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Diet Mediate the Impact of Host Habitat on Gut
Microbiome and Influence Clinical Indexes by Modulating
Gut Microbes and Serum Metabolites

Jiguo Zhang, Houbao Qi, Meihui Li, Zhihong Wang, Xiaofang Jia, Tianyong Sun,
Shufa Du, Chang Su, Mengfan Zhi, Wenwen Du, Yifei Ouyang, Pingping Wang,
Feifei Huang, Hongru Jiang, Li Li, Jing Bai, Yanli Wei, Xiaofan Zhang, Huijun Wang,*
Bing Zhang,* and Qiang Feng*

The impact of external factors on the human gut microbiota and how gut
microbes contribute to human health is an intriguing question. Here, the gut
microbiome of 3,224 individuals (496 with serum metabolome) with 109
variables is studied. Multiple analyses reveal that geographic factors explain
the greatest variance of the gut microbiome and the similarity of individuals’
gut microbiome is negatively correlated with their geographic distance. Main
food components are the most important factors that mediate the impact of
host habitats on the gut microbiome. Diet and gut microbes collaboratively
contribute to the variation of serum metabolites, and correlate to the increase
or decrease of certain clinical indexes. Specifically, systolic blood pressure is
lowered by vegetable oil through increasing the abundance of Blautia and
reducing the serum level of 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), but it
is reduced by fruit intake through increasing the serum level of Blautia
improved threonate. Besides, aging-related clinical indexes are also closely
correlated with the variation of gut microbes and serum metabolites. In this
study, the linkages of geographic locations, diet, the gut microbiome, serum
metabolites, and physiological indexes in a Chinese population are
characterized. It is proved again that gut microbes and their metabolites are
important media for external factors to affect human health.
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1. Introduction

The composition and inter-individual
change of the gut microbiome are modified
by host genetics and a complex array of
external factors,[1] such as habitats, early
life exposures, diet, age, ethnicity, and
urbanization.[2] Among them, host habitats
have been reported to be a major factor
that affects the composition of the gut mi-
crobiota in different countries/regions.[2c,3]

The influence of habitats as an indirect
factor on the gut microbiota reflects the ac-
cumulative effects of genetic background,
daily habits, diets, and multiple environ-
mental factors.[4] How habitats affect the
gut microbiota has not been elucidated.
Since diet is a key factor in shaping the gut
microbiota, dietary differences in different
regions may be an important factor in
revealing the specificity of gut microbes in
different habitats.

External factors like diet link gut mi-
crobes and serum metabolites with mul-
tiple clinical indexes. First, diet exerts an
impact on the host metabolome with the
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help of gut microbes. For example, dietary fiber can be degraded
by gut microbes such as Clostridium, Butyrivibrio, and Faecalibac-
terium, and produce short-chain fatty acids.[5] Fiber-rich foods
(e.g., fruits and vegetables) can also be degraded by microbes
from the phyla of Firmicutes and raise the circulating level of
indole propionate.[6] Fructose and sucrose can be transferred
to acetate, ethanol, lactate, and succinate by Blautia producta.[7]

Fruit consumption facilitates the level of plasma urolithin B
via Ruminococcus.[8] Second, diet- and microbes-related metabo-
lites can affect human health. For instance, urolithins derived
from the polyphenolics of berries and pomegranate fruits by
the gut microbiota have a variety of health benefits, including
the attenuation of inflammatory signaling, anti-cancer effects,
the repression of lipid accumulation, etc.[9] Indoleacrylic acid
produced by Peptostreptococcus can promote anti-inflammatory
responses.[10] One of the studies conducted by the authors
showed that Bacteroides thetaiotaomicron decreases serum gluta-
mate concentration and inhibits obesity traits such as body mass
index, waist circumference, homeostasis model assessment of
insulin resistance and triacylglycerol.[11] Further, metabolites me-
diate the gut microbial impact on multiple host clinical indexes
revealed by mediation analysis. To take one example, Ruminococ-
cus sp. decreases the level of plasma low-density lipoprotein (LDL)
by fostering plasma tyrosol 4-sulfate, which is a uremic toxin.[12]

Ruminococcaceae UCG-002 improves type 2 diabetes (T2D) by
increasing isolithocholic acids.[13] Nevertheless, the knowledge
of the connections, especially the causal relationships among
diet, the gut microbiome, serum metabolites, and host health is
far from adequate. This is due to the difficulties in systematically
collecting host external factors and clinical indicators and the
high cost of microbiome sequencing in a large population.

To address the above questions, the gut microbiota compo-
sition of 3,224 individuals with a comprehensive record of ge-
ography, dietary habits, nutrients, and serum metabolites (496
individuals) and physiological status information in China was
characterized. In addition, variables significantly correlated with
gut microbial variations were characterized, and gut microbiome
patterns associated with geography, food, and age in the Chi-
nese population were elucidated. Furthermore, the correlations
between diet, the gut microbiota, serum metabolites, and host
phenotypes were assessed. This study provides a basis for system-
atically revealing how external factors affect the gut microbiome,
which in turn affects human metabolic and clinical parameters.

2. Results

2.1. Variables Correlate to the Gut Microbiome in Chinese
Population

In this study, 3,224 healthy participants (aged 18–80, 51%
females) from 330 communities in 89 cities/counties of 15
provinces in the east of the Hu Huanyong Line in China were
included (Figure 1A; Tables S1 and S2, Supporting Information).

Q. Feng
State key laboratory of microbial technology
SD University
Qingdao 266237, China

Their feces and fasting blood samples were collected according
to standardized procedures (see Experimental Section for de-
tails). A total of 109 variables were gathered via questionnaires
or physiological examinations and divided into six categories: ge-
ography, demography, food, nutrients, physiological, and blood
parameters (Table S3, Supporting Information). A microbial cat-
alog of 609 genera from 34 phyla was identified in this cohort by
16S sequencing and taxonomy annotation. Of them, Firmicutes,
Actinobacteria, Proteobacteria, Bacteroidetes, and Verrucomicrobia
were the most dominant phyla (Figure 1B). Additionally, Blautia,
Romboutsia, Bifidobacterium, Clostridium sensu stricto, Lach-
nospiracea incertae sedis, Streptococcus, Clostridium XVIII, Dorea,
Ruminococcus2 and Fusicatenibacter were the ten most abundant
genera (Figure 1C; Figure S1A, Supporting Information).

In this study, permutational multivariate analysis of variance
(Adonis), analysis of similarities (ANOSIM), multi response
permutation procedure (MRPP) and distance-based redundancy
analysis (dbRDA) were applied to analyze the correlations be-
tween host variables and the gut microbiome. It was found that
60 variables were significantly correlated with gut bacterial vari-
ations across all methods (Table S4, Supporting Information).
Adonis analysis showed that geographic factors (community,
city/county, province, region, and area) interpreted the greatest
variance of the gut microbiome. For example, provincial differ-
ences accounted for 17.9% of the microbiome variation. Food in-
take was another important category affecting gut microbiome
composition and accounted for 4.35% of the total (false discov-
ery rate (FDR) < 0.05, Figure 1D). Meanwhile, Spearman’s cor-
relation analysis showed that geographic factors were closely re-
lated to various foods. For example, provincial differences were
significantly associated with the intake of wheat, rice, and pork
(Figure S1B, Supporting Information). Geographic information
represented by provinces and all individual characteristic infor-
mation accounted for 24.43% of the variance of the gut micro-
biome, which suggested that the understanding of the external
factors affecting the gut microbiome remains far from enough.

2.2. Geographic Locations Affect the Composition of the Gut
Microbiota

As shown in Figure 1D, geographic locations were most closely
related to the gut microbiome, and the finer the division of res-
idential areas was, the greater the impact of residential areas on
the gut microbiome would be. To verify this finding, the effects
of geographic locations on the gut microbiota were further ana-
lyzed. The city/county factor was greatly associated with the gut
microbiota profiles in 15 provinces, while the community factor
exerted a significant influence on the gut microbiota profiles
in 31 cities of 12 provinces (Figure 2A). With the expansion
of geographic range, the microbiota dissimilarity assessed by
Bray-Curtis distance increased in different geographic ranges,
while the microbiota similarity indicated by the Pearson coeffi-
cient decreased (Figure 2B). Moreover, inter-group microbiota
dissimilarity was higher than intra-group microbiota dissimi-
larity, while inter-group microbiota similarity was lower than
intra-group microbiota similarity (Figure S2A,B, Supporting
Information). These results suggest that inter-individual geo-
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Figure 1. Overview of gut microbiota composition and associated host factors. A) Graphical summary of the cohort and overview of variables (N =
number of variables collected, n = sample size). Background in the map of China is colored according to region classification. The red curve indicates
the boundary of two area in this study. The red straight line indicates Hu Huanyong line of China’s population boundary. B) The relative abundances
of the top five phylum-level microbiota among individuals (n = 3,224). C) The relative abundances of the top ten genera. D) The effect sizes of host
factors significantly associated with gut microbial variations were evaluated by PERMANOVA (Adonis) filtered based on FDR < 0.05. The bars are colored
according to metadata categories. HLJ, Heilongjiang (n = 235); LN, Liaoning (n = 141); BJ, Beijing (n = 115); SD, Shandong (n = 131); JS, Jiangsu (n =
146); SH, Shanghai (n = 140); ZJ, Zhejinag (n = 142); SX, Shaanxi (n = 140); HeN, Henan (n = 390); HB, Hubei (n = 134); HN, Hunan (n = 457); CQ
(n = 148), Chongqing; GZ, Guizhou (n = 342); YN, Yunnan (n = 130); GX, Guangxi (n = 433).

graphic distance is a significant factor influencing the similarity
of the gut microbiota.

To further explore the impact of geographic distance on the gut
microbiome, differences between HLJ (northernmost province
of China) and other provinces were compared. It was discov-
ered that the dissimilarity increased with geographic distance
(Figure S2C, Supporting Information). Consistently, the geo-
graphic distance between residents in each province and out-
side the province also showed a significant negative relationship
with the Pearson coefficient (Figure S3, Supporting Informa-
tion). Next, the representatives of the northernmost and south-
ernmost residents were selected to calculate Bray-Curtis distance
and Pearson values for the other 3,223 individuals, respectively.
The results also showed that the dissimilarity between represen-
tative and other individuals was significantly positively correlated
with the increase of geographic distance, regardless of where they
were from (p = 3.00 × 10−17, 9.18 × 10−29, Figure 2C,D). How-
ever, the similarity analyzed by the Pearson coefficient was signif-
icantly negatively associated with geographic distance (p = 2.99
× 10−4, 4.99 × 10−19, Figure 2C,D). These results suggest that ge-

ographic distance is inversely correlated with the similarity of the
gut microbiome.

Next, alpha (𝛼)-diversity within specific geographic ranges was
examined. It was noted that individuals from southern China
maintained higher 𝛼-diversity than those from northern China
(Figure S4, Supporting Information). At the provincial level, 𝛼-
diversity varied among the 15 provinces (Kruskal-Wallis, p <

0.0001), with the highest and lowest in CQ and SX, respectively
(Figure 2E; Figure S4, Supporting Information). Concerning beta
(𝛽)-diversity, LDA and PCA showed that all individuals could be
clustered by province, region and area, which indicated signif-
icant differences on the PC1 axis (Kruskal-Wallis, p < 0.0001)
(Figure 2F; Figure S5, Supporting Information). These results
suggest that the gut microbiota of individuals living in the same
place is more similar.

To identify geography-specific microbial signatures, multivari-
ate analysis of linear models (MaAsLin) analysis was performed
on the microbiome composition of 15 provincial groups at the
genus level, respectively. It was observed that each province had
at least one high-abundance genus (Figure 2G). For instance,
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genera Methylobacterium, Salinicoccus, and Fusobacterium were
particularly enriched in HLJ, LN, and JS, respectively, while
Holdemania, Bacillus, and Enhydrobacter were endemic to GX,
GZ and ZJ (Figure S6, Supporting Information). Province-
specific bacteria-based networks showed that the correlations of
the gut microbiota also differed across provinces in addition to
differences in microbial composition, with SH and CQ main-
taining complex bacterial correlations, and SD and ZJ being
simpler (Figure S7, Supporting Information). This suggests
that geographic locations influence not only gut microbiota
composition but also its ecological network. Moreover, a random
forest (RF) model was employed to determine that province an
individual came from, and an average accuracy of 85% across all
provinces was shown (Figure 2H). Of them, the accuracy rate of
SX and CQ was as high as 97%, while that of HB was 65%.

Furthermore, MaAsLin was performed on the microbiota com-
position of seven regional groups at the genus level. Some bacte-
ria were found to be preferentially distributed in certain regions.
To be specific, Lactococcus and Fusobacterium, Acinetobacter and
Asaccharobacter, Corynebacterium and Sphingomonas, as well as
Streptococcus and Blautia were enriched in South, North, South-
west, and East China, respectively (Figure S6, Supporting Infor-
mation).

2.3. Diet is the Main Factor Mediating Geographic Locations and
the Gut Microbiota

To identify variables mediating the impact of geographic loca-
tions on the gut microbiome, the correlations between food,
nutrients, demography, physiological parameters, and different
levels of geographic ranges were analyzed using Cramer’s V
and Adonis. The results consistently showed that all geographic
ranges were most strongly related to food variables, particularly
10 different types of food (Figure 3A,C; Figure S8, Supporting
Information). The food intake of 3,224 individuals in different
geographic regions was analyzed to identify geographic differ-
ences in food consumption among the Chinese population. The
results revealed significant differences in food intake among
15 provinces, seven regions or two areas (Kruskal–Wallis, p <

0.0001, Figure S9, Supporting Information). To be specific, it was
noticed that wheat consumption increased with latitude, while
rice, pork, and vegetable consumption decreased with latitude
(Figure S10, Supporting Information). In addition, individuals
from HeN, SX, and SD (northern China) ate more wheat,
whereas those from HN, GZ, GX, and YN (southern China) ate
more rice, pork, and vegetables (Figure S9, Supporting Informa-
tion). The relationship between food intake and the gut micro-
biota was further analyzed. It was found that ten foods were sig-

nificantly associated with 116 genera (Figure 3D). For instance,
wheat intake showed a significant correlation with Bifidobac-
terium, Blautia, and Eggerthella. These food-associated genera
also exhibited clear geographic differences due to the geographic
preference of food. Bifidobacterium was enriched in individuals
from BJ, SX, and HeN; Blautia was enriched in individuals from
ZJ and YN; Eggerthella was enriched in individuals from YN and
GX (Figure 3D; Figure S11, Supporting Information).

Next, mediation analyses were performed on latitude, food
intake, and gut microbes, which revealed 76 significant medi-
ation links (pmediation < 0.05, Figure 3E; Table S5, Supporting
Information). For example, the intake of wheat and rice could
mediate the effect of latitude on Bifidobacterium (pmediation <

0.001, Figure 3F). Wheat and fish consumption could mediate
the effect of latitude on Blautia and Lachnospiracea incertae sedis
(Figure 3G,H). Regression analysis suggested that wheat intake
and the abundance of Bifidobacterium were positively correlated
with the increase of latitude (𝛽 = 0.36, 0.11), while rice and fish
intake (𝛽 = −0.23, −0.17) and the abundance of Blautia and
Lachnospiracea incertae sedis (𝛽 = −0.08, −0.03) were negatively
associated with it (𝛽 = 0.14, 0.14, 0.04). This indicated that indi-
viduals from higher latitudes (northern China) consumed more
wheat and less rice and fish, which may be the reason for main-
taining more Bifidobacterium and less Blautia and Lachnospiracea
incertae sedis (Figure S11, Supporting Information).

2.4. The Gut Microbiota Mediates the Impact of Food
Consumption on Serum Metabolites

To elucidate the effects of diet and microbiota on serum metabo-
lites, the serum metabolome of 496 residents in HN and GZ
provinces was tested (Table S6, Supporting Information), and an
abundance of 824 serum metabolites was obtained (Figure 1A).
The proportions of variance explained by food, physiology, blood
parameters, and the gut microbiota across the entire serum
metabolome profile were separately calculated. It was shown
that all the included variables collectively explained 53.14% of
metabolome variations. Among them, food and gut microbiota
accounted for 9.77% and 9.61%, respectively (FDR < 0.05, Figure
4A). Next, the associations of each food variable and the gut
microbiota with serum metabolites were analyzed using Spear-
man’s correlation, and 408 and 203 metabolites were observed
to have a significant association with specific foods and gut bac-
teria (FDR < 0.05, Tables S7 and S8, Supporting Information).
As shown in the Venn diagram, 103 metabolites were simultane-
ously linked to food and gut bacteria (Figure 4B,). Of these, 351
associations between 103 metabolites and 27 foods, and 389 asso-

Figure 2. Characterization of geographic-specific gut microbiota signatures. A) The effect sizes of city/county factor and community factor for gut
microbiota variations using Adonis. On the left side of the x-axis, the effect sizes of city/county factor in each province. On the right side of the x-axis,
the effect sizes of community factor in each city/county (FDR < 0.05). B) The microbiota dissimilarity assessed by Bray-Curtis distance and microbiota
similarity indicated by Pearson coefficient in different geographic ranges. C,D) The linear regression of the relationship between Bray-Curtis distance
or Pearson values and the actual geographic distances from the northernmost resident to the other 3,223 individuals (C) or from the southernmost
residents to the other 3223 individuals (D). E) The microbiota 𝛼 diversity indicated by Observed OTUs in 15 provinces. Background colors in the map
of China show the value of local Observed OTUs. F) Linear Discriminant Analysis (LDA) and principal component analysis (PCA) visualizing the beta-
diversity. The values on the PC1 axis in 15 provinces showing downside. The dots were colored according to different province. G) MaAsLin analysis
on the microbiome composition and specific genera in 15 provinces (FDR < 0.01). H) Random forest model to determine a person’s province location
based on province-specific genera. The number represents the prediction accuracy.
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ciations between 103 metabolites and 62 microbiota genera were
detected (FDR < 0.05, Figure 4C).

The relationships among food, the gut microbiota, and serum
metabolites were characterized, and 33 gut microbes-mediated
links between food and serum metabolites were identified
(pmediation < 0.05, Figure 4D; Table S9, Supporting Information).
Interestingly, vegetable oil was the food with the most links
(eight links) with serum metabolites in these two provinces.
Specifically, it led to a decrease in 1-palmitoyl-2-palmitoleoyl-GPC
(16:0/16:1) possibly through increasing the abundance of Blautia
(30.7%, Figure 4E). Blautia mediated the boosting effects of fruit
intake on serum threonate levels (9.5%, Figure 4F), a Vitamin
C degradation product contributing to improved memory and
blood pressure.[14] Another interesting example was that drink-
ing wine may increase serum 2-hydroxy-3-methylvalerate by re-
ducing Clostridium XVIII (7.3%, Figure 4G).

2.5. Serum Metabolites Connect Gut Microbes with Clinical
Indexes

Next, the correlation among foods, gut microbes, serum metabo-
lites, and host physiological parameters was explored. Given
these data from 496 participants of HN and GZ provinces, pair-
wise associations between these variables were tested by Spear-
man’s correlation analysis. It was observed that 26 foods, 79 gut
bacteria, 20 serum metabolites, and 38 host physiological param-
eters were significantly correlated with each other (FDR < 0.25
and p < 0.01, Figure 5A). Among them, 3946 stepwise interac-
tion linkages were along the food-microbiome-metabolite-host
axis (food-microbiome, microbiome-metabolite and metabolite-
host phenotypes) (Table S10, Supporting Information). For ex-
ample, fruit intake was positively correlated with the abundance
of Blautia, which was positively correlated with serum threonate,
a metabolite negatively related to diastolic blood pressure. The in-
take of cake was also positively associated with the abundance of
Streptococcus, which was negatively correlated with serum 1-(1-
enyl-palmitoyl)−2-arachidonoyl-GPE (P-16:0/20:4) positively re-
lated to body mass index. Moreover, rice intake was positively cor-
related with the abundance of Bacillus, which was positively cor-
related with serum azelate (C9-DC), while azelate (C9-DC) was
positively related to glycosylated hemoglobin (HbA1c).

Based on the food-mediated linkage between the gut micro-
biota and serum metabolites (Figure 4D), the mediating role of
serum metabolites between the gut microbiota and physiological
parameters was further assessed. Then, 34 mediation links be-
tween gut bacteria, serum metabolites, and host physiological pa-
rameters were established (pmediation < 0.05, Figure 5B; Table S11,
Supporting Information). Interestingly, Blautia may reduce sys-
tolic blood pressure by reducing the serum level of 1-palmitoyl-
2-palmitoleoyl-GPC (16:0/16:1) (18.3%). However, vegetable oil

was a significant food type increasing Blautia and also decreasing
serum 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (Figure 4E),
which may be a potential pathway for vegetable oil to suppress
systolic blood pressure (Figure 5C). Additionally, fruit also re-
duced systolic blood pressure by raising the abundance of Blau-
tia to improve serum threonate, while threonate mediated the
negative effects of Blautia on systolic blood pressure (12.2%)
(Figure 5D). Combined with Figure 4G, it can be seen that wine
may cause an increase in aspartate aminotransferase by increas-
ing the serum level of 2-hydroxy-3-methylvalerate and decreas-
ing the abundance of Clostridium XVIII (Figure 5E). Collectively,
these results shed light on the ways of how food affects human
health.

2.6. Aging is Associated with Gut Microbes and Serum
Metabolites

Independent of geography and food variables, age was signifi-
cantly associated with the gut microbiome as well (Figure 1D;
Figure S1B, Supporting Information). The composition of the
gut microbiota among youth (aged 18–44), middle-aged (aged
45–59) and old (aged 60–80) groups was compared, and 34 gen-
era of the gut microbiota were found to be differently distributed
among the three groups (FDR < 0.01, Figure 6A). Of them, pro-
biotics Bifidobacterium, Blautia and Lachnospiracea incertae sedis
were enriched in the youth group; Slack, Eubacterium and Ral-
stonia were enriched in the middle-aged group; opportunistic
pathogens Escherichia/Shigella and Clostridium sensu stricto were
enriched in the old group. Linear regression analysis suggested
that Bifidobacterium, Blautia, and Lachnospiracea incertae sedis
were negatively associated with the increase of age, whereas Es-
cherichia/Shigella and Clostridium sensu stricto were positively as-
sociated with it (Figure 6B; Figure S12A, Supporting Informa-
tion).

To assess the correlation between gut microbial composition
and chronological age, an RF analysis was performed to develop
an age prediction model based on microbiota. The model showed
desirable performance with a mean absolute error (MAE) of
10.05 years (Figure 6C), which was comparable to recent studies
(MAE: 8.1-10.1/10.6-13.75).[2d,15] Subsequently, microbial inter-
action networks were built across the entire population at an in-
terval of six years, and microbial interactions were demonstrated
to increase with age and gradually decrease after the age of 66
(Figure 6D). These results suggest that the gut microbiome may
regularly succeed with age.

The correlation of host physiological parameters with age was
analyzed by Pearson correlation, and 28 host physiological pa-
rameters were shown to be significantly correlated with age in
the whole population (Table S12, Supporting Information). Lin-
ear regression analysis proved that systolic and diastolic blood

Figure 3. Mediation linkages among geographic location, diet, and the gut microbiome. A,B) Correlations between foods, nutrient, demographic, phys-
iological parameters, and different geographic ranges using Cramer’s V (A) and Adonis (B) (p < 0.05 and Cramer’s V > 0.2). C) Correlation among
10 geography-associated food analyzed by Cramer’s V based on all samples (n = 3,181). D) The relationship between geography-associated food and
gut microbiota identified by Boruta (on the left) and the relative abundances of food-associated microbiota in 15 provinces. The peak plots are colored
according to phylum. E) Causal linkages among latitude, food, and the gut microbiota by mediation analysis (p < 0.05). F,H) Examples of causal rela-
tionships between latitude, food, and the gut microbiota. The gray lines indicate the associations. The red and blue arrowed lines indicate the latitude
effects on microbiota mediated by specific food. The beta coefficient and p values are labeled at each edge. The proportions of indirect effect (mediation
effect) and mediation p values are labeled at the center of the ring charts.
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pressures, total cholesterol and LDL cholesterol increased signifi-
cantly with age (p< 0.0001, Figure 6E,F; Figure S12B, Supporting
Information). The Pearson correlation between serum metabo-
lites and age in HN and GZ provinces showed a significant cor-
relation between 275 serum metabolites and age (FDR < 0.05,
Table S13, Supporting Information). For example, 1-palmitoyl-
GPG (16:0) and 1-stearoyl-2-arachidonoyl-GPC were positively
correlated with age (p < 0.0001, Figure 6G; Figure S12B, Sup-
porting Information).

Across the population, a Spearman’s correlation analysis
was performed to test the age-related connections between the
gut microbiota, serum metabolites, and host phenotypes, and
243 correlations were found between 35 age-related genera
and 28 host physiological parameters. In HN and GZ popu-
lations, Spearman’s correlation analysis demonstrated 22 asso-
ciations of age-related serum metabolites with gut microbes
and 166 associations with 28 host physiological parameters
(Figure 6H). Notably, Blautia decreased with age and showed
an inverse relationship with several serum metabolites, includ-
ing 1-palmitoyl-GPG (16:0), 1-ribosyl-imidazoleacetate and 1-
palmitoyl-GPE (16:0), which were positively correlated with age.
Unlike Blautia, these serum metabolites were positively corre-
lated with systolic blood pressure, which increased with age to a
large extent (Figure 6H). Therefore, aging-related hypertension
may be induced by the reduction of gut Blautia and the increase
of these serum metabolites during human aging. In addition,
Bifidobacterium also decreased with age and showed a negative
correlation with multiple age-related host physiological parame-
ters, namely total cholesterol, creatinine, HbA1c, and age-related
serum metabolites such as campesterol, 5𝛼-pregnan-3𝛽 and mal-
onate (Figure 6H). This suggests that Bifidobacterium is the
ideal probiotic to alleviate the age-related clinical indexes in the
elderly.

3. Discussion

A majority of microbiome studies to date focused on limited ex-
ternal factors or recruited a small number of participants,[3a,16]

which may risk missing major contributors or ignoring the ef-
fects of confounding factors. In this study, 3,224 individuals with
information on geography, demography, food, nutrients, physio-
logical parameters, the gut microbiome and serum metabolites
were recruited, and the intricate relationships among these fac-
tors within this Chinese population were assessed.

The geographic effect has been observed in several cohort-
based studies,[3–4,17] but factors mediating the geographic ef-
fect on the gut microbiome remain unanswered. It was con-

firmed that geography explained the largest microbiota variation
reported in a Chinese prospective study.[18] More importantly,
it was also found that the smaller the geographic granularity
was, the higher the similarity of the gut microbiota among in-
dividuals from 15 provinces would be based on individual geo-
graphic locations at different levels, which was similar to a pop-
ulation cohort study in Guangdong Province, China.[3a] Unlike
the Guangdong population, the effects of area, region, province,
city/county, community, latitude, and longitude on the gut micro-
biota across China were explored. In addition, it was revealed that
food variables were strongly associated with geographic informa-
tion. Mediation analysis showed that diet mediated the effect of
geographic locations on the gut microbiota. For instance, Bifi-
dobacterium was positively correlated with wheat intake[19] and
latitude since wheat is the main food in most provinces of north-
ern China. For the first time, it was clearly stated that diet is a
driving factor of geographical effect. Of note, the absence of geo-
graphic effect was observed in the American Gut Project,[20] but
such effect was evident in the populations of Congolese[3b] and
Ecuadorian.[17] This observation suggests that living habits and
diets tend to converge among people residing in different regions
of developed countries. In contrast, more pronounced variations
may exist in dietary patterns within different regions of devel-
oping countries, like urban and rural areas. As a result, further
examination of regional dietary preferences is warranted to more
deeply understand the influence of geographic factors on the gut
microbiota.

Despite the wide associations of diet and the gut micro-
biome with individual variations in human plasma or serum
metabolome in several cohort-based studies,[2b,21] the under-
standing of the causal relationship among diet, microbiome and
metabolism in large-scale population cohorts remains limited.
In the current study, the serum metabolites of individuals from
HN and GZ provinces rich in different food sources and Chinese
traditional diets were generated to identify 33 gut microbiota-
mediated mediation linkages between food and serum metabo-
lites. Such linkages offer a profound understanding of the inter-
actions between food and microbiome in maintaining human
metabolic health, as illustrated by all kinds of glycerylphospho-
rylcholine that have previously been related to T2D.[22] Consid-
ering that diet, the gut microbiome, and metabolism are impor-
tant in human health and disease onset,[6,23] 34 mediation links
were established between gut bacteria, serum metabolites, and
host physiological indexes. By combining the mediation relation-
ships between food, microbiome, and metabolites, several link-
ages were discovered along the food-microbiome-metabolites-
physiological index. Among them, fruit intake can reduce systolic
blood pressure by increasing the abundance of Blautia and im-

Figure 4. Influence of the microbiome and diet on inter-individual variation of serum metabolome. A) Contributions of indicated factors to inter-
individual variation in the serum metabolome estimated by the Adonis method (FDR < 0.05). B) Venn diagram indicating the number of metabo-
lites significantly associated with specific foods and gut microbiota genera, as estimated using Spearman’s correlation (FDR < 0.05). C) Association of
serum metabolites and foods or microbiota genera in HN and GZ province (n = 496, FDR < 0.05). D) Mediation links between food, gut microbiota, and
serum metabolites showed by parallel coordinates chart that are significant at FDR< 0.05. Shown are foods (left), gut microbiota (middle), and serum
metabolites (right). The curved lines connecting the panels indicate the mediation effects. E) Analysis of the effect of vegetable oil intake on the levels
of 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) as mediated by Blautia. F) Analysis of the effect of fruit intake on the levels of threonate as mediated by
Blautia. G) Analysis of the effect of wine intake on the levels of 2-hydroxy-3-methylvalerate through Clostridium XVIII. In (E–G), the gray lines indicate the
associations. The blue arrowed lines indicate the food effects on serum metabolites mediated by specific genera. The beta coefficient and p values are
labeled at each edge. The proportions of indirect effect (mediation effect) and mediation p values are labeled at the center of the ring charts.
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proving the serum level of threonate, a degradation product of Vi-
tamin C conducive to improving memory and blood pressure.[14]

Unlike the findings of this study, 13 mediation linkages for the
impact of diet on metabolites through microbiome were estab-
lished in the population-based Lifelines DEEP study.[8] Among
them, Ruminococcus species vSV (300–305 kb) encoding adeno-
sine triphosphatase mediated the impact of fruit consumption
on the plasma level of urolithin B, but increased the plasma
level of LDL via tyrosol 4-sulfate, a uremic toxin, when identi-
fying Lifelines-DEEP samples taken four years apart.[12] Due to
data characteristics, microbial primary metabolic gene clusters
and genomic structural variants cannot be identified. Notwith-
standing, these mediating relationships may differ among dis-
tinct populations owing to variations in diet, ethnicity, and other
factors.

In this cohort, age was also a significant variable strongly as-
sociated with microbial variance. It was found that Bifidobac-
terium, Blautia and Lachnospiracea incertae sedis were nega-
tively associated with the increase of age, while opportunis-
tic pathogens Escherichia/Shigella and Clostridium sensu stricto
were positively associated with it. Among age-associated metabo-
lites, 1-palmitoyl-GPG (16:0) and 1-stearoyl-2-arachidonoyl-GPC
were positively correlated with age, which had not been re-
ported before. In addition, age-related clinical indicators were
demonstrated to have an association with age-related changes
in the gut microbiota and serum metabolites.[24] For example,
decreased gut Blautia and increased serum 1-palmitoyl-GPG
(16:0) may be bound up with hypertension. These results pro-
vide new insights into the characteristics of aging and age-related
diseases.

Several limitations exist in this study. It is recommended
to include appropriate positive and negative sequencing con-
trols to avoid the possibility of misinterpreting the composition
of the microbial community. In consideration of the composi-
tional nature of microbiome data, microbiome research should
widely adopt satisfactory approaches such as Aitchison, PCA and
SparCC rather than classical analysis methods, including Bray-
Curtis dissimilarity, principal coordinate analysis and linear re-
gression designed to handle counting data in ecology. In addition,
mediation analysis about the impact of diet and gut microbiota on
serum metabolites in larger populations may further strengthen
the observations of this study and better determine underlying
biological significance. At last, this study is based on correlative
analysis, and future experimental studies are necessitated to un-
ravel the accurate relationships between the given food, the gut
microbiota, serum metabolites, physiological indexes, and the
mechanistic aspect.

4. Conclusion

First, a panel of gut microbiota associated with geography, food,
and age in a large cohort across the wide geographic scale in
China was identified in the present study. Second, it was demon-
strated that food is the main mediating factor of geographic
locations on the gut microbiota and modulates human serum
metabolites. Third, the impact of geography, diet, and gut micro-
biota on serum metabolites and host health in a Chinese popula-
tion was validated, and a comprehensive resource that can guide
follow-up studies aimed at designing preventive and therapeutic
strategies for human health was provided.

5. Experimental Section
Ethical Permission and Sample Collection: The present study is based

on the China Health and Nutrition Survey (CHNS), a prospective
population-based survey that covers geography, food, nutrients, and
health phenotypes.[25] The CHNS protocol gained the approval of the In-
stitutional Review Boards of the Chinese Center for Disease Control and
Prevention (No. 201 524) and the University of North Carolina at Chapel
Hill (No. 07–1963). All participants signed an informed consent form be-
fore sample collection.

Fasting blood samples were gathered, stored in dry ice and sent to the
laboratory for storage at −80 °C. After being centrifuged within 48 h, the
plasma was stored at −80 °C for later use. Fecal samples were collected
following standard procedures,[26] kept in a −20 °C freezer within 20 min
and stored in a −80 °C laboratory.

Metadata Collection: Metadata mainly includes demographics, geog-
raphy, food, nutrients, and physiological parameters (Tables S1–S3, Sup-
porting Information). Each individual had lived in the sampling place for
generations. In this study, the information on community, city/county,
province, region, area, longitude, and latitude was translated according
to the detailed residential location of individuals. The weighing method
was adopted to record the consumption of household oil and condiments,
and the query method was employed to obtain food consumption for three
consecutive days. Data on nutrient intake were calculated based on food
consumption data and the Chinese Food Composition Table.[27] Height,
weight, waist and hip circumferences, blood pressure, and other indica-
tors were measured by use of uniformly distributed instruments. The col-
lected fasting plasma samples were sent to a third-party testing institution
for testing to obtain blood glucose, total cholesterol, LDL cholesterol, and
other blood parameters.

Gut Microbiome Sequencing and Preprocessing: The classical V4 region
of 16S ribosomal ribonucleic acid of the gut microbiome was sequenced
on a Novogen’s Illumina HiSeq PE-250 platform according to standard
operation procedure. Uparse pipeline in Usearch11 was applied to obtain
the operational taxonomic unit (OTU) table. The taxonomic assignment of
OTUs was predicted by the Naive Bayesian Classifier algorithm based on
the Ribosomal Database Project (RDP) database. Sva packages (version
3.40.0) were used for reducing batch effects for high-throughput data. Be-

Figure 5. Associations between food, microbiome, metabolites, and host physiological parameters. A) Clustered heatmaps indicating the associations
between food, gut microbiome, metabolites, and physiological parameters that are significantly correlated with each other by Spearman’s correlation
analysis (FDR< 0.25 and p< 0.01). Three schematic examples of identifying multi-factor biological links along the food-microbiome-metabolite-host phe-
notype axis showing in the box embedded in between the heatmaps. B) Parallel coordinates chart showing the mediation links between gut microbiota,
serum metabolites and physiological parameters that were significant at FDR< 0.05. Shown are gut microbiota (left), serum metabolites (middle), and
physiological parameters (right). The curved lines connecting the panels indicate the mediation effects. C) Analysis of the causal relationships among
vegetable oil intake, Blautia, 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), and systolic blood pressure combined with Figure 4E. D) Analysis of the causal
relationships among fruit intake, Blautia, threonate and systolic blood pressure combined with Figure 4F. E) Analysis of the causal relationships among
wine intake, Clostridium XVIII, 2-hydroxy-3-methylvalerate and aspartate aminotransferase combined with Figure 4G. In (C–E), the gray lines indicate
the associations. The blue arrowed lines indicate the food effects on serum metabolites mediated by specific genera. The green arrowed lines indicate
the specific genera effects on physiological parameters mediated by serum metabolites. The beta coefficient and p values are labeled at each edge. The
proportions of indirect effect (mediation effect) and mediation p values are labeled at the center of the ring charts.
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Figure 6. Associations between aging-related clinical indexes and age-related gut microbiota, serum metabolites. A) The gut microbiota genera that
significantly different in the youth (18–44 years), middle-aged (45–59 years), and old (60–80 years) age people (FDR < 0.01) using the Envfit method with
p values < 0.05. The checkers are colored according to phylum. B) The linear regression of the relationship between relative abundance of Bifidobacterium
or Escherichia/Shigella of each individual and age (n = 3,224). C) The linear regression actual age and predicted age performed by RF analysis based on
microbiota. D) The microbial interaction networks across the entire population at six-year intervals constructed with FastSpar, FDR < 0.05, cor < mean-
sd and cor > mean + sd. E) Pearson correlation between age and physiological parameters. The colors of dots indicate the value of cor. The size of dots
indicates the value of q. F) The linear regression between the value of systolic blood pressure or low-density lipoprotein cholesterol of each individual
and age. G) The linear regression between the levels of serum 1-palmitoyl-GPG (16:0) or 1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) of each individual
and age. H) Spearman’s correlation among age-related gut microbiota, serum metabolites and physiological parameters (FDR < 0.05).
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sides, 𝛼-(Chao1, Shannon and observed OTUs, and Faith’s phylogenetic
diversity) and 𝛽-diversity indices (Bray_curtis) were computed based on
the flattened OTU table.

Variance Analysis: Adonis, ANOSIM, MRPP, and dbRDA were applied
to the R-based vegan package (version 2.6-2). Each factor was counted
individually. P-values were determined from 1,000 permutations and ad-
justed to obtain FDR values. Significant results were filtered based on FDR
< 0.05. Adonis R2 values were utilized for estimating the variance of gut
microbiome contributions from city/county and community groups across
provinces.

Similarity Analysis: The average Bray_Curtis distance and Pearson
value of samples within and without the group were counted under five
geographic factors. The southernmost or northernmost sample was used
as a reference to calculate the distance. Linear regression was performed
to evaluate the association between the actual distance and similarity of
samples.

LDA and PCA: LDA (MASS package, version 7.3-55)[28] was applied
to reduce the dimensions of data, and PCA[28] was used to perform unsu-
pervised clustering on the reduced dimension data by province and region
groups.

Characteristics of Microbiome in Different Geographic Granulates:
MaAsLin was implemented in the MaAsLin2 package (version 1.6.0)[29]

to determine the multivariate correlations between metadata and micro-
bial traits. The union of specific genera in 15 provinces was counted,
and the network of each province was constructed with FastSpar soft-
ware (version 1.0.0) in Python.[30] Statistically significant results (FDR <

0.05, cor < mean – sd and cor > mean + sd) for each network were vi-
sualized in Cytoscape software (version 3.10.1). RF analysis (RF package,
version 4.7-1.1)[31] was performed by specific genera, and the leave-one-
out method was employed to predict which province an individual came
from.

Analysis of Geographic Ranges, Food Factors, and the Gut Microbiome:
Variables filtered by the Adonis method and different geographic ranges
were analyzed by Cramer’s V,[32] and significant results (p < 0.05 and
Cramer’s V > 0.2) were plotted using the ggcor package (version 0.9.8.1).
The confirmed results of Boruta analysis (Boruta package, version 7.0.0)
between genera and food were shown with the pheatmap package (ver-
sion 1.0.12). Mediation between latitude information, food and genera was
implemented in the mediation package (version 4.5.0).[33] The effects of
longitude, age, and gender were corrected, and p values < 0.05 were con-
sidered to show statistical significance.

Serum Metabolome Analysis: An analysis was made of the serum
metabolome by the Metabolon platform using ultrahigh performance
liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), fol-
lowed by the processing of samples using an automated MicroLab STAR
system (Hamilton Company). The hardware and software of Metabolon
were used to perform peak integration, data extraction, and quality con-
trol. Chemicals were identified by comparing purified standards (reten-
tion time/index, mass-to-charge ratio, and chromatographic data) with
unknown entities in the Metabolon library.

Correlation Analysis Among Multiple Parameters: Metabolite metadata
were analyzed by the Adonis method for variance with FDR < 0.05. Rela-
tionships between food, the gut microbiome, metabolites, and physiologi-
cal parameters were parsed using Spearman’s correlation with FDR < 0.25
and p value < 0.01. All correlation results were presented as an integrated
heatmap using the ComplexHeatmap package (version 2.8.0). Mediating
effects among food, the gut microbiota, metabolites, and physiological pa-
rameters were analyzed, separately.

Analysis of Age-Related Variables: The MaAslin method was adopted to
analyze the differential gut microbiota of the three age groups. RF analysis
was conducted to predict the age of each individual, and the regression
results between the actual and predicted ages were shown. The network
was constructed with FastSpar, p < 0.01, cor < mean – sd and cor > mean
+ sd. Pearson correlation was used for analyzing the association of age
with physiological parameters or metabolites. Associations between age
groups and different genera were analyzed using the Envfit method with p
values < 0.05.

For detailed methods see the Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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