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Self-organization of modular activity in
immature cortical networks

Haleigh N. Mulholland 1, Matthias Kaschube 2,3,5 & Gordon B. Smith 1,4,5

During development, cortical activity is organized into distributed modular
patterns that are a precursor of the mature columnar functional architecture.
Theoretically, such structured neural activity can emerge dynamically from
local synaptic interactions through a recurrent network with effective local
excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous
widefield calcium imaging and optogenetics in juvenile ferret cortex prior to
eye opening, we directly test several critical predictions of an LE/LI mechan-
ism. We show that cortical networks transform uniform stimulations into
diverse modular patterns exhibiting a characteristic spatial wavelength.
Moreover, patterned optogenetic stimulation matching this wavelength
selectively biases evoked activity patterns, while stimulation with varying
wavelengths transforms activity towards this characteristic wavelength,
revealing a dynamic compromise between input drive and the network’s
intrinsic tendency to organize activity. Furthermore, the structure of early
spontaneous cortical activity – which is reflected in the developing repre-
sentations of visual orientation – strongly overlaps that of uniform opto-
evoked activity, suggesting a commonunderlyingmechanismas a basis for the
formation of orderly columnar maps underlying sensory representations in
the brain.

A hallmark of the primary visual cortex of primates and carnivores is
the columnar,modular organization of neural activity. Here, responses
to visual stimuli are both locally correlated among neighboring neu-
rons and globally coordinated in distributed networks that extend
over millimeters1–3, forming a series of active domains that alternate
across the cortical surface with a specific wavelength4. Such so-called
modular organization is clearly evident in the topographic arrange-
ment of selectivity for a variety of visual features, such as stimulus
orientation1–3, ocular dominance5,6, binocular disparity7, luminance
polarity8, and direction selectivity9,10, and is also observed in ongoing
spontaneous activity11,12.

Developmentally, this modular functional organization is also
present in spontaneous activity patterns in the immature cortex well

before eye-opening and the onset of reliable sensory-evoked
responses11,13,14. Correlations in modular spontaneous activity at this
time appear to serve as a precursor to the developing representations
of stimulus orientation11, suggesting that by coordinating the activity
of distant neurons into distributed networks over the course of
development, these early modular activity patterns may play a crucial
role in establishing and refining the functional networks used for visual
perception. Notably, such correlations are present at a time when the
long-range axonal connections that eventually link correlated and co-
tuned domains15,16 are still poorly developed17, and these early corre-
lations donotdependon structured feed-forward inputs11,13. This raises
the possibility that these early spontaneous activity patterns self-
organize during activation of intracortical circuits, such that their
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modular structure forms as an emergent property via recurrent
interactions and without the need of structured inputs11. However, the
circuit mechanisms underlying the generation of modular sponta-
neous activity in the developing cortex remain poorly understood.

Numerous computational studies over the past decades have
demonstrated that modular patterns can emerge in neural networks
with competitive lateral interaction, typically in the form of local
excitation and longer-range lateral inhibition (LE/LI, Fig. 1a)4,18–29.
Included among these are models which recapitulate the modular
structure of spontaneous activity in developing cortex11. Collectively,
this class of models builds upon a theoretical framework first laid out
by Alan Turing30, wherein periodic spatial structures can arise through
a dynamical network that shapes patterns with a system-specific,
finite characteristic wavelength31,32. The mechanism describes at its
core the selective, dynamic amplification around this wavelength
(Fig. 1b)mediated by a network that combines local self-activation and
lateral inhibition33,34. Thismechanismcombines stabilitywithflexibility
in that it enables the robust formation of a modular organization – to
group functionally related neurons facilitating their signal exchanges –
but to achieve this with great flexibility regarding the absolute
spatial position of these modules. While originally conceived in the
context of morphogenesis during development utilizing diffusible
morphogens30,33,35, iterations upon this basic mechanism have long
stood as a theoretical framework for organized activity in the brain.
Here, distributed populations of neurons could self-organize their
activity to producemodular, large-scale patterns from relatively short-
range connectivity andwithout the need for specific structured inputs.
Implementations of this framework have been successfully applied on
both developmental timescales—for example to explain the formation
of orientation preference maps in visual cortex4,18,20,23,27–29—and on the
timescale of neural activity—for example to explain the dynamic
emergence of modular spontaneous events11,19,23,24,26, including during
early development11 when horizonal connections are still mostly short-
range17.

The central theoretical feature uniting these models is the
hypothesis of functional LE/LI, yet empirical evidence for specific
neural connectivity schemes that could support such amechanismhas
been scarce (refs. 36–38; but see ref. 39). Although experiments that
manipulate the relative strengths of excitation and inhibition on a
developmental timescale yield results consistent with LE/LI40, a direct
demonstration of self-organization operating on the timescale of
neural activity remains lacking. An alternative explanation holds that
specifically organized feed-forward inputs, such as those potentially
resulting from interference patterns generated by orderly mosaics of
retinal ganglion cells41–43, would give rise to modular co-activation
within the cortex. Other hypotheses hold that instead of emerging
spontaneously via selective dynamic amplification at synaptic time-
scales, modular cortical activity could result from an anatomical
scaffold, which has been proposed to specifically link distributed
patches of cortex44. The specificity of these nascent clustered hor-
izontal connections would then result in the specific co-activation of
subsets of modules, yielding both correlated spontaneous activity and
the matched tuning properties seen in the orientation preference
map44. Thus, while having strong explanatory power and serving as the
basis for a rich body of computational studies, the role of the LE/LI
mechanism in the formation of modular neural activity in the early
developing visual cortex has remained unclear, and whether cortical
networks enable neural activity to dynamically self-organize at this
early developmental timepoint has not yet been tested in vivo.

To determine whether the modular spontaneous activity seen in
the immature cortex early in development arises from dynamic intra-
cortical LE/LI interactions, we set out to test three critical predictions
of such a mechanism in developing cortical networks by combining
simultaneous in vivo widefield calcium imaging with optogenetic sti-
mulation in ferret visual cortex prior to the onset of visual experience.
Using both uniform and spatially structured optogenetic stimulation,
we confirm these predictions indicating that cortical activity self-
organizes into modular patterns that are strongly biased towards a
characteristic wavelength. Pharmacological blockade of either
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Fig. 1 | Key predictions of LE/LI mechanism that selectively amplifies a char-
acteristic wavelength of activity patterns. a The LE/LI mechanism: short-range
interactions through a network connected with effective local excitation (red) and
lateral inhibition (blue). b Networks with this connectivity scheme can selectively
amplify activity at a characteristic wavelength, Λ. c Simplified one dimensional
schematic, showing that uniform input drive produces spatially modular output
with regularly spaced peaks and troughs close to the characteristic wavelengthΛ of
the network (gray bar). The spatial phase of the output patterns is variable,
dependent on noise conditions (as indicated by dice). d When driven by a struc-
tured pattern with an input wavelength (λI) that is consistent with Λ, the output
activity is biased towards the input pattern. e When driven by a pattern with an
input wavelength that is slightly different than Λ (smaller in this example), the
resulting wavelength of the output activity (λO) is intermediate, sitting between λI
and Λ.
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feedforward inputs or cortical synapses supports that the circuit
mechanism organizing these patterns resides within cortex itself.
Together, these results provide strong evidence that modular activity
patterns in the immature cortex arise as an emergent property from
local intracortical interactions of the type LE/LI. When we compared
these modular patterns to spontaneous activity, we found clear simi-
larities in structure, suggesting that endogenous modular activity also
arises via self-organization through a similar LE/LI mechanism.

Results
Unstructured optogenetic stimulation of visual cortex evokes
structured modular activity
If neural activity self-organizes into modular patterns through a LE/LI
mechanism on the timescale of synaptic transmission, this then leads
to several critical and testable predictions. Firstly, it predicts a break in
the symmetry of neural activity elicited by a spatially uniform input,
leading to the transformation of unstructured input into organized
andmodular outputs that exhibit a characteristicwavelength (denoted
by Λ) (Fig. 1b, c). In such a system, a variety of output patterns at this
wavelength result from the amplification of any variability in activation
that might arise from several sources, including variable initial acti-
vation, noisy signal propagation within the network, and additional
inputs to the network from other brain regions (collectively summar-
ized by the dice in Fig. 1c–e). Thus, repeated presentations should
produce a diverse range of modular patterns from the same uniform
input. Secondly, as the LE/LI mechanism specifies a characteristic
wavelength Λ for activity but does not restrict the spatial phase of
active domains, driving activity with spatially patterned input con-
sistent with Λ should bias the spatial structure of the emerging mod-
ular activity to be similar to the input pattern (Fig. 1d). Finally, unlike a
rigid scaffold, the LE/LI mechanism flexibly amplifies activity around a
characteristic wavelength (Fig. 1b), and thus will transform structured
input with a dominant wavelength different from Λ into activity pat-
terns with an intermediate wavelength, shifted towards Λ (Fig. 1e).

We developed a microscope for artifact-free simultaneous wide-
field calcium imaging and optogenetic stimulation45. This microscope
allows us to project arbitrary patterns onto the surface of the cortex
with high spatial and temporal specificity (Fig. S1), allowing for precise
control of large populations of neurons across millimeters of cortex.
To simultaneously image and optogenetically stimulate excitatory
populations in vivo, we injected layer 2/3 of young ferret visual cortex
with 2 viral vectors, one expressing the calcium indicator GCaMP6s46

and a second expressing a somatically targeted, red-shifted excitatory
opsin ChrimsonR47 (Supplementary Fig. S2). Both viruses expressed
under the synapsin promotor, which predominantly labels excitatory
cells in juvenile ferrets48. Imaging was performed 12–18 days later,
between postnatal days 23 and 29 (P23-P29), prior to eye opening
(approximately P31) (Fig. 2a).

To test the first prediction, we stimulated the cortex with a spa-
tially uniform full-field optogenetic stimulus and found that it elicited a
robust and reliable rise in GCaMP signal in the cortex that emerged
rapidly and was time-locked to the stimulation (Fig. 2b, c, Supple-
mentary Movie 1). Strikingly, this neural activity was highly non-uni-
form, with full-field stimulation evoking modular, patterned activity
that extended over several millimeters of cortex (Fig. 2d), with the
specific pattern of activity varying from trial-to-trial (Fig. 2e). These
opto-evoked modular patterns consisted of regularly spaced active
domains and were highly reminiscent of the modular structure seen
previously in both spontaneous11,14 and visual grating-evoked
activity4,49,50.

To quantify the magnitude and the regularity of the spacing of
active domains of individual opto-evoked events, we defined a mod-
ularity parameter capturing the amplitude of modulation in the auto-
correlation function (see Fig. 2f and Methods). We found that this
quantity showed a significant increase over baseline (Fig. 2g, opto-

evoked: 0.12 (+/−0.01), baseline (200ms prior to stimulus onset): 0.04
(+/−0.01), p < 0.01, n = 8 animals, Wilcoxon signed rank (WSR) test),
demonstrating that organized patterns with pronounced, regularly
spaced modules reliably emerge from spatially uniform inputs. In
addition, increasing stimulus power increased both the modularity of
the pattern and the amplitude of modules (see Methods), with both
showing a sigmoidal relationship as a function of input power, con-
sistent with the presence of a dynamic instability when the input drive
passes a threshold level of neural activation (Supplementary
Fig. S3a–e).

We estimated the spatial wavelength from the autocorrelation of
each individual activity pattern (Fig. 2f) and found that across animals
the wavelength was constrained to a narrow band (Fig. 2h, mean
wavelength: 0.82mm+/−0.01;meanstandarddeviationofwavelength:
0.15mm+/−0.03,n = 8 animals) andwas invariant to stimulus intensity
(Supplementary Fig. S3g, r = 0.003, p = 0.985). Such a narrow dis-
tribution of event wavelength is consistent with the presence of a
characteristic wavelength, as expected with activity produced in a
network through a LE/LImechanism.Note that thewavelength of opto-
evoked eventswas highly similar to that of spontaneous events that we
recorded in the same animal (Supplementary Fig. S4), showing that
this characteristic wavelength also applies to activity patterns that
naturally occur at this stage in development.

To examine the apparent variety of activity patterns elicited by
the same uniform stimulus input, we next computed trial-to-trial cor-
relations across opto-evoked events and sorted these correlations by
hierarchical clustering, revealing considerable trial-to-trial variability
(Fig. 2i). Further, we quantified the number of linear dimensions which
explain the majority of this variance and found that opto-evoked
activity resides in a moderately sized dimensional space (Fig. 2j;
dimensionality = 10.9 (+/−0.1), event number matched (n = 40 events),
n = 8 animals, mean (+/− SEM)). The diversity and variability of opto-
evoked patterns across trials is consistent with trial-to-trial differences
in noise amplified through a LE/LI mechanism (Supplementary
Fig. S5a–c). Notably, this variability was not reflective of an inability of
thedeveloping cortex to respond reliably to a given input, as changeof
luminance visual stimuli through the closed eyelid evoked consistent
patterns of activity that revealed modular ON/OFF preference func-
tional maps (Supplementary Fig. S7), consistent with those seen pre-
viously in older animals8. Altogether, these results demonstrate that
early cortical networks are capable of transforming unstructured
inputs into a rich repertoire of modular activity patterns.

Optogenetic stimulation with structured patterns selectively
biases cortical activity
In self-organizing activity generated through a LE/LI mechanism, small
random fluctuations in activity are amplified around a characteristic
wavelength Λ to produce modular activity. Critically, if cortical net-
works operate in this manner, then selectively modulating the input
drive by imposing a spatially structured optogenetic stimulation at the
characteristic wavelength Λ onto the cortex should produce cortical
activity patterns that reflect the structure of the stimulation pattern, as
we illustrate in a recurrent network model implementing the LE/LI
mechanism (Supplementary Fig. S5d–f, see Methods).

To test this in vivo,wegeneratedoptogenetic stimuli consistingof
random spatial patterns (Fig. 3a) approximating the spatialwavelength
of spontaneous activity. Patterned stimuli produced robust, modular
responses that showed partial similarity with the stimulus on indivi-
dual trials (Fig. 3b) and were strongly overlapping in trial-averaged
activity (Fig. 3c, Supplementary Fig. S6). Trial-to-trial correlations
showed that responses to a given stimulus pattern were selective
(Fig. 3d, Supplementary Fig. S8a;), and structured opto-stimulation
drove more consistent response patterns than uniform stimulation
(Supplementary Fig. S8b). Importantly, both individual opto-evoked
responses (Fig. 3e, f) and trial-averaged responses (Fig. 3g) showed
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significant similarity to the spatial structure of the input pattern
applied to the cortex (Fig. 3f, Individual trial similarity: Stimulus pat-
tern vs evoked response =0.133 (+/−0.024), Trial shuffled =0.030
(+/−0.011), p =0.016, WSR, n = 7 animals; Fig. 3g, Trial averaged simi-
larity: Stimulus pattern vs evoked response = 0.423 (+/−0.038), Trial
shuffled = −0.038 (+/−0.023), p =0.016, WSR, n = 7 animals). The
greater similarity seen in trial-averaged responses compared to indi-
vidual trials was consistent with model results in a regime with strong
noise within the cortical network (Supplementary Fig. S5d–h). Thus,
our results show that the specific pattern of network activity can be

influenced by the structure of input to the networkwhen itmatches its
characteristic wavelength, consistent with the ability of developing
cortical circuits to self-organize activity by amplifying biases in the
inputs into the network.

Cortical networks transform structured inputs towards a
characteristic wavelength
Networks driven by a LE/LI mechanism produce activity by amplifying
most strongly activity modes in a band around the characteristic
wavelength Λ (Fig. 1b). As the LE/LI mechanism operates in a regime
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where networks are neither weakly recurrent (where output patterns
are largely specified by input) nor rigidly scaffolded (where the set of
possible outputs is fixed by the network), inputs withwavelengths that
differ from Λ should produce outputs that lie at an intermediate
wavelength, between Λ and the input. For example, in the case of
limited noise, driving these networks with an input pattern that has a
dominant wavelength slightly smaller (or larger) than this character-
istic wavelength can more strongly activate modes closer to this
smaller (or larger) wavelength, resulting in output activity reaching a
compromise between the input pattern and the network’s inherent
tendency to self-organize activity at a characteristic wavelength.
However, our results above (Fig. 3, Supplementary Fig. S5) suggest the
presence of a LE/LI mechanism operating in a network with consider-
able noise, so we therefore sought to understand how changes in the
input wavelength affect activity patterns in such a regime. To this end,
we studied our recurrent network model in a high noise regime (as in
Supplementary Fig. S5e, f). We found that the transformation from
input to output wavelength is strongly evident in individual trial
responses, which show a wavelength highly similar to the network’s
characteristic wavelength regardless of input (Fig. 4a, b). Averaging
across model responses, instead, revealed the biasing influence of
input wavelength, with activity showing the expected compromise
between the stimulus input and the network’s preferred wavelength
(Fig. 4a, c).

To test whether in vivo cortical networks similarly transform the
wavelength of input activity patterns towards its characteristic wave-
length, we optogenetically stimulated visual cortex with random
bandpass patterns of varyingwavelength (Fig. 4d).We found that from
trial-to-trial, these stimuli evoked a diverse series of patterns (Fig. 4e),
where, regardless of the wavelength of the input stimulus, the wave-
length of the resulting cortical activity on individual trials was highly
similar to Λ (Fig. 4g,i, p >0.3 for all wavelength bins, stimulus patterns
pooled across animals, Wilcoxon rank sum test). However, when we
calculated the mean response across trials of a given wavelength, we
saw that the wavelength of this average response reflected an

intermediate value, falling between the spacing of the input pattern
and Λ (Fig. 4h, i), as predicted by the model (compare Fig. 4c). These
results demonstrate that patterns of cortical activity do not merely
reflect the structure of cortical inputs, nor are they fixed by cortical
networks on a rigid scaffold. Instead, early cortical networks dynami-
cally transform structured inputs into activity patterns shifted towards
the characteristic wavelength, while at the same time reflecting the
biasing influence of the input wavelength, thus confirming a critical
test of the LE/LI mechanism in vivo.

Modular activity can arise through intracortical interactions
The ability to elicit modular activity patterns consistent with a self-
organizing system by directly activating V1 neurons optogenetically
suggests that the circuit mechanisms that organize this activity also
residewithin local intracortical circuits in V1. To rule out the alternative
possibility that opto-evoked modular structure requires instructive
feedforward inputs into the network,we silenced the lateral geniculate
nucleus (LGN), the primary input to visual cortex, with the GABA(A)
agonist muscimol (Fig. 5a). After confirming that visually evoked
responses were eliminated in the cortex (Supplementary Fig. S9), we
repeated optogenetic stimulation of V1, finding that uniform stimula-
tion still evoked strong responses that remained highly modular
(Fig. 5b–e; modularity: baseline = 0.10 (+/−0.01), muscimol = 0.09
(+/−0.01), n = 40 events, p = 0.138, Wilcoxon rank-sum test, mean
(+/−SEM)). These results indicate that cortical circuits are sufficient to
dynamically sculpt modular patterns from a uniform input.

In order to directly assess whether activity propagating through
intracortical circuits is required for opto-evoked activity to become
modular, we next blocked excitatory synaptic activity in our imaging
field through bath application of the glutamatergic antagonist
kynurenic acid (KYN) to the cortex (Fig. 5f). Uniform optogenetic sti-
mulation reliably drove an increase in calcium activity, presumably
through direct activation of cells expressing ChrimsonR and GCaMP,
yet this activity remained spatially uniform and failed to become
modular, exhibiting a flat spatial structure that wasmarkedly different
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from opto-evoked activity in control conditions (Fig. 5g–j; baseline
modularity: 0.19 (+/−0.01), KYN modularity: 0.01 (+/−0.001), n = 40
events, p <0.001, Wilcoxon rank-sum test, mean (+/−SEM)). Together,
these results show that developing cortical networks require intra-
cortical synaptic transmission but do not require specific structure in
feedforward inputs in order to produce modular patterns, further
demonstrating that modular activity in the cortex self-organizes,
emerging out of dynamic network interactions that reside within
cortical circuits.

Uniform opto-stimulation evokes patterns similar to
endogenous cortical activity
Our results demonstrate that the developing cortex can self-
organize to produce modular activity patterns with a characteristic

wavelength. Several lines of evidence suggest that similar self-
organizing mechanisms govern the modular structure of sponta-
neous activity in the early cortex: 1) computational models imple-
menting LE/LI interactions recapitulate the modular structure of
spontaneous activity11; 2) like opto-evoked activity (Fig. 5), modular
spontaneous activity is independent of feedforward inputs11,13; 3)
spontaneous events show a narrow distribution of wavelengths and
closely match both the wavelength and modularity of activity
evoked by uniform optogenetic stimulation (Supplementary
Fig. S4). We therefore sought to compare the modular spatial pat-
terns of spontaneous activity and uniform opto-evoked events, in
order to assess whether a similar network mechanism for self-
organizing activity could underlie spontaneous activity in the early
cortex.
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To address this, we first directly compared the spatial structure of
spontaneous and uniform opto-evoked events by calculating the spatial
correlationbetweenall pairsof activitypatterns.We frequently identified
pairs of opto-evoked and spontaneous events with highly correlated
spatial structure (Fig. 6a), and for the majority of opto-evoked patterns
we could identify at least one spontaneous event showing a similar
pattern of active domains (Fig. 6b, 89.38% (+/−0.03) of opto-events with
correlations>2 standarddeviationsover surrogateevents (seeMethods),
n=8 animals, mean (+/−SEM)). Across all trials, the strength of these
correlations was significantly greater than chance (Fig. 6c; p<0.001 vs
surrogate for 8 of 8 animals, Kolmogorov–Smirnov test) indicating a
strong degree of overlap between opto-evoked patterns and sponta-
neous activity. Similarly, the millimeter-scale correlations across events
that are a hallmark of spontaneous activity in visual cortex11,13,14 are like-
wise evident in opto-evoked activity, where they also show significant
similarity to spontaneous correlations (Supplementary Fig. S10), pro-
viding further evidence for a common network mechanism.

We next asked whether the activity patterns evoked by uniform
optogenetic stimulation span the full repertoire of spontaneous
activity, or rather reflect a biased subset of activity patterns. When
opto-evoked events were projected onto spontaneous principal com-
ponents (PCs), we found no significant difference in the weights of
individual PCs across opto-evoked and cross-validated spontaneous
activity (Fig. 6d, p >0.05 for all components that explain 75% of total
variance). Across animals, the PCs that explained the greatest amount
of the spontaneous variance were highly correlated with the compo-
nents that explained the greatest amount of opto-evoked variance
(Fig. 6e, spontaneous vs opto-evoked PCs: R2 = 0.830, spontaneous vs
surrogate PCs: R2 = 0.102, all PCs pooled across all animals). When
compared to the activity patterns evoked by change in luminance
visual stimuli, we found these patterns occupied a distinct activity
space, which poorly overlapped with both opto-evoked and sponta-
neous activity (Supplementary Fig. S7). Importantly, this indicates that
themodular patterns evoked by uniform stimulation are not the result
of direct activation of the retina by our stimulation light. Together,
these results show that spontaneous andopto-evoked activity reside in
highly similar activity subspaces. This strongly indicates that both
uniform stimulation and spontaneous activity in the cortex self-
organize utilizing the same circuit mechanisms to produce similar
modular activity patterns.

Prior work has shown that spontaneous activity is low dimen-
sional, indicating that it is constrained to a subset of all possible
activity patterns11,14. Although such low dimensionality is consistent
with LE/LI mechanisms that incorporate a degree of heterogeneity in
the system11, it also raises the question of whether activity patterns in
the developing cortex are so constrained that only patterns lying
within the spontaneous activity space can be produced. In fact, such a
constraint would not be expected from cortical activity with self-
organization dominated by LE/LI mechanisms, which instead predicts
that the patterns evoked by a structured input near the characteristic
wavelength can deviate somewhat from those seen in spontaneous
activity (or during uniform stimulation) by reflecting also the structure
of the input drive. The possibility of such deviation is consistent with
our observation that luminance evoked visual responses poorly
explain uniform opto-evoked responses (Supplementary Fig. S7) and
alsowith the biasesweobserve for structed stimulation in Figs. 3 and4.
In order to test this possibility explicitly, we examined the relationship
of the activity patterns evoked through structured optogenetic sti-
mulation at the characteristic wavelength (Fig. 3) with spontaneous
patterns, to determine if these opto-evoked patterns lie entirely within
spontaneous activity, or rather evoke novel patterns of activity con-
sistent with a dynamic network based on a LE/LI mechanism.

To accomplish this, we first found for each individual, spatially
structured opto-evoked event (with wavelengths approximating Λ,
Fig. 3) its maximally correlated corresponding spontaneous event,
which we refer to as its “best match” (see Methods). The similarity of
this best-match event reflects the maximum similarity a given opto-
evoked event has with the repertoire of spontaneous events. We
observed that for all structured opto-evoked events for a given sti-
mulus, we could find a best-match spontaneous event with positive
correlations and some overlapping features. Interestingly, we found
that these evoked events also exhibited novel features that did not
alignwith the bestmatch spontaneous pattern (Fig. 6f, Supplementary
Fig. S11a–c). To test to see if these patterns could be explained by
endogenous activity alone, we again projected opto-evoked patterns
onto spontaneous principal components. This time we found sig-
nificant deviations in the weights of projections onto spontaneous PCs
(Fig. 6g), and that across all stimuli presented, spontaneous PCs
explained a significantly lower total fraction of variance for opto-
evoked events compared to spontaneous controls (Fig. 6h, total
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fraction variance explained: opto =0.62 (+/−0.02), spontaneous cross-
validated control = 0.70 (+/−0.01), n = 21 stimulus patterns, pooled
across animals; p < 0.001, WSR). This unexplained fraction of variance
is consistent with model predictions (Supplementary Fig. S11d, e).
Together, this indicates that while opto-evoked patterns share some
overlap with endogenous activity, structured stimuli can evoke pat-
terns with novel features, suggesting a dynamic compromise between
the structure of cortical inputs and the patterns the cortex endogen-
ously produces. Furthermore, given that the structure of the cortical
input is capable of both biasing outputs and introducing new struc-
tures, themost parsimonious explanation for the similarity in structure
and dimensions between uniform opto-evoked and spontaneous
activity is that both are generated through similar intracortical
mechanisms acting upon similarly unstructured input drive to the
cortex.

Discussion
Network interactions of the form LE/LI are a robust and flexible means
of achieving modular organization within a system, transforming
poorly structured inputs into complex,well-structured, and large-scale
output patterns. By direct in vivo optogenetic stimulation and phar-
macological manipulations, we show that cortical networks transform
both uniform and patterned inputs with various wavelengths into
spatially distributed and regularly spaced modular activity patterns
with a characteristic wavelength, and that this cortical transform takes
place in a specific manner that confirms critical predictions of a LE/LI
mechanism. Thus, our results argue that cortical activity patterns are
not rigidly scaffolded by a set of genetically or anatomically defined
preestablished structures, nor do they require feedforward input in

order to become modular, but rather emerge dynamically through
short-range intracortical interactions.

Self-organization based on local facilitation and lateral inhibition
was first mathematically described by Turing30. While not the only
mechanism for spontaneous pattern formation, it appears to be ubi-
quitous in nature33,51,52 in both animate and inanimate systems across
vastly different scales (e.g. refs. 53–56). Our results are consistent with
such a mechanism operating at neural activity timescales to shape the
structure of spontaneous activity via the selective dynamic amplifica-
tion of patterns near a system specific characteristic wavelength. Such
selective amplification requires the cortical network to operate not far
from the critical point of pattern formation (see Methods), but does
not require fine tuning close to this critical point. For simplicity, we
used amodel in a subcritical regime to study selective amplification in
the presence of structured input drive and noise, but currently we
cannot rule out the possibility that the immature cortex instead
operates in a supercritical regime. In fact, our observation of a non-
linear increase in the amplitude of a modular pattern as a function of
stimulus intensity (Supplementary Fig. S3) could possibly hint towards
a supercritical regime and the presence of a linear instability under-
lying the pattern amplification process. Regardless of whether above
or below the critical point, a LE/LI mechanism would provide the
developing cortex with a robust yet flexible way to generate modular
functional organization in cortical networks.

The considerable overlap between uniform opto-evoked respon-
ses and spontaneous activity—together with their similar dependence
on intracortical activity (Fig. 5 and refs. 11,13)—suggests that the circuit
mechanisms that are being engaged by uniform opto-stimulation of
the cortex are likely to be the same ones that produce spontaneous
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activity in the early developing cortex. Given that correlations in early
spontaneous activity predict features of the future organization of
orientation preference domains11, our results suggest that these same
mechanisms also underlie the structure and modular organization of
functional maps in visual cortex. Therefore, by providing strong evi-
dence for the presence of a LE/LI mechanism in the developing cortex,
this work justifies a critical assumption underlying a long history of
theoretical models that seek to explain the formation of modular
functional maps in V1 of carnivores and primates (e.g.
refs. 4,11,18,20–29).

Notably, the ability of inputs to flexibly bias activity patterns is a
key feature of LE/LI mechanisms, which permit cortical networks to
produce highly organized sets of patterns while also allowing specific
inputs to influence the structure of output activity. Indeed, we show
that optogenetically stimulating with spatially structured stimuli can
bias the spatial structure of evoked patterns and elicit patterns that
deviate from those seen in spontaneous activity. Our results show that
developing cortical networks can selectively, but at the same time
flexibly, respond to the structure of their inputs. In this way the
repeated activation of a given set of inputs over the course of devel-
opment could drive Hebbian plasticity, strengthening these inputs as
well as connections between modular activated regions across the
cortex. Our findings thus suggest how developing cortical networks
may be able to build the reliable responses seen in the mature cortex,
where specific visual stimuli elicit specific and selective modular
responses2,3,5–10. This highlights a key developmental benefit of self-
organization via a LE/LI mechanism: with only short-range lateral
interactions, the cortex can robustly and yet flexibly achieve large-
scale organization that can serve as a template for the orderlymaps of
sensory representations.

Collectively, our results strongly support the presence of a LE/LI
mechanism operating in the cortex, implying the existence of a circuit
correlate of this mechanism. However, the exact neural circuitry
responsible remains unclear. At the time in development that we
examined (approximately 1 week prior to eye-opening), the scale of
horizontal connections in the cortex is on the order of several hundred
microns17,38,39, which suggests that some combinationof excitatory and
inhibitory horizontal connections could account for the characteristic
wavelengthweobserve. A simple implementation of a LE/LI interaction
is by direct short-range excitatory and long-range inhibitory connec-
tions. While there is some work supporting this circuit connectivity in
developing ferrets39, other studiesfind that for themajority of synaptic
connections in visual cortex, the spatial extent of excitation tends to
be longer or roughly equal to inhibition36–38, thus arguing against a
purely anatomical circuit implementation. However, models have
shown that in certain parameter regimesmodular patterns can arise by
generating a functional LE/LI motif with effective lateral suppression
even if the anatomical range of excitation exceeds that of inhibition,
for instance through fast polysynaptic excitatory-to-inhibitory
signaling27,57,58. Thus, while the specific circuit implementation
remains elusive, our results indicate the presence of an effective local
facilitation and lateral suppression structure in cortical networks. Our
observation that the spatial wavelength is virtually unchanged as a
function of laser power (Supplementary Fig. S3g)may provide a useful
constraint in the search of candidate circuit implementations59. Future
studies may be able to uncover the precise mechanistic implementa-
tion by analyzing the connectomics of V1 or using optogenetic tools to
selectively manipulate local circuit elements within the cortex.

Similar to the attractor models that have been proposed pre-
viously to explain spontaneous activity in V1 (exemplified by Goldberg
et al.24), the dynamics of pattern formation in the model used in this
study predict interactions over relatively long (on the order of hun-
dred milliseconds) time scales60. Such long time scales have been
suggested to be unrealistic in the mature cortex61, where balanced
amplification62 could be a plausible alternative. However, this may not

be the case in the immature cortex, where inputs are temporally less
precise63. Although our calcium imaging lacks the temporal resolution
to definitively address the question of timescales in attractor models,
future experiments utilizing voltage imaging or multi-electrode arrays
could provide key insights, and may also help determine whether the
effective intracortical interactions change during cortical maturation,
for instance transitioning from a more recurrent to a more input-
dominated regime.

Why some animal species, such as primates and carnivores,
exhibit modular functional organization of neural activity, while oth-
ers, such as rodents and lagomorphs, do not and instead exhibit ‘salt-
and-pepper’ organization64, is a longstanding mystery in systems
neuroscience65,66. In animals with large brains, modularity has been
proposed to be an efficient way to build circuits by minimizing wiring
length67–69 (although see ref. 70), which may have not been evolutio-
narily advantageous in species with ‘salt-and-pepper’ organization.
However, brain size is not always a good predictor of functional
organization, and a clear rule has remained elusive65,66. Additionally,
new evidence from visual71,72 and optogenetic73 stimulation in mouse
V1 indicates that rodents my exhibit some degree of modular func-
tional organization after all, but on a scale of 50–200 microns. This
opens the interesting possibility that rodent cortical circuits may be
utilizing a similar LE/LI mechanism but on a smaller scale, and future
research will have to investigate whether this is the indeed the case
and, if so, how this mechanism is implemented in the rodent brain.

Altogether, our work provides direct evidence that immature
cortical networks self-organize neural activity, testing in vivo long held
predictions stemming from computational modeling. Our findings
support that large-scale patterns of modular activity emerge from
intracortical interactions, which arise through a dynamic network of
local facilitation and lateral suppression. Notably, themechanisms that
lead to the emergence of these patterns need not be specific to the
visual cortex and could serve as a more universal mechanism for cor-
tical organization throughout the brain, including the entorhinal74,75

and prefrontal76,77 cortices (see ref. 61 for review). Indeed, recent work
has shown that other brain regions— including primary auditory and
somatosensory areas, as well as association areas such as posterior-
parietal and prefrontal cortex —in immature ferret cortex also exhibit
modular activity patterns with quantitative similarity to V1, suggesting
a common underlying circuit mechanismduring initial development78.
Future work will have to assess whether the LE/LI mechanism we
demonstrate in visual cortex generalizes to these other cortical areas.

Methods
In vivo experiments
Animals. All experimental procedures were approved by the Uni-
versity ofMinnesota Institutional Animal Care andUse Committee and
were performed in accordance with guidelines from the US National
Institutes of Health. We obtained 10 male and female ferret kits from
Marshall Farmsandhoused themwith jills on a 16 h light/8 hdarkcycle.
No statistical methods were used to predetermine sample sizes, but
our sample sizes are similar to those reported in previous publications.

Viral injection. Viral injections were performed as previously
described79 and were consistent with prior work11,14. Briefly, we
microinjected a 1:1 ratio of AAV1.hSyn.GCaMP6s.WPRE.SV40
(Addgene) and the somatically targeted AAV1.hSyn.ChrimsonR.mRu-
by2.ST (University of Minnesota Viral Vector and Cloning Core) into
layer 2/3 of the primary visual cortex at P10–15, approximately
10–15 days before imaging experiments. This approach resulted in
widespread labeling with both GCaMP and Chrimson. At the cellular
level, the populations of GCaMP and Chrimson labeled cells were lar-
gely overlapping (Supplementary Fig. S2), although the relative
strength of expression of both GCaMP and Chrimson varied within
cells, as would be expected from stochastic effects resulting from dual
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labeling with two AAV viruses. For injection surgery, anesthesia was
induced with isoflurane (3.5–4%) and maintained with isoflurane
(1–1.5%). Buprenorphine (0.01mg/kg) and glycopyrrolate (0.01mg/kg)
were administered, as well as 1:1 lidocaine/bupivacaine at the site of
incision. Animal temperature was maintained at approximately 37 °C
with a water pump heat therapy pad (Adroit Medical HTP-1500, Park-
land Scientific). Animals were also mechanically ventilated and both
heart rate and end-tidal CO2 were monitored throughout the surgery.
Using aseptic surgical technique, skin and muscle overlying visual
cortex were retracted. To maximize area of ChrimsonR expression,
two small burr holes placed 1.5–2mm apart were made with a hand-
held drill (Fordom Electric Co.). Approximately 1 µl of virus contained
in a pulled-glass pipette was pressure injected into the cortex at two
depths (~200 µm and 400 µm below the surface) at each of the cra-
niotomy sites over 20min using a Nanoject-III (World Precision
Instruments). The craniotomies were filled with 2% agarose and sealed
with a thin sterile plastic film to prevent dural adhesion, before
suturing the muscle and skin.

Cranial window surgery. On the day of experimental imaging, ferrets
were anesthetized with 3–4% isoflurane. Atropine (0.2mg/kg) was
injected subcutaneously. Animals were placed on a feedback-
controlled heating pad to maintain an internal temperature of
37–38 °C. Animals were intubated and ventilated, and isoflurane was
delivered between 1% and 2% throughout the surgical procedure to
maintain a surgical plane of anesthesia. An intraparietal catheter was
placed to deliver fluids. EKG, end-tidal CO2, and internal temperature
were continuously monitored during the procedure and subsequent
imaging session. The scalp was retracted and a custom titanium
headplate adhered to the skull using C&B Metabond (Parkell). A
6–7mm craniotomy was performed at the viral injection site and the
dura retracted to reveal the cortex. One 4mm cover glass (round, #1.5
thickness, Electron Microscopy Sciences) was adhered to the bottom
of a custom titanium insert and placed onto the brain to gently com-
press the underlying cortex and dampen biological motion during
imaging. The cranial window was hermetically sealed using a stainless-
steel retaining ring (5/16-in. internal retaining ring, McMaster-Carr).
Upon completion of the surgical procedure, isoflurane was gradually
reduced (0.6–0.9%) and then vecuronium bromide (0.4mg/kg/h)
mixed in an LRS 5% Dextrose solution was delivered IP to reduce
motion and prevent spontaneous respiration.

Simultaneous optogenetics and calcium imaging mesoscope. To
achieve simultaneous widefield calcium imaging and targeted opto-
genetic stimulation, we built upon previous designs80 to construct a
custom-built mesoscope (Supplementary Fig. S1, see ref. 45). Epi-
fluorescent calcium imaging was illuminated using a 470 nm LED
(Thorlabs M470L5), which was reflected with a long-pass 495 nm
dichroic mirror (Chroma T495lpxr, 50mm) and focused onto the
imaging plane using a Nikon objective (B&H Nikon AF NIKKOR
50mm f/1.4D lens). Emitted lightwas focusedonto the imaging sCMOS
camera (Prime BSI Express, Teledyne) using an additional Nikon tube
lens (B&H Nikon 105mmf/2 D-AF DC lens) and an achromat lens
(Thorlabs, ACN254-040, f = 40mm). GCaMP emission was collected
using a GFP bandpass filter (Semrock, 525/39).

Tomaximize the range of laser stimulus power onto the surfaceof
the cortex and minimize the spectral bandwidth of the stimulation
light in order to mitigate light artifacts, optogenetic stimulation was
driven by a 590 nm continuous wave laser (CoherentMX 590 nm STM;
CW). Laser power intensity was modulated using an acousto-optic
modulator (Quanta-Tech MTS110-A3-VIS; AOM), which controlled the
temporal aspects of the optogenetic stimulation (stimulus onset,
duration, frequency, intensity, and waveform). The maximum power
density at the imaging plane ranged from 14 to 16mW/mm2. The first-
order diffracted beam from the AOM was coupled to a 400 µm multi-

mode fiber (Changchun New Industries (CNI)), passed through a
speckle remover (CNI), and into a DMD pattern illuminator (Mightex
Polygon1000), which shaped the spatial aspects of the optogenetic
stimulus. This patterned light was expanded using tube lens
(f = 100mm) and reflected to the imaging plane with a short-pass
567 nm dichroic mirror (Thorlabs DMSP567L, 50mm). A photodiode
was mounted behind the dichroic to provide precise tracking of sti-
mulus onset times. Light artifacts from optogenetic stimulation were
prevented from reaching the camera with a notch filter (594/23,
Thorlabs NF594-23) in the collection pathway. Focal distances were
adjusted for both the imaging and the stimulation pathways to be
parfocal.

Widefield epifluorescence and optogenetic stimulation. All imaging
of spontaneous activity was done in young animals (P23–29) prior to
eye-opening (typically P31 to P35 in ferrets). Widefield epifluorescence
imaging was performed with μManager (version 2.0.0-gamma1)81.
Images were acquired at 15 Hz with 2 × 2 on camera binning and
additional offline 2 × 2 binning to yield 512 × 512 pixels. Prior to opto-
genetic stimulation, baseline spontaneous activity was captured in 10-
min imaging sessions, with the animal sitting in a darkened room
facing an LCD monitor displaying a black screen.

Optogenetic stimulation was similarly delivered in the absence of
visual stimulation, and the animal’s eyes were shielded from the sti-
mulation laser to prevent indirect stimulation of the retina. Analysis of
the opto-evoked events further confirmed this, as we found that
visually-evoked events poorly explained the spatial structure of opto-
evoked events (Supplementary Fig. S7). For all experiments opto-
stimulation was delivered at 10mW/mm2, except those that investi-
gated the effect of varying the power of the stimulus intensity (Sup-
plementary Fig. S3). Opto-stimuli werepresented for 1 s durationwith a
5 s interstimulus interval. For uniform full-field optogenetic stimula-
tion, the whole FOV of the DMD illuminator was activated. For pat-
terned stimulation (see below), black and white bitmap images to be
projected onto the surface of the cortex were made using Polyscan
software (version 1.2.2, Mightex) or Matlab (Mathworks). To map the
region of the cortex that was responsive to optogenetic stimulation,
we stimulated the cortex with a 4 × 4 grid of approximately 1×1mm
squaresmoving sequentially over the FOV.We frequently saw a robust
response to optogenetic stimulation across the imaging FOV (Sup-
plementary Fig. S12), and animals that failed to show significant
responses to optogenetic stimulation in an area >1mm2 were excluded
from this study.

Spatially structured optogenetic stimuli. We generated artificial
structured patterns to project onto the surface of the cortex by
bandpass filtering white noise (size 256 ×256 pixels) at varying wave-
lengths. Bandpass filtering was applied in the frequency domain by a
hard cutoff outside the band defined by flow and fhigh. For simplicity,
below we provide these cutoffs in units of pixels in the frequency
domain, from which frequencies can be obtained through (f-1)l/256,
where l is the resolution of pixel permm in real space (l = 65 pixels/mm
in this case). We binarized these patterns by setting a threshold at the
68th percentile pixel values, producing isolated blobs with a specific
wavelength. To test the specificity of opto-evoked activity, for each
wavelength we generated three artificial patterns, and then alternated
in stimulating with each pattern (3 patterns with 40 trials each, 1 s
duration, 5 s interstimulus interval). All tested animals were stimulated
withpatterns aimed tobe smaller than the characteristicwavelengthof
the network (flow = 40 pixels, fhigh = 100 pixels; wavelength of
approximately 0.5mm, given) and patterns that approximated the
characteristic wavelength of the network (flow = 60 pixels, fhigh = 100
pixels; wavelength of approximately 0.7mm). For a subset of experi-
ments, we used narrow bandpass patterns to sample a larger range of
wavelengths (5wavelengths varying flow from40 to 120pixelswith step
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size = 20 and setting fhigh = flow + 4, wavelength approx. 0.48 to
1.10mm, n = 2 animals).

Visual stimulation. Visual stimuli were delivered on an LCD screen
placed approximately 22 cm in front of the eyes. All animal eyelids
were closed, except for animals used for LGN silencing experiments
(n = 3 animals) whose eyelids were manually opened prior to imaging.
Full-field change-in-luminance stimuli were used to evoke ON and OFF
responses,with aMichelson contrast of 1. Stimuli werepresentedusing
Psychopy software(2020.2.8)82 for 5 s ON, 5 s OFF. Individual ON/OFF
evoked-events were calculated by averaging evoked responses over
the first 2 s following stimulus onset, and ON/OFF maps were calcu-
lated by taking the average ON or OFF response across trials, with
differencemaps showing the difference between ON –OFF responses.

LGN silencing. To deliver the GABA(A) agonist muscimol to the LGN,
we drilled a craniotomy window (4–11mm from the midline, 7–11mm
from lambda)prior to imaging. Durawas retracted and exposed cortex
was covered and sealed with 2% agarose. To locate andmap the LGN, a
5MΩ electrode (FHC) was driven approximately 7mm down perpen-
dicularly into the brain using a micromanipulator. An alternating ON/
OFF full-field visual stimulus was presented, and successful location of
the LGN was identified by multi-unit or single-unit spike responses to
change-in-luminance stimulation. The electrode was retracted, and
replaced with a pulled glass pipet filled with 100mM muscimol. Five
pulses of 50 nL each were pressure injected into the LGN at 3 depths
along the LGN vertical axis (spaced approximately 500 umapart) using
a glass-pulledpipet tip. Effective silencingwasconfirmedbymeasuring
the loss of ON and OFF responses in the visual cortex (Supplemen-
tary Fig. S9).

Kynurenic acid experiments. To silence propagating synaptic activity
within our imaging field of view, we removed the coverslip cannula
from the imaging window and bath applied approximately 100mL of
2mM kynurenic acid (KYN) to the surface of the cortex. After waiting
approximately 5min for the drug to take effect, we then delivered full-
field optogenetic stimulation to the cortex, using the same stimulus
parameters as above.

Histology and confocal imaging. For a subset of animals, following
imaging animals were euthanized and transcardially perfused with
0.9% heparinized saline and 4% paraformaldehyde. The brains were
extracted, post-fixed overnight in 4% paraformaldehyde, and stored in
0.1M phosphate buffer solution. Brains were cut using a vibratome in
50 µm coronal sections, which were then imaged on a confocal
microscope (Nikon AX R).

Data analysis
Signal extraction for widefield epifluorescence imaging. Image
series were motion corrected using rigid alignment and a region of
interest (ROI) was manually drawn around the cortical region of
GCaMP expression, excluding major blood vessels. The baseline
fluorescence (F0) for each pixel was obtained by applying a rank-order
filter to the raw fluorescence trace with a rank 70 samples and a time
window of 30 s (451 samples). The rank and time window were chosen
such that the baseline faithfully followed the slow trend of the fluor-
escence activity. The baseline-corrected spontaneous activity was
calculated as:

ΔF=F0 =
ðF � F0Þ

F0
ð1Þ

Event detection and preprocessing. Spontaneous: Detection of
spontaneously active events was performed as previously
described11,14. Briefly, we first determined active pixels on each frame

using a pixelwise threshold set to 5 s.d. above each pixel’s mean value
across time. Active pixels not part of a contiguous active region of at
least 0.01mm2 were considered ‘inactive’ for the purpose of event
detection. Active frameswere taken as frameswith a spatially extended
pattern of activity (>80% of pixels were active). Consecutive active
frames were combined into a single event starting with the first high-
activity frame and then either ending with the last high-activity frame
or, if present, an activity frame defining a local minimum in the fluor-
escence activity. To assess the spatial pattern of an event, we extracted
the maximally active frame for each event, defined as the frame with
the highest activity averaged across the ROI.

Opto-evoked: Opto-evoked evoked events were detected by tak-
ing the frame at opto-stimulus offset. Modular activity was reliably
time-locked to the stimulus, andwemade no effort to search for peaks
to minimize the potential of our results being contaminated by
ongoing spontaneous activity.

To preprocess data, all events were mean activity subtracted and
filtered with a Gaussian spatial band-pass filter (σlow = 26 µm and
σhigh = 195 µm). The mean activity of opto-evoked events was non-
modular (Supplementary Fig. S12a), and mean subtraction helped
normalize differences in baseline fluorescence between spontaneous
and opto-evoked events.

Modularity and estimation of event wavelength Λ. To estimate the
wavelength andmodularity of individual calcium events, we calculated
the spatial autocorrelation of the Gaussian highpass filtered image
(Fig. 2f, top). We then took the radial average of the autocorrelation to
get a 1-dimensional autocorrelation function (Fig. 2f, bottom). The
wavelength Λ of the event was calculated as twice the distance to the
first minimum from the origin. Modularity is a measure of the reg-
ularity of the spatial arrangement of the pattern. It was calculated by
finding the absolute difference in correlation amplitude between the
first minimum and the subsequent maximum of the 1-dimensional
autocorrelation.

Modular amplitude. In order to estimate the amplitude of modular
peaks, we measured the average spectral power within a band cen-
tered around the characteristic wavelength, defined as the average
wavelength of spontaneous activity within each animal. We controlled
for FOV size across animals and minimized orientation effects by
cropping each unfiltered opto-evoked event to a 2mm diameter cir-
cular mask centered within the imaging ROI, and then reduced the DC
component of the image by subtracting the mean ΔF/F across the
cropped event frame. From this, we computed the Fourier transform
of each event, took the squared modulus and the radial average to get
the 1D power spectrum. F1 is the average power within a spatial fre-
quency band centered on the characteristic frequency, i.e. the interval
[2π/(Λ−0.06mm), 2π/(Λ +0.06mm)].

Trial-to-trial variability of opto-evoked events. To determine the
trial-to-trial variability inopto-evoked activity, we computed the event-
wise Pearson’s correlation between calcium events (Fig. 2i). To visua-
lize clusters of eventswith similar structure,weperformedhierarchical
clustering of the correlation matrix (linkage threshold set as half the
maximum pairwise distance). Hierarchical clustering was calculated in
Python using SciPy’s library (version 1.7.3) of hierarchical clustering
functions.

When computing the event correlation matrices for spatially
structured opto-evoked activity (Fig. 3d), we did not cluster these
events but instead organized the matrix by stimulus pattern ID. The
trial-to-trial correlation (Supplementary Fig. S8) was summarized as
the mean correlation across all pairs of trials driven by the same sti-
mulus pattern (within pattern), compared to pairs of trials not driven
by that specific pattern (across pattern). Controls were estimated by
random trial shuffling of the stimulus IDs and taking the average
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correlation of event numbermatched trial pairs, then finding themean
across 100 random shuffle simulations.

Similarity of opto-evoked activity and optogenetic stimulus pat-
tern. To quantify how similar opto-evoked activity was to its specific
stimulus input pattern, we calculated the spatial correlation between
each opto-evoked event with each stimulus pattern. The similarity
between the i-th event (Ai) and the j-th stimulus pattern (Sj) is:

ρi,j = corrðAi, SjÞ ð2Þ

where corr is the Pearson’s correlation over space. Thus, for each event
we calculated how similar it was to the specific pattern it was driven
with and can compare this to stimulus patterns that it was not driven
with (Fig. 3e). For quantifying how similar the mean trial response was
to the stimulus input, the same approach was used, except that A
corresponds to the trial averaged pattern. For comparing across ani-
mals (Fig. 3f, g) we took themean across the three stimulus conditions
when stimulus ID matched event ID. We estimated a control by trial
shuffling the event IDs, to determine how much a given evoked
response overlapped with the stimulus pattern by chance (average
across 100 random shuffle simulations).

Similarity between opto-evoked and spontaneous events. To
determine the similarity between individual opto-evoked events and
baseline spontaneous calcium events, we computed the event-wise
Pearson’s correlation between all events from both datasets. To
visualize clusters of events with similar structure (Fig. 6b), we per-
formed hierarchical clustering of the correlation matrix and then
segregated the opto-evoked and spontaneous events and sorted by
these cluster labels. Since the total number of spontaneous events
typically outnumbered the opto-evoked events, for presentation pur-
poseswe randomly subsampledanopto-event numbermatchedgroup
of spontaneous events and showed their correlations with opto-
evoked activity. Statistical analysis of event correlation distributions
included the full correlation matrix of all spontaneous and opto-
evoked events.

To estimate the amount of spatial correlation expectedby chance,
we generated a set of surrogate events by randomly flipping, rotating,
and shifting opto-evoked events, thereby maintaining the statistics of
the images but disrupting any consistent spatial relationships. Rota-
tion angle drawn from a uniform distribution between 0° and 360°
with a step size of 10°, translated shifts were drawn from a uniform
distribution between ±450 µm in increments of 26 µm, independently
for x and y directions. Reflection occurred with a probability of
0.5, independently at the x and y axes at the center of the ROI.
We then computed the surrogate events vs spontaneous event corre-
lation matrix and compared the distributions of correlations for opto-
evoked and surrogate control data (Fig. 6c). We used the
Kolmogorov–Smirnov test to quantify the similarity of distributions.
Individual opto-evoked patterns were considered highly similar to
spontaneous events if their correlation was greater than 2 standard
deviations over the mean surrogate correlation.

To determine whether the amount of overlap between spatially
structured opto-evoked activity significantly deviated from the
amount of overlap that could be expected to occur naturally in
spontaneous activity, we found each opto-evoked event’s best
matching spontaneous pattern. To control for finite sampling size,
best matching pairs were found by finding the maximum event-wise
Pearson’s correlationbetween eachopto-evokedevent and a randomly
subsampled, event number matched subset of spontaneous events
(n = 40). To estimate the null distribution, we did a permutation test
finding the averagemaximum correlation between this same subset of
spontaneous events and a separate, equally sized randomly

subsampled subset of spontaneous events (n simulations = 500),
which was used to find the 95% confidence interval.

Pixelwise correlation patterns. Correlation patters were calculated
using either spontaneous events or opto-evoked events. Correlation
patters were calculated as previously described11,14. Briefly, we down
sampled each spatially filtered event to 128× 128 pixels. The resulting
events were used to compute the correlation patterns as the pairwise
Pearson’s correlation between all locations x within the ROI and the
seed point (s)

C s,xð Þ= 1
N

XN
i= 1

Ai sð Þ � AðsÞ� �� �
Ai xð Þ � AðxÞ� �� �

σsσx
ð3Þ

where A are the events, the brackets 〈 〉 denote the average over all
events and σx denotes the standard deviation of A over all N events at
location x.

Comparison of similarity between correlation networks. To com-
pare the similarity between spontaneous and opto-evoked correlation
patterns within the same animal, we computed the second-order cor-
relation between patterns. For each seed point, we calculated the
Pearson’s correlation between corresponding correlation patterns,
while excludingpixelswithin a 400-μmradius around the seedpoint to
prevent local correlations from inflating the similarity between the two
correlation patterns. To obtain an estimate of the upper bound of
similarity within spontaneous activity given a finite sampling size, we
randomly split spontaneous events into two groups and separately
computed correlations and the second-order correlations between the
halves (n simulations = 100). To determine if the observed networks
aremore similar than chance, we calculated the similarity between the
opto-evoked network and a network calculated from surrogate events
(as above).

Principal component analysis and dimensionality of
calcium events. We estimated the linear dimensionality deff of the
subspace spanned by activity patterns by the participation ratio83:

deff =

PN
i= 1γi

� �2
PN

i= 1γi
2

ð4Þ

where γi are the eigenvalues of the covariance matrix for the N pixels
within the ROI. As the value of the dimensionality is sensitive to dif-
ferences in detected event number, to estimate the distribution of the
dimensionality for each animal, we calculated the dimensionality of
randomly sub-sampled events (n = 40 events,matched across animals,
100 simulations) and took the median of the distribution.

To determine the amount of variance spontaneous activity can
explain of opto-evoked events, we projected opto-evoked variance
onto the principal components of spontaneous activity. The variance
of a dataset A (opto-evoked) explainedby the i-th principal component
pi,B of dataset B (spontaneous) is:

vari,A =
pT
i,B � ΣA � pi,B

TrðΣAÞ
ð5Þ

whereΣA is the covariancematrix of dataset A and pi,B is normalized to
unit length.

Spontaneousprincipal component analysiswas cross-validatedby
segregating spontaneous events into two randomly subsampled
(without replacement)event matched training groups and test groups.
The training group was used to generate the principal component
basis set, and the test group was then projected onto the training
group components to estimate the corresponding variances γi. To

Article https://doi.org/10.1038/s41467-024-48341-x

Nature Communications |         (2024) 15:4145 12



estimate the null distribution and compute confidence intervals, we
performed 100 repetitions of cross-validation. Principal components
were computed using the python library Scikit (version 1.0.2)84.

Quantification andstatistical analysis. Nonparametric testswereused
for statistical testing throughout the study. Random subsampling,
bootstrapping, and cross validation was used to determine null dis-
tributions when indicated. Center and spread values are reported as
mean and SEM, unless otherwise noted. Statistical analyses were per-
formed in Python, and significance was defined as p<0.05. Tests for
significance were always two-sided, unless otherwise indicated.

LE/LI network model
To model our spatially structured optogenetic experiments (Fig. 4,
Supplementary Figs. S5, S13), we build upon previous work11. We
modeled the effects of driving cortical activitywith spatially structured
input patterns in a rate network with recurrent connections following
the scheme of local excitation and lateral inhibition (LE/LI). Pattern
formation in such a network typically involves the selective amplifi-
cation of spatial patternswith a characteristic spatial wavelengthΛ. In a
nonlinear system such selective amplification may be caused by a lin-
ear instability of a uniform solution and the growth of spatial Fourier
modes around the characteristic frequency k = 2π/Λ, sometimes
referred to as the supercritical regime (Fig. 1b illustrates this case).
However, also in a subcritical regime, below but sufficiently close to
this critical point of linear instability and pattern formation, modes
around the characteristic frequency are selectively amplified when
driven by broad-band input, and thesemodes decaymuch slower than
those with low or high spatial frequency. For instance, when stimu-
lating such network with spatial white noise, a spatial pattern emerges
that is dominated by the characteristic frequency. Since the basic
predictions illustrated in Fig. 1 essentially test selective amplification
around a characteristic wavelength, they apply to both regimes. For
the sake of simplicity, we therefore studied our network model in the
subcritical regime, ignoring possible effects due to the saturation of
pattern growth (Supplementary Fig. S3). To this end, we used a linear
rate network model85:

τ
drðx, tÞ

dt
= � r x, tð Þ+μ

X
y

M x, yð Þr y, tð Þ+ IðxÞ ð6Þ

Here, r(x,t) is the average firing rate in a local pool of neurons at
location x, τ is the neuronal time constant (set to 1), and M(x,y) is the
cortical connectivity from location y to x. In themost basic formof the
model, the cortical connectivity is defined as a difference of Gaussians

M x, yð Þ= 1
2πσ2

1

exp � x � y
�� ��2
2σ2

1

 !
� 1

2πσ2
2

exp � x � y
�� ��2
2σ2

2

 !
ð7Þ

where σ1 and σ2 is controlling the spatial range of the excitatory and
inhibitory connections, respectively. The factor μ is controlling the
overall strength of connections, set such that themaximumeigenvalue
of the connectivity matrix is equal to 0.99 (hence the system close to
the critical point of pattern formation). The characteristicwavelengthΛ
of the networkwas directly estimated from the peakof the spectrumof
M anddepends on the connectivity parameters through the expression

Λ2 =
π2σ2

1 ðκ2 � 1Þ
lnðκÞ ð8Þ

where κ = σ2/σ1. In all our simulations we used a network size = 60 × 60
and set σ1 = 1.8 and σ2 = 3.6 (in pixels), resulting in a value of Λ = 11.76
pixels. All modeling results shown in the Figures are expressed in units
of Λ. I(x) is the input to cortical location x, assumed to be constant in

time (described further below). All solutionswere computed at steady-
state via direct matrix multiplication.

Previous work11 has shown that networks with isotropic local
excitatory and lateral inhibitory connectivity fail to produce activity
with long range correlations as large as observed in vivo, but that
adding heterogeneity to the connection weights can produce biolo-
gically realistic activity patterns, correlation structure and dimen-
sionality. To introduce heterogeneity in our connectivity, we
perturbed our network connectivity by multiplying the connectivity
kernel M(x,y), for any fixed location x, with the expression:

1 +hGðyÞ ð9Þ

where h is the strength of the perturbation and GðyÞ is a spatially
structured Gaussian random field (computed by bandpass-filtering an
uncorrelated Gaussian random field using a difference of Gaussians
with σlow = 2, σhigh = 6). Consistent with the network size, G was
implemented as a 60 × 60matrix and chosen to be the same for each x.
Importantly, the effects of network wavelength transformations of
stimulus inputs show a similar bias towards the characteristic
wavelength of the network (Fig. 4a–c) as would be expected from a
network with homogenous, isotropic connectivity (h =0, Supplemen-
tary Fig. S13), demonstrating that the predictions of the LE/LI
mechanism studied here also hold for networks with more realistic,
heterogeneous connectivity (h =0.4).

To simulate the effects of input into the network, to model the
in vivo experimentswith optogenetic stimulation, the input I consisted
of a noise component to reflect the impact of various sources of noise
in vivo (represented as a dice in Figs. 1, 4, Supplementary Figs.
S5 and S13) and a stimulus component:

IðxÞ= ηNðxÞ+ωSðxÞ ð10Þ

The noise N(x) was sampled from an uncorrelated Gaussian ran-
dom field (centered at zero), with its amplitude controlled by the
coefficient η. The stimulus or input drive S(x) was set to 1 for uniform
stimulation (Supplementary Figs. S5a–c and S13b). Structured input
drive (Fig. 4a–c, Supplementary Figs. S5d–h and S13c–h) was gener-
ated analogously to the stimulus patterns used in vivo by applying, in
the frequency domain, a narrow bandpass to spatial white noise, and
then binarizing the resulting pattern at the 68-percentile threshold. To
model the effect of varying wavelengths, we generated structured
inputs with incrementally increasing wavelengths (29 bandpass bins,
varying flow from 1 to 8 with step size = 0.25 and setting fhigh = flow + 2,
n = 10 distinct patterns per wavelength). The amplitude of the struc-
tured input is defined by ω. To estimate the effect on wavelength for
individual activity patterns and stimulus mean responses (Fig. 4b, c),
for each bandpass stimulus pattern we ran 40 simulations varying the
input noise while keeping S constant. We then computed the wave-
length of the individual output activity patterns and the wavelength of
themean output activity across simulations. The spatial wavelength of
theband-pass used is expressed relative to that computed fromEq. (8).
To determine the impact of stimulus versus noise amplitude (Sup-
plementary Fig. S5h), ω was varied from 0.05 to 0.6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All source data for figures are provided with this paper. Due to size
limitations, all original raw data (imaging files) are available from the
corresponding author upon request. Source data are provided with
this paper.

Article https://doi.org/10.1038/s41467-024-48341-x

Nature Communications |         (2024) 15:4145 13



Code availability
Custom code86 used to run linear rate model computational simula-
tions are available at https://github.com/SmithNeuroLab/uniform_
opto. https://doi.org/10.5281/zenodo.10892426.
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