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Physics-informedneural network for lithium-
ion battery degradation stablemodeling and
prognosis

Fujin Wang 1,2,3, Zhi Zhai 1,2,3, Zhibin Zhao 1,2 , Yi Di1,2 & Xuefeng Chen1,2

Accurate state-of-health (SOH) estimation is critical for reliable and safe
operation of lithium-ion batteries. However, reliable and stable battery SOH
estimation remains challenging due to diverse battery types and operating
conditions. In this paper, we propose a physics-informed neural network
(PINN) for accurate and stable estimation of battery SOH. Specifically, we
model the attributes that affect the battery degradation from the perspective
of empirical degradation and state space equations, and utilize neural net-
works to capture battery degradation dynamics. A general feature extraction
method is designed to extract statistical features from a short period of data
before the battery is fully charged, enabling ourmethod applicable to different
battery types and charge/discharge protocols. Additionally, we generate a
comprehensive dataset consisting of 55 lithium-nickel-cobalt-manganese-
oxide (NCM) batteries. Combined with three other datasets from different
manufacturers, we use a total of 387 batteries with 310,705 samples to validate
our method. The mean absolute percentage error (MAPE) is 0.87%. Our pro-
posed PINN has demonstrated remarkable performance in regular experi-
ments, small sample experiments, and transfer experiments when compared
to alternative neural networks. This study highlights the promise of physics-
informed machine learning for battery degradation modeling and SOH
estimation.

In recent years, the number of lithium-ion batteries is growing at an
alarming rate in the whole society, which is an unprecedented impetus
to the popularization of renewable energy equipment. With the
advantages of high energy density, low self-discharge rate, and long
service life1, lithium-ion batteries have become the main energy sto-
rage devices in portable electronic devices, electric vehicles, aero-
space, and many other fields2–8. In 2019, the global shipments of
lithium-ion batteries for new energy vehicles alone reached 116.6
GWh9. It is estimated that by 2025, the global lithium-ion batteries
installed capacity will reach 800 GWh, and the market value will reach
91.8 billion dollars10. The explosive growth of lithium-ion batteries has

brought convenience to people’s lives, however, its aging and health
management have also attracted people’s concerns and attention. The
aging of lithium-ion batteries is an important issue, and their perfor-
mance will decline with time until it fails. To ensure long-term, safe,
and continuous operation, lithium-ion batteries must be properly
maintained and controlled, which includes state-of-health (SOH)
assessments. The SOHof a battery is defined as the ratio of the current
available capacity to the initial capacity, which can be used as an
indicator to measure battery degradation11. When the SOH drops to
80%, the battery reaches its first service life. Batteries that have
reached their first service life can still be used in fields such as energy
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storage power stations for secondary utilization. Therefore, it is par-
ticularly important to accurately estimate the SOH of the battery.

In recent years, various SOH estimation methods of lithium-ion
batteries have beenproposed,whichgreatly advance the development
of this field12–15. However, accurately estimating SOH is still a challen-
gingproblem.Generally, the capacity can beobtained fromacomplete
discharge curve from an upper cut-off voltage to a lower cut-off vol-
tage via the ampere-hour integration, thereby obtaining SOH. In actual
application, it is difficult to obtain a complete charge or discharge
curve because the battery is rarely fully discharged. Some scholars
estimate SOH by establishing battery aging models. Baghdadi et al.16

proposed a physics-based approach based on Dakin’s degradation
method to simulate the linear degradation process of batteries. Con-
sidering that time-varying temperature conditions have an important
impact on the discharge capacity and aging law of lithium-ion bat-
teries, Xu et al.17 proposed a stochastic degradation rate model based
on the Arrhenius temperature model and established an aging model
of lithium-ion batteries under time-varying temperature conditions
based on the Wiener process. Dong et al.18 proposed a physics-based
model that combines chemical and mechanical degradation mechan-
isms to predict capacity fade by simulating the formation and growth
of solid electrolyte interphase (SEI). Lui et al.19 proposed a physics-
based approach to predict the capacity of lithium-ion batteries by
modeling degradation mechanisms such as losses of active materials
of the positive and negative electrodes and the loss of lithium
inventory.

Given the difficulty in establishing physical models and the diffi-
culty in obtaining complete discharge capacity, many studies have
used data-driven methods20–24 to estimate SOH based on current and
voltage curves during charge and discharge. Commonly used data-
drivenmethods include linear regression25, support vectormachines26,
Gaussian process regression27, deep neural networks28,29, etc. Xia
et al.30 extracted features from incremental capacity (IC) curves and
differential voltage (DV) curves to estimate SOH. Wang et al.31 extrac-
ted valuable health indicators from electrochemical impedance spec-
troscopy (EIS) as input for Gaussian process regression to estimate
SOH. Data-driven methods do not require physical knowledge and
only focus on the relationship between input and output, so the
extraction of degenerated features is a key part of data-driven meth-
ods, which largely determines the performance of the SOH estimation.

However, challenges still stand in the way of developing reliable,
accurate, and general SOH estimation methods14,21. Physics-based
models are stable and accurate, but batteries with different chemical
compositions require different model parameters, and the models
have high computational costs32. The data-driven models have high
accuracy and efficiency, but its generalizability depends on the
extracted features and have poor stability14,33. For instance, due to the
high usage variability, existing methods30,34,35 need to extract specific
features for different datasets or different working conditions, leading
to the fact that models are dataset-specific, resulting in a waste of
computing resources. The promising prospect of physics-informed
neural network (PINN)36,37 lies in amalgamating the strengths of
physics-based and data-driven approaches, potentially addressing the
aforementioned challenges. Due to the consideration of physical
information, PINN can use relatively less data to train the model, and
the model is more stable. It is a promising approach in the field of
battery prognosis and diagnostics. Aykol et al.38 classified battery
modeling methods that combine physical knowledge and machine
learning into five categories, including three Sequential Integration
methods, A1–A3, and two Hybrid methods, B1–B2. Among them, an
obvious feature of the Sequential Integration method is that the phy-
sical model and the machine learning model are standalone, while the
Hybrid method fuses the two together. Within this framework, some
works has been published39–43. Nascimento et al.39 directly imple-
mented the numerical integration of principle-based governing

equations through recurrent neural networks to simulate the dynamic
response of the battery. Wang et al.42 proposed a battery neural net-
work (BattNN) for discharge voltage prediction based on the equiva-
lent circuit model (ECM). Hofmann et al.43 used the pseudo-two-
dimensional (P2D) Newmanmodel to generate data at different health
status points and combined it with experimental data and field data to
train the neural network model, which takes advantage of the corre-
lation between internal states and measurable SOH. According to the
categories proposed by Aykol et al.38, these methods belong to the
A240,41,43 and A339,42 categories.

In fact, the Sequential Integration method is relatively straight-
forward to implement because the physical model and the machine
learningmodel are standalone,making it a practical near-termstrategy
for battery modeling. Essentially, machine learning models in
Sequential Integration method are not subject to physical constraints.
TheHybridmethods, on the other hand, aremore fundamental as they
truly integrate the primary governing equations for battery modeling
with data-driven methods. However, due to the complex physical
equations contain numerous parameters and are difficult to solve,
there are few publications that implement Hybrid methods for SOH
estimation. Recent review38 pointed out that Hybrid methods will
become the dominant method in the long term, but it is still an open
research question.

In this work, we proposed a PINN for battery SOH estimation,
which belong to the B2 architecture. This approach achieves true
integration of governing equations and neural networks, resulting in
stable and precise SOH estimation. Unlike existing PINN approaches,
we also validated its advancements in small sample learning and
transfer learning among batteries with different chemistries and
charge/discharge profiles. Specifically, first, considering the com-
plexity of the electrochemical equations, it hinders the development
of B2-type PINNs. Therefore, we model battery degradation dynamics
from the perspective of empirical degradation and state space equa-
tions, and utilize neural networks to capture battery degradation
dynamics. Second, tomake themodelmore general, we develop a new
feature extraction method. The discharge process of a battery is user-
specific, and the battery is rarely fully discharged. In contrast, once
charging starts, the probability of full charge is high, and it is more
fixed and regular. Therefore, weextract features froma short periodof
data before the battery is fully charged. Third, to verify ourmethod, we
carried out battery degradation experiments and released a dataset
containing run-to-failure data from 55 batteries. In addition, we also
verified our method on other three large-scale datasets with different
chemical compositions and charge/discharge protocols, proving the
superiority and versatility of our method. We also perform the further
task of estimating SOH by transferring degradation knowledge from
one dataset to another. These datasets for performing transfer tasks
contain batteries with different chemistries and charge/discharge
protocols. The results illustrate the effectiveness and generality of the
proposed PINN in SOH estimation.

Results
Framework overview and flowchart
We developed a PINN for lithium-ion battery SOH estimation, and its
flowchart is shown in Fig. 1. Our method is designed for more general,
reliable, stable, and high-precision SOH estimation by considering the
dynamic behavior of battery degradation as well as the degrada-
tion trend.

In the data preprocessing stage (shown in Fig. 1b), statistical fea-
tures are extracted from a short period of data before the battery is
fully charged as the input of the model, which ensures that this period
of data exists inmost battery datasets, and solves the problem of non-
universal features in existing studies. Therefore, our method is
applicable to batterieswithdifferent chemistries and charge/discharge
protocols.
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In the SOH estimation stage, due to the complexity of electro-
chemical equations, there is currently no good way to integrate them
with the neural networks. In this work, we modeled the attributes that
affect the battery degradation from the perspective of the empirical
degradation and state space equation, and utilized neural networks to
approximate the established degradation model, effectively achieving

the integration of governing equations and neural networks. The
proposed PINNconsists of twoparts: a solution function f( ⋅ ) thatmaps
features to SOH and a nonlinear function g( ⋅ ) that models battery
degradation dynamic behaviors, as shown in Fig. 1c. The solution f( ⋅ ),
modeling the relationship between features and SOH, is expressed as
ui = f(ti, xi), where ti represents time, xi represents the extracted feature
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vector, and ui denotes the SOH of the cycle i. The nonlinear function
g( ⋅ ) models the SOH decay rate of the battery. Since f( ⋅ ) and g( ⋅ ) are
affected by many factors in reality and their explicit expressions are
unknown, they are replaced by small fully connected neural networks,
denote as F ð�Þ and Gð�Þ. During training, we consider data term loss
Ldata, monotonicity loss Lmono, and loss LPDE constrained by the
degradation equation described by partial differential equation. They
minimize the errors between the predicted and the true values, while
making the model follow the properties of monotonicity of the
degradation trajectory and satisfy the constraints of the established
degradation model.

To validate the superiority of the proposed PINN, we conducted
small sample experiments and transfer experiments. During the
transfer experiments,we frozeGð�Þ andfine-tunedF ð�Þ ondatasetswith
different chemical compositions. The experimental outcomes
demonstrate that the proposed PINN framework can effectively cap-
ture the dynamics of battery degradation. Our study combines
knowledge of the battery degradation with neural networks and
achieves promising results. This study highlights the promise of
physics-informed neural network for battery degradation modeling
and SOH estimation (more methodological details can be found in the
“Methods” section).

Data generation
To cover different battery types and chemistries, we employ
310,705 samples of 387 batteries from 4 different large-scale datasets
for validation. The first dataset comes from the battery degradation
experiments we conducted for this study, the other three datasets are
well-known public datasets from Zhu et al.44, Ye et al.45, and Severson
et al.25. For convenience, we refer to the four datasets as the XJTU
battery dataset, TJU dataset44, HUST dataset45, and MIT dataset25. The
basic information of the four datasets is given in Table 1.

We developed a battery degradation experiment in this study, as
shown in Fig. S1. A total of 55 batteries manufactured by LISHEN
(LiNi0.5Co0.2Mn0.3O2, 2000 mAh nominal capacity, and 3.6 V nominal
voltage, the cut-off voltages of charging and discharging are 4.2 V and
2.5 V) were cycled to failure under 6 charge/discharge protocols at the
room temperature. The protocols include fixed charging and dis-
charging, random discharging with a fixed current in different cycles,
random walking, and the charging and discharging strategy of a
satellite in geosynchronous earth orbit (GEO). We use batch 1 to batch

6 to represent the 6 charge/discharge protocols, respectively. The
degradation trajectories are shown in Fig. 2. More details about our
dataset can be found in Supplementary Note 1.

The TJU dataset contains three types of battery: NCA battery
(3500mAh nominal capacity and 2.65–4.2 V cut-off voltage), NCM
battery (3500mAh nominal capacity and 2.5–4.2 V cut-off voltages),
and NCM+NCA battery (2500mAh nominal capacity and 2.5–4.2 V
cut-off voltage). These batteries are cycled in a temperature-controlled
chamber with different temperatures and different charge current
rates. Candidate sets for temperatures include 25, 35, and 45 °C. Cur-
rent rates ranging from 0.25 C to 4 C were used. We use batch 1, batch
2, and batch 3 to represent NCA, NCM, and NCM+NCA batteries,
respectively.

The HUST dataset contains data from 77 LFP/graphite cells under
77 different multi-stage discharge protocols. These batteries, manu-
factured by A123 (APR18650M1A), have a nominal capacity of
1100mAh and a nominal voltage of 3.3 V. They were cycled at a tem-
perature of 30 °C with an identical charge protocol but different dis-
charge protocols until failure.

The batteries in the MIT dataset have the same type and chemical
composition as the batteries in the HUST dataset. However, unlike the
experimental setup at the HUST dataset, the MIT dataset considered
multiple fast-charging strategies and one discharging strategy.

Fig. 1 | The flowchart of the proposed PINN for lithium-ion battery SOH esti-
mation. a The lithium-ion batteries may have different chemistries (e.g., lithium
nickel-cobalt-manganate (NCM), lithium nickel-cobalt-aluminate (NCA), and
lithium iron phosphate (LFP), etc.). Different users have personalized battery dis-
charge strategies resulting in different degradation trajectories. b An illustration of
the selected data for feature extraction. We extracted features from a short period
of data before the battery is fully charged. These features are used as the inputs of
the proposed PINN to estimate SOH.The upper figures are the curves from the 10th
cycle, and lower figures are all the curves during the entire life cycle. Aging of the

battery and changes in charge/discharge protocols cause the curves to shift. c The
structure of the proposed PINN, where u and û represent the true and estimated
SOH, t and x represent cycle and features, the superscript i represents sample
index, and the subscripts t and x represent the corresponding partial derivatives.
The functions f( ⋅ ) and g( ⋅ ) respectively model the mapping between features to
SOH and the degradation dynamics of the battery, and F ð�Þ and Gð�Þ represent the
neural networks used to approximate f( ⋅ ) and g( ⋅ ) (see section “Methods” formore
details).

Table 1 | The chemical components and basic experiment conditions for four datasets

Dataset Batch Chemical component Nominal capa-
city (mAh)

Cut-off vol-
tage (V)

Experiment tempera-
ture (°C)

Number
of cells

XJTU 1,2,3,4,5,6 LiNi0.5Co0.2Mn0.3O2 2000 2.5–4.2 Room temperature 55

TJU 1 Li0.86Ni0.86Co0.11Al0.03O2 3500 2.65–4.2 25,35,45 66

2 Li0.84Ni0.83Co0.11Mn0.07O2 3500 2.5–4.2 25,35,45 55

3 Blend of 42 (3) wt.% LiNiCoMnO2 and 58 (3) wt.%
LiNiCoAlO2

2500 2.5–4.2 25 9

MIT – LiFePO4 1100 2.0–3.6 30 125

HUST – LiFePO4 1100 2.0–3.6 30 77

The charge/discharge protocol varies among different datasets.

Fig. 2 | The degradation trajectories of the XJTU battery dataset. There are 6
batches (55 batteries) in total, all batches contain 8 batteries except batch 2 which
contains 15 batteries. The charge/discharge protocols are different among batches.
See Supplementary Note 1 for more details.
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Specifically, they were cycled under a fast-charging experiment with a
one-step or two-step fast-charging policy, and discharged at 4 C. The
experiment temperature is 30 °C.

Feature extraction
Robust features can often improve the performance of SOH estima-
tion. However, how to extract general and robust features is a worthy
research problem. In existing studies, various feature extraction
methods for specific datasets and charge/discharge protocols were
proposed, yet the generalization of features has been insufficiently
considered. There are few studies on methods for extracting general
features for different battery types or charge/discharge protocols. To
extract more robust and generalizable features, we propose a method
to extract features from a short period of charging voltage curve and
current curve through observation and exploration of multiple data-
sets. It is an undoubted fact that the discharging process of the battery
is user-specific. In contrast, the charging process is essential and more
fixed and regular, and the probability of thebatterybeing fully charged
is relatively high. We found that most datasets contain constant cur-
rent and constant voltage (CC-CV) chargingmodes. For the four public
datasets we used, no matter what strategy the battery is discharged
with or whether it is fully discharged, it will eventually be fully charged
when charging.

Therefore, we selected a short period of data before the battery
was fully charged to extract features, as shown in Fig. 1b. Define the
charge cut-off voltage of a battery as Vend, and the voltage data whose
value is within [Vend−0.2,Vend] V is selected. For the current data, we
choose the data with the current between 0.5 A and 0.1 A during the
constant voltage charging. Regardless of whether the battery is fully
discharged, as long as the battery is fully charged, the voltage range
and current range always exist.

The mean, standard deviation, kurtosis, skewness, charging time,
accumulated charge, curve slope, and curve entropy from the selected
current and voltage curves, respectively (these features are numbered

1–16, respectively. See Supplementary Note 2 for more details) are
extracted. An illustration of extracted features from XJTU dataset
batch 1 is given in Fig. 3a. Further, we extracted features from 387
batteries in 4 datasets respectively, and calculated the Pearson corre-
lation coefficient between features and SOH within each dataset, as
shown in Fig. 3b.

Basedon experimental phenomena and analysis of Fig. 3b,wegive
a natural conjecture: the magnitude of the correlation coefficient
between each feature and SOH is related to the chemical composition
of a battery and is less affected by the charge/discharge protocols. To
the best knowledge, we are the first to focus on this phenomenon. It
can be seen from Table 1 that both the XJTU dataset and the TJU
dataset are LiNiCo-x type batteries. Even though they have completely
different nominal capacities and charge/discharge protocols, the fea-
tures extracted from our selected range are highly similar. For exam-
ple, there is a very strong negative correlation between features 11–16
and SOH. Features 9 and 10 have a strong positive correlation with
SOH. In contrast, the MIT dataset and the HUST dataset are both
LiFePO4batteries. Features 11–16 show aweak positive correlationwith
SOH, while features 9 and 10 show a negative correlation with SOH.
Besides, features 3–6 and 8 of the latter two datasets show a strong
positive correlation with SOH.

SOH estimation
The extracted 16 features and time (cycle) are used as inputs of the
proposed PINN to estimate SOH. To reduce the impact of the differ-
ence in feature magnitude on the model and make the model training
more stable, themin–max normalization is performed on the features.
That is, all features are scaled to the range [−1,1]. The SOH estimation
results of the proposed PINN on 4 datasets are given in Fig. 4a (the
number of test batteries in each dataset can be found in Table S2.

To demonstrate the advancement of the proposed PINN, Multi-
Layer Perceptron (MLP) with the same structure and parameter
amounts and Convolutional Neural Network (CNN) with similar
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Fig. 3 | An illustration of extracted features and correlation coefficients.
a Features of 8 batteries from the XJTUdataset batch 1. The x-axis of each subfigure
is SOH, and the y-axis is the normalized value of the corresponding feature. The
number on the right side of each subfigure represents the feature number.

b Correlation heatmap between extracted features and SOH in four datasets. The
numbers 1–16 represent 16 features, and theorder of features is consistentwith that
in (a).
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(a)

(b)

Fig. 4 | The illustrations of SOH estimation results. a The SOH estimation results
of proposed PINN on four datasets. The predicted and true SOH are distributed
near the diagonal, indicating that themodel performswell.bDistributions ofmean
absolute error (MAE), mean absolute percentage error (MAPE), and root mean
square error (RMSE) of 3models (theproposedPINN (Ours),multi-layer perceptron

(MLP), and convolutional neural network (CNN)) on four datasets. Each error bar
contains 10 points (10 experiment) and is marked with mean and standard devia-
tion lines. Compared with the other two methods, our method has smaller pre-
diction errors and is more stable. Source data are provided as a Source Data file.
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parameter amounts are used as comparison methods. The details of
MLP andCNNcanbe found in SupplementaryNote 3. For each dataset,
we divide the training batteries, validation batteries, and test batteries
approximately in a ratio of 6:2:2. The number of test batteries in each
dataset can be found in Table S2. To ensure fairness, the numbers of
test batteries are evenly distributed throughout the dataset, as shown
in Tables S3–S6. The results of the 3 models on the 4 datasets are
shown in Table 2 (only the average test errors on each dataset are
given, and the test results of each battery can be viewed in
Tables S3–S6. It can be seen from the table that our method has the
smallest estimation errors in most cases. The average MAPE of the
proposed PINN on the 4 datasets is 0.85%, 1.21%, 0.65%, and 0.78%,
while that of MLP is 2.60%, 1.72%, 0.83%, and 0.83%. It is worth noting
that they have the same number of parameters and model structure
during inference.

Further, to reflect the stability of the model, the training and
testing process of each model on each dataset is repeated 10 times.
The test results are shown in Fig. 4b. From the figure, we can see that
our proposed PINN is the most stable on all tasks and all metrics. The
sample size in each batch of the XJTU battery dataset is small, causing
significant fluctuations in MLP and CNN. In contrast, our method is
more stable and yields a smaller test error. For HUST dataset and MIT
dataset, they contain a large number of training samples, so the fluc-
tuations of MLP and CNN become smaller, and the test errors become
smaller. However, our proposed PINN is still the best-
performing model.

Experiments with small samples
Our proposed PINNmodels battery degradation dynamics, taking into
account more physical laws and thus can be trained with less data.
Compared with pure data-driven methods, our method can show
greater superiority when the amount of available training data is small.
To verify the above inference, small sample experiments are con-
ducted on the XJTU dataset and HUST dataset.

Specifically, we use 1 battery data to train 3 models, and test on
multiple batteries (the test set is the sameas in 2.4), and record the test
results. In addition, we gradually increase the number of training bat-
teries and observe the performance change of each model on the test
set. The results are given in Table 3 and Fig. 5 (only the batch 1 results
are given for the XJTU dataset, more results can be found in Table S7
and Fig. S5).

It canbeobserved thatour proposed PINNobtains the best results
in all tasks and settings. As the number of training batteries increases,

Table 2 | The results of proposed PINN (Ours), multi-layer
perceptron (MLP), and convolutional neural network (CNN)
on four datasets

Dataset Batch Ours MLP CNN

MAPE RMSE MAPE RMSE MAPE RMSE

XJTU 1 0.0070 0.0094 0.0260 0.0277 0.0270 0.0330

2 0.0113 0.0122 0.0275 0.0304 0.0298 0.0352

3 0.0086 0.0100 0.0211 0.0237 0.0177 0.0212

4 0.0071 0.0105 0.0200 0.0235 0.0150 0.0189

5 0.0105 0.0135 0.0183 0.0217 0.0350 0.0453

6 0.0063 0.0097 0.0204 0.0242 0.0149 0.0194

TJU 1 0.0164 0.0158 0.0206 0.0197 0.0198 0.0208

2 0.0119 0.0132 0.0149 0.0157 0.0143 0.0149

3 0.0080 0.0079 0.0150 0.0144 0.0124 0.0125

MIT 0.0065 0.0074 0.0079 0.0087 0.0065 0.0075

HUST 0.0078 0.0087 0.0080 0.0090 0.0074 0.0087

MAPE is themean absolute percentage error, and RMSE is the root mean square error. The best
results are shown in bold. All values are averaged from ten experiments.

Table 3 | Results of small sample experiments on the XJTU
dataset batch 1 and HUST dataset

Dataset Train
batteries

Ours MLP CNN

MAPE RMSE MAPE RMSE MAPE RMSE

XJTU 1 0.0141 0.0184 0.0343 0.0390 0.0929 0.0949

2 0.0105 0.0134 0.0267 0.0304 0.0728 0.0826

3 0.0069 0.0096 0.0347 0.0383 0.0548 0.0666

4 0.0056 0.0076 0.0292 0.0327 0.0560 0.0647

HUST 1 0.0446 0.0485 0.0601 0.0682 0.3614 0.1550

2 0.0178 0.0202 0.0391 0.0461 0.0826 0.0925

3 0.0154 0.0181 0.0251 0.0287 0.0514 0.0618

4 0.0144 0.0173 0.0253 0.0288 0.0429 0.0521

MAPE is themean absolute percentage error, and RMSE is the root mean square error. The best
results are shown in bold. All values are averaged from ten experiments. The “Train Batteries”
means that we use 1, 2, 3, and 4 batteries to train the model respectively, and then test it on
test set.

(a) (b)

Fig. 5 | An illustration of test root mean square error (RMSE) distributions for
three models (the proposed PINN (Ours), multi-layer perceptron (MLP), and
convolutional neural network (CNN)) on two datasets. Each error bar contains
10 points (10 experiment) and is marked with mean and standard deviation lines.
The “1 battery” in the legendmeans thatweonlyuse thedata of 1 battery to train the

model. Others are similar. As the number of batteries increases, the performanceof
the threemodels is getting better. However, ourmethod still performs best among
them. a The results on the XJTU dataset batch 1. b The results on the HUST dataset.
Source data are provided as a Source Data file.
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the test errors decrease for all 3 models. This is a generally accepted
fact: increasing the number of training samples can improve themodel
performancewhen the training data is small. In Fig. 4b, due to the large
number of samples in the HUST dataset, the performance of the CNN
andMLP is comparable to that of our PINN. This also illustrates the fact
thatwhen the structure or number of parameters of themodels are the
same or similar, given enough training samples, the model perfor-
mance does not differmuch. However, it is evident from Fig. 5 that our
method has a significant advantage when the number of training
samples is small. In addition, it is worth noting that the performance of
our PINN trained with only 1 battery is comparable to that of MLP and
CNN trained with 3–4 batteries, which demonstrates the superiority of
our PINN in the small sample scenario.

Fine-tuning between different datasets
Fine-tuning is one implementation of transfer learning, which
improves learning ability by rapidly tuning the model using a small
amount of newly collected data. The advantage is that it can use the
massive data collected in other scenarios (source domain) to pre-train
a model and learn the essential relation between features and labels.
Then a small amount of target domain data is used to quickly fine-tune
themodel to obtain goodperformance.Most of the existing studies on
transfer learning for SOH estimation are transfers between different
charge/discharge protocols, and there are few studies on transfers

between different datasets (different chemical compositions). In this
paper, we combined 4 datasets in pairs for fine-tuning experiments.

We believe that the degradation dynamics Gð�Þ are independent of
charge/discharge protocols and datasets, while the solution F ð�Þ is
related to them. After learning from massive data, Gð�Þ should contain
general information that can reflect the nature of battery degradation,
which is useful for cross-scenario SOH estimation. Therefore, we only
fine-tune the weights of the solution F ð�Þ and make the weights of
dynamics Gð�Þ frozen, as shown in Fig. 6b.

We carried out fine-tuning experiments and source-only experi-
ments, and alsocompared themwith the small sample experiments.All
results are given in Table 4. It can be seen from the figure that the fine-
tunedmodel is significantly better than the source-only method. What
ismore, when there is only 1 labeled target domain battery, themodels
following the “pre-training—fine-tuning”paradigmperformbetter than
models trained directly using 1 target domain battery. This demon-
strates the effectiveness of the “pre-training—fine-tuning” paradigm.
For the XJTU dataset and TJU dataset, even if the model is trained with
2 target domain batteries, its performance is not as good as that of the
model fine-tuned with 1 target domain battery. This also proves that
dynamics Gð�Þ has learned useful information from a large amount of
data in the source domain.

There also seem to be some intuitively correct but less obvious
insights if Table 4 is revisited from a fairer perspective, i.e., ignoring

(a) Training

(b) Fine-tuning

Frozen

Fig. 6 | An illustration of the proposed physics-informed neural network. a The
extracted features x and cycle t are used to estimate SOH u. The û represent the
estimated SOH, and the subscripts t and x represent the corresponding partial
derivatives. Neural networks F ð�Þ and Gð�Þ is used to model the mapping between

features to SOH and the degradation dynamics of battery, respectively. bWhen the
proposed PINN is applied to transfer learning scenarios, the dynamics Gð�Þ is frozen
and only solution F ð�Þ is fine-tuned.

Table 4 | The test root mean square error (RMSE) of fine-tuning experiments among four datasets

Fine-tuning Source-only Train with target cell

XJTU TJU MIT HUST XJTU TJU MIT HUST 1 2

XJTU – 0.0100 0.0145 0.0104 – 0.0967 0.1329 0.0733 0.0184 0.0134

TJU 0.0093 – 0.0119 0.0146 0.1266 – 0.1674 0.1266 0.0121 0.0202

MIT 0.0239 0.0272 – 0.0248 0.0347 0.1277 – 0.0561 0.0324 0.0142

HUST 0.0333 0.0343 0.0307 – 0.1131 0.2008 0.0801 – 0.0485 0.0202

The top 3 results are in bold, italic, andunderlined respectively. All values are averaged from ten experiments. View the table in terms of rows. Thefirst row represents that the XJTUdataset is used as
the target domain, and other datasets are used as the source domain. “Fine-tuning”means that the PINN was trained on the source domain, then fine-tuned with the data from the 1st battery in the
target domain, and tested on the test set of the target domain. “Source-only”means that the PINNwas trained on the source domain, and then tested on the test set of target domain directly. “Train
with target cell” represents that the PINNwas trainedwith 1 or 2 batteries from the target domain and then tested on the test set of the target domain (the sameas the small sample experiments). For
convenience, we only select the data in XJTU batch 1 to represent the XJTU dataset. Similarly, batch 3 of the TJU dataset is used to represent the TJU dataset.
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the last columnof the table. Both the XJTU dataset and the TJU dataset
are LiNiCo-x batteries, and the correlation between the features and
SOH ismore similar (see section “Feature extraction” for correlations),
so the fine-tuning effect between them is better. Similarly, both MIT
and HUST are LiFePO4 batteries, and the fine-tuning effect between
them is also promising. This may be a meaningful finding, and we will
continue to study it in the future.

Discussion
Accurate SOH estimation facilitates health management and main-
tenance decisions of lithium-ion batteries. Existing SOH estimation
methods need to extract different features for different datasets, and
the performance of the model fluctuates greatly. In this work, we
propose a general PINN for battery SOH estimation. Specifically, we
propose a general feature extraction method to extract statistical
features from a short period of data before the battery is fully charged,
which is included in batteries charged with a constant-current and
constant-voltage mode. Then, we modeled the battery degradation
dynamics with a PINN, and the SOH was estimated by taking the
extracted features as inputs.

To validate our approach, we performed battery aging experi-
ments and developed a dataset with 55 batteries. Finally, we validate
our method on 387 batteries with different chemistries and charge/
discharge protocols from 4 large-scale datasets. The results demon-
strated the effectiveness and feasibility of our proposed method.
Further, we conduct small sample experiments and transfer experi-
ments, proving that considering physical knowledge helps data-driven
models to learn faster and better from data. Our study highlights the
promise of physics-informed machine learning in battery degradation
modeling and SOH estimation. It can facilitate the rapid development
of battery management systems for next-generation batteries using
existing experimental data and small new data.

Battery degradation modeling and SOH estimation are research
hotspots in the field of battery healthmanagement. As batteries aging,
various interface degradation processes occur, along with the loss of
lithium inventory and active materials, leading to increased resistance
in ion and electron transfer as well as intercalation reactions, thereby
resulting in changes in their charging curves46. Consequently, the
charging curve contains rich information on the degradation process.
However, using charge and discharge curves to estimate battery SOH
may fall into the trap of information leakage. Geslin et al.47 pointed out
that inconsistent charging and discharging protocols, usage condi-
tions, etc. may lead to information leakage, which is a serious problem
thatmay be ignored by scholars. They believe that a fixedCC-CVmode
can alleviate the problem of information leakage. Hence, it is advisable
to avoid incorporating factors related to internal battery quality,
manufacturing variability, and usage conditions as much as possible
when performing SOH estimation tasks. In our study, the features are
extracted from a small segment of data from the CC-CV stage before
the battery is fully charged, which is independent of the battery usage
conditions. This ensures the usefulness and versatility of the features
we extracted, while avoiding the problem of information leakage
causedby inconsistent chargingprotocols or batteryusage conditions.
During the training and test stage, we train the model with data from
battery A and test it on battery B; instead of training the model with
early data from battery A and testing it with later data, which avoids
information leakage from the training set to the test set.

Whenbuilding the SOHestimationmodel,weproposed aPINN for
battery SOH estimation. Physics-informed neural network holds pro-
mise as an effective avenue for leveraging artificial intelligence to
address practical engineering problems. By amalgamating traditional
physics models with neural networks models, it can more accurately
capture the intricate dynamic behavior of battery systems, thereby
facilitating more reliable and precise state estimation. However, this
burgeoning field still requires further exploration by scholars. Within

the framework proposed by Aykol et al.38, Hybrid methods, which
utilize physical equations to constrain neural networks or integrate
physical equations into neural networks, will become dominant in the
long term. This class of hybridmethods have the potential to blend the
causality and extrapolation capabilities of physics-based models with
the speed, flexibility, and high-dimensional capabilities of neural net-
works. However, the limitation of thesemethods lies in the complexity
of the battery’s physical model (e.g., the P2D model), which contains
numerous parameters, and the internal parameters of the battery are
difficult to collect. There is currently no satisfactory method to
seamlessly integrate physical models and neural networks. The PINN
proposed in this paper is modeled from the perspective of empirical
degradation and state space equations, serving merely as an explora-
tion of such hybrid methods and acting as a catalyst for further
research. Additionally,we only consider extracting features fromeasily
accessible current and voltage data. As more data and internal vari-
ables become available, more complex electrochemicalmodels can be
considered. The optimal integration of battery governing equations
and neural networks for health management within the constraints of
existing data and computational resources remains ripe for further
exploration.

Methods
Battery degradation modeling
Battery aging is primarily characterized by a decrease in available
capacity and an increase in internal resistance, typically following a
declining trajectory. To accurately describe the battery degradation
trajectory, scholars have proposed various empirical models to
describe the loss of battery capacity as a function of time or cycle
numbers, including the linear model48, exponential model49,50, power-
law model51, and failure forecast model (FFM)52, etc. These models all
describe the battery’s degradation trajectory as a univariate function
of time.

However, representing the degradation trajectory of batteries
solely as a univariate function of time oversimplifies the process. In
fact, battery degradation is not only related to time but also related to
charging rate, discharging rate, calendar time, temperature, depth of
discharge (DOD), etc. For example, Xu et al.53 divided battery aging
into calendar aging and cycle aging, which considered factors such as
state-of-charge (SOC), DOD, cell temperature, and solid electrolyte
interphase (SEI) film growth. They modeled calendar aging and cycle
aging as functions of calendar time, SOC, DOD, and temperature.

Therefore,modeling the degradation trajectory of a battery solely
as a function of time is inadequate. In this study, we propose to model
it as a multivariate function:

u= f ðt,xÞ, ð1Þ

where t represents time and x represents a vector composed of SOC,
DOD, temperature, charge rate, discharge rate, health indicators (HIs),
and all other factors. In our work, x represents the HIs extracted from
the charging data (see “Feature extraction” section for more details).

Without loss of generality, to describe the degradation dynamics
of the battery, its SOH decay rate can be described as:

∂u
∂t

= g t,x,u; θð Þ: ð2Þ

The above equation is an explicit partial differential equation (PDE)
parameterized by θ, and g( ⋅ ) represents the nonlinear function of t, x,
and u. The function g( ⋅ ) characterizes the internal degradation
dynamics of the battery, and by altering this nonlinear function, var-
ious forms of degradation can be represented. Models such as linear
model, exponential model, power-law model, and FFM can be viewed
as particular cases of Eq. (2) when only the time is considered.
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Physics-informed neural network
An unavoidable problem is that the explicit form of g( ⋅ ) is unknown
and difficult to obtain. In response to similar problems, Sun et al.36

proposed a sparse regression physics-informed neural network that
exploits sparsity to learn the parameters θ of g( ⋅ ) from a given can-
didate set. Raissi et al.54 proposed deep hidden physics models to
model g( ⋅ ). Inspired by54,55, we propose to use a more generalized
function approximator g 0ð�Þ with parameters θ0 to represent the non-
linear dynamics g( ⋅ ). Therefore, Eq. (2) becomes:

ut≈g
0 t,x,u,ut ,ux,uxx, � � � ;θ0� �

: ð3Þ

In the equation, ut =
∂u
∂t , we employ a neural network F t,x;Φð Þ with

learnable parameters Φ to model f(t, x) and utilize automatic differ-
entiationmechanisms to computeut.ux =

∂u
∂x1

, ∂u
∂x2

, � � �
h i>

represents the
first-order partial derivative of u with respect to x, and uxx represents
the second-order partial derivative. One advantage of this approach is
that we do not need to specify a candidate basis function set for g( ⋅ ),
but instead employ a more generalized approximators g 0ð�Þ. The
function approximator g 0ð�Þ propose amoreflexible relationship to t,u,
x, and their arbitrary order partial derivatives. A neural network G �ð Þ
with learnable parameters Θ is used to model g 0ð�Þ so that it can learn
the aging mechanism of the battery from the given x, t, and other
partial derivatives. To balance accuracy and computational complex-
ity, we only consider the influence of first-order partial derivatives,
discarding higher-order derivatives.

Building upon the aforementioned analysis, we define a physics-
informed neural networkH37,55 for battery aging:

H : =
∂F t,x;Φð Þ

∂t
� G t,x,u,ut ,ux;Θ

� �
, ð4Þ

where ∂F t,x;Φð Þ
∂t represents the partial derivation of solution neural

network F ð�Þ with respect to t, and Gð�Þ denotes the battery degrada-
tion dynamic equation modeled by the neural network. The structure
of the proposed PINN is shown in Fig. 6.

Equation (4) is derived from Eqs. (2) and (3). However, since it is
fitted by a neural network, its training process is discrete, so it does not
strictly satisfy Eq. (2). For battery SOH, the calculation formula is13:

uk = f ðk,xÞ= Qk

Q0 , ð5Þ

where Qk represents the capacity of cycle k and Q0 represents the
nominal capacity. The SOH value uk coincides with the point on the
degradation trajectory f( ⋅ ) when t = k. We need to make Hðti,xiÞ=0
hold at sample point i to approximate Eq. (2). Therefore, the optimi-
zation process of the PINN needs to adhere to the PDE loss specified by
Eq. (2), i.e.:

LPDE =
XN

i = 1

∣H ti,xi� �
∣
2
, ð6Þ

where superscript i denotes the ith sample and N denotes the number
of samples. Also, the optimization objective includes data item loss
and monotonicity loss:

Ldata =
XN

i= 1

∣ui � ûi∣
2
, ð7Þ

Lmono =
XM

j = 1

XNj

k = 1

ReLU ûk + 1 � ûk
� �

, ð8Þ

where ûi represents the estimated SOH, M represents the number of
batteries, Nj denotes the number of cycles of battery j, and ReLU( ⋅ ) is
Rectified Linear Unit. The monotonicity loss Lmono is based on the
physical properties of battery degradation, that is, the SOH of the next
cycle should be less than or equal to that of the previous cycle (unless
capacity regeneration occurs). The total function is formulated as:

L=Ldata +αLPDE +βLmono, ð9Þ

where the α and β are trade-off parameters. More details about our
model can be found in Supplementary Note 3.

Transfer learning with physics-informed neural network
Our PINN for battery aging consists of two parts: a solution neural
network F ð�Þ that builds the feature-to-SOH mapping and a neural
network Gð�Þ that models battery degradation dynamics, as shown in
Fig. 6. We believe that the degradation dynamics Gð�Þ are independent
of charge/discharge protocols and datasets, while the solution F ð�Þ is
related to them. Therefore, when our PINN is applied to transfer
learning scenarios, dynamics Gð�Þ is frozen, and only solution F ð�Þ is
fine-tuned, as shown in Fig. 6b.

Data availability
The XJTU battery dataset generated in this study is publicly available in
the Zenodo database under accession code [https://doi.org/10.5281/
zenodo.10963339], as reference56. TheTJUdataset is available at: https://
zenodo.org/record/6405084. The HUST dataset is available at: https://
data.mendeley.com/datasets/nsc7hnsg4s/2. TheMIT dataset is available
at: https://data.matr.io/1/projects/5c48dd2bc625d700019f3204. Source
data are provided with this paper.

Code availability
Our code is available on Github [https://github.com/wang-fujin/
PINN4SOH] or on Zenodo database under accession code [https://
doi.org/10.5281/zenodo.11046967], as reference57.
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