (1 − ptb)pp,I (τ )

1 + ν(1 − ptb)ph,I (τ )
− 1 − (1 − ptb)pp,I (τ ) − pp,A(τ )

1 + ν(1 − ptb)ph,I (τ ) + ν ph,A(τ )
dτ

C := β pm→h

PH

∫ ∞

0
1 − 1 − (1 − ptb)pp,I (τ )

1 + ν(1 − ptb)ph,I (τ )
dτ.
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From Eqs. (13) and (14), we observe that

e−C I ∗
M = E

[
pNI (t)
tb

] =
∞∑

i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
j=0

∞∑
k=0

pktbH
∗
i1,...,ik ,iN L , j,k ≤ 1

e−(A+C)I ∗
M = E

[
pNI (t)
tb |NA(t) + NP (t) = 0

] · P(NA(t) + NP (t) = 0)

=
∞∑

i1=0

· · ·
∞∑

ik=0

∞∑
iN L=0

∞∑
k=0

pktbH
∗
i1,...,ik ,iN L ,0,k ≤ e−C I ∗

M

from which we deduce that A,C ≥ 0.
Recall from Sect. 3.2.1 that the existence of an endemic equilibrium solution is

equivalent to the existence of a non-trivial solution toEqs. (25) and (26). Characterising
endemic equilibria is thus equivalent to characterising non-trivial points of intersection
I ∗
M ∈ (0, PM ] of

F1(I
∗
M ) = gI ∗

M

β p0
( PM
1+g/η − I ∗

M

)
F2(I

∗
M ) = e−C I ∗

M − e−(A+C)I ∗
M .

We note that F2(I ∗
M ) ≥ 0 for all I ∗

M ≥ 0 since A,C ≥ 0, while F1(I ∗
M ) ≥ 0 only

if I ∗
M ≤ PM

1+g/η . We thus seek solutions in the domain I ∗
M ∈ (0, PM

1+g/η

]
.

Observe that F1(0) = F2(0) = 0, corresponding to the disease-free equilibrium.
To characterise endemic equilibria, we compute the derivatives

F (n)
1 (I ∗

M ) = n! gPM
β p0(1 + g/η)

1( PM
1+g/η − I ∗

M

)n+1

F (n)
2 (I ∗

M ) = (−1)n(C)ne−C I ∗
M + (−1)n+1(C + A)ne−(C+A)I ∗

M .

For all I ∗
M ∈ [0, PM

1+g/η ], F ′
1(I

∗
M ), F ′′

1 (I ∗
M ) > 0, so we conclude that F1 is mono-

tonically increasing and convex, with F1 → ∞ as I ∗
M → PM

1+g/η .

On the other hand, observing that F ′
2, F

′′
2 are continuous; F ′

2(0) > 0, F
′′
2 (0) < 0

and

F ′
2(M0) = 0 �⇒ M0 = 1

A
log

(
1 + A

C

)

F ′′
2 (M1) = 0 �⇒ M1 = 2

A
log

(
1 + A

C

)
> M0,

by the intermediate value theorem, we deduce that F2 is

• monotonically increasing, concave for all I ∗
M ∈ [0, M0)

• monotonically decreasing for all I ∗
M ∈ (M0,∞).

Setting Q := F ′
1 − F ′

2, we note that:
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• Q′(I ∗
M ) > 0 for I ∗

M ∈ [0, M0)

• Q(I ∗
M ) > 0 for all I ∗

M ∈ [M0,
PM

1+g/η ).

We thus consider two cases:

• Case 1: Q(0) > 0
Then Q(I ∗

M ) > 0 for all I ∗
M ∈ [0, PM ] �⇒ (F1 − F2) is monotonically

increasing for all I ∗
M ∈ [0, 1]. Since (F1 − F2)(0) = 0, there exists no non-trivial

point of intersection.
• Case 2: Q(0) < 0
Since Q is monotonically increasing on the interval [0, M0) with Q(0) < 0 <

Q(M0), by the intermediate value theorem, there exists M1 ∈ (0, M0) such that
Q(I ∗

M ) ≤ 0 for I ∗
M ∈ [0, M1] and Q(I ∗

M ) > 0 for I ∗
M ∈ (M1,∞). Noting that

(F1−F2)(0) = 0, it follows that (F1−F2) ismontonically decreasing and negative
on the interval (0, M1); but monotonically increasing on the interval (M1,

PM
1+g/η ).

Since (F1− F2)(I ∗
M ) → +∞ as I ∗

M → PM
1+g/η , by the intermediate value theorem,

there exists a unique non-trivial root of (F1 − F2) in the interval (M1,
PM

1+g/η ).

Therefore, F1 and F2 have at most one non-zero point of intersection if and only if

Q(0) < 0 ⇐⇒ R2
0 := A · β p0PM

g(1 + g/η)
> 1.

As such, R0 > 1 is a sufficient and necessary condition for the existence of an endemic
equilibrium; when R0 > 1, the endemic equilibrium solution is unique.

D.1 Interpretation of the quantity R0

Here, we provide an explicit interpretation of the integral term in the expression for
R0 (Eq. (27)). Following the argument detailed in Mehra et al. (2022), given a single
infective bite at time zero, the PGF for the occupancy Ms(τ ) of queue s ∈ S at time
τ > 0 can be written

E

[ ∏
s∈S

zMs (τ )
s

]
=

∑
s∈Sp zs · pp,s(τ )

1 + ν
(
1 − ∑

s∈Sh zs · ph,s(τ )
) .

Suppose amosquito takes a bloodmeal at time τ . The probability of successful human-
to-mosquito transmission—adjusting for the acquisition of transmission-blocking
immunity attributable to the bite—at time τ can be written

ph→m(t) = p0
(
E

[
pMI (t)
tb

]
− E

[
pMI (t)
tb

∣∣MA(t) + MP (t) = 0
]

· P(
MA(t) + MP (t) = 0

))

= p0

(
1 − (1 − ptb)pp,I (τ )

1 + ν(1 − ptb)ph,I (τ )
− 1 − (1 − ptb) · pp,I (τ ) − pp,A(τ )

1 + ν(1 − ptb)ph,I (τ ) + ν ph,A(τ )

)
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in direct analogy to the Eq. (16). The total expected duration Th→m of transmissible
blood-stage infection attributable to the bite can therefore be written

Th→m =
∫ ∞

0
ph→m(τ )dτ,

which is precisely the integral term in Eq. (27).
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