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Abstract 
Cell-to-cell gene expression variability is an inherent feature of 
complex biological systems, such as immunity and development. 
Single-cell RNA sequencing is a powerful tool to quantify this 
heterogeneity, but it is prone to strong technical noise. In this article, 
we describe a step-by-step computational workflow that uses the 
BASiCS Bioconductor package to robustly quantify expression 
variability within and between known groups of cells (such as 
experimental conditions or cell types). BASiCS uses an integrated 
framework for data normalisation, technical noise quantification and 
downstream analyses, propagating statistical uncertainty across these 
steps. Within a single seemingly homogeneous cell population, BASiCS 
can identify highly variable genes that exhibit strong heterogeneity as 
well as lowly variable genes with stable expression. BASiCS also uses a 
probabilistic decision rule to identify changes in expression variability 
between cell populations, whilst avoiding confounding effects related 
to differences in technical noise or in overall abundance. Using a 
publicly available dataset, we guide users through a complete pipeline 
that includes preliminary steps for quality control, as well as data 
exploration using the scater and scran Bioconductor packages. The 
workflow is accompanied by a Docker image that ensures the 
reproducibility of our results.
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Introduction
Single-cell RNA-sequencing (scRNA-seq) enables the study of genome-wide cell-to-cell transcriptional heterogeneity
that is not captured by bulk experiments.1–3 On the broadest level, this heterogeneity can reflect the presence of distinct
cell subtypes or states. Alternatively, it can be due to gradual changes along biological processes, such as development
and differentiation. Several clustering and pseudotime inference tools have been developed to capture these types of
heterogeneity.4,5 However, there is a limited availability of tools tailored to study more subtle variability within
seemingly homogeneous cell populations. This variability can reflect deterministic or stochastic events that regulate
gene expression and, among other settings, has been seen to increase prior to cell fate decisions6 and during ageing.7

Transcriptional variability has also been observed to differ from gene to gene and can be conserved across cell types and
species.8

Stochastic variability within a seemingly homogeneous cell population— often referred to as transcriptional noise— can
arise from intrinsic and extrinsic sources.9,10 Extrinsic noise refers to stochastic fluctuations induced by different dynamic
cellular states (e.g. cell cycle, metabolism, intra/inter-cellular signalling).11–13 In contrast, intrinsic noise arises from
stochastic effects on biochemical processes such as transcription and translation.9 Intrinsic noise can be modulated by
genetic and epigenetic modifications (such as mutations, histone modifications, CpG island length and nucleosome
positioning)14–16 and usually occurs at the gene level.9 Cell-to-cell gene expression variability estimates derived from
scRNA-seq data capture a combination of these effects, as well as deterministic regulatory mechanisms.10 Moreover,
these variability estimates can also be inflated by the technical noise that is typically observed in scRNA-seq data.17 This
technical noise relates to systematic differences between cells that may be introduced by the data generating process (e.g.,
due to differences in dilution or sequencing depth).18

REVISED Amendments from Version 1

As a result of helpful and insightful comments by the reviewers, the workflow has been substantially simplified and
streamlined, while switching focus tomore modern, droplet-based scRNAseq data. The code has been simplified wherever
possible, removing content covered in greater detail in other documents, while still demonstrating all of the relevant
information, tools and techniques for a robust analysis of scRNAseq data using BASiCS.We hope that this updatedworkflow
provides the bioinformatics community with a useful reference for this application.

A detailed description of the changes to figures is given below:

As Figure 1, we have added a schematic describing the main relevant aspects of BASiCS.

Figure 2 is the workflow overview shown in the figure 1 of the previous workflow version.

Figures 3-16 all relate to different data relative to the original workflow. In particular, the previous version showed an
analysis of naive and active T cells. In contrast, the updated workflow relates to an analysis of somitic and pre-somitic
mesoderm cells.

Figures 2-5 have been removed, as they were not relevant to the flow of the workflow.

Figures 3-5 are equivalent to Figures 6-7 in the previous version, although relating to different underlying data.

Figure 6 shows the criteria used for selection of a posterior probability threshold that satisfies a target expected false
discovery rate, and the related expected false negative rate, for selection of highly- and lowly-variable genes using BASiCS.

Figure 7 shows highly- and lowly- variable gene detection using BASiCS, showing posterior estimates of variability against
posterior estimates of mean expression.

Figure 8 shows example expression profiles for highly- and lowly-variable genes with similar overall levels of expression.

Figure 9 shows mean-difference and volcano plots of a differential mean expression analysis of somitic vs pre-somitic
mesoderm cells.

Figures 10-12 show normalised expression values for somitic and pre-somitic cells, of genes up-regulated in pre-somitic
cells (Fig 10), genes up-regulated in somitic cells (Fig 11), and genes neither up- nor down-regulated in either population of
cells (Fig 12).

Figure 13 shows mean-difference and volcano plots of a differential expression variability analysis of somitic vs pre-somitic
mesoderm cells.

Figure 14 shows differences in residual over-dispersion plotted against changes in mean expression.

Any further responses from the reviewers can be found at the end of the article
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Different strategies have been incorporated into scRNA-seq protocols to control or attenuate technical noise. For
example, external RNA spike-in molecules (such as the set introduced by the External RNA Controls Consortium,
ERCC19) can be added to each cell’s lysate in a (theoretically) known fixed quantity. Spike-ins can assist quality control
steps,20 data normalisation18 and can be used to infer technical noise.17 Another strategy is to tag individual cDNA
molecules using unique molecular identifiers (UMIs) before PCR amplification.21 Reads that contain the same UMI can
be collapsed into a single molecule count, attenuating technical variability associated to cell-to-cell differences in
amplification and sequencing depth (these technical biases are not fully removed unless sequencing to saturation).18

However, despite the benefits associated to the use of spike-ins and UMIs, these are not available for all scRNA-seq
protocols.22 In particular, spike-ins are of limited use in droplet-based protocols, as spike-ins can only be added to the
reagent mixture in a known concentration, and the exact quantity in each droplet necessarily remains unknown.23

The Bioconductor package BASiCS implements a Bayesian hierarchical framework that accounts for both technical and
biological sources of noise in scRNA-seq datasets.24–26 The model was initially motivated by supervised experimental
designs in which experimental conditions correspond to groups of cells defined a priori (e.g. selected cell types obtained
through FACS sorting). However, the approach can also be used in cases where the groups of cells of interest are
computationally identified through clustering. In such cases, the model does not currently address issues associated to
post-selection inference, where the same data is analysed twice: first to perform clustering and then to compare expression
profiles between the clusters27; this is an inherent limitation of most differential expression tools.

BASiCS jointly performs data normalisation, technical noise quantification and downstream analyses, whilst propagating
statistical uncertainty across these steps. These features are implemented within a probabilistic model that builds upon a
negative binomial framework, a widely used distribution in the context of bulk and scRNA-seq experiments.28–31

The negative binomial distribution is commonly used tomodel count datawhen the observed variability differs fromwhat
can be captured by a simpler Poisson model— this is typically referred to as over-dispersion. Critically, BASiCS enables
the quantification of transcriptional variability within a population of cells, while accounting for the overall mean-
variance relationship that typically arises in scRNA-seq data.26 The latter enables the quantification of a gene-level
residual over-dispersion as a measure of transcriptional noise that is not confounded by differences in gene expression.
Furthermore, when available, BASiCS can also leverage extrinsic spike-in molecules to aid data normalisation. A
previous study has shown that BASiCS, when used as a generative model, is well-tuned to capture and recapitulate the
main properties of typical scRNAseq data using posterior predictive checks.32

This article complements existing scRNA-seq workflows based on the Bioconductor ecosystem (e.g. Refs. 33, 34),
providing a detailed framework for transcriptional variability analyses using BASiCS. We describe a step-by-step
workflow that uses scater20 and scran33 to perform quality control (QC) as well as initial exploratory analyses. Our
analysis pipeline includes practical guidance to assess the convergence of the Markov Chain Monte Carlo (MCMC)
algorithm that is used to infer model parameters in BASiCS, as well as recommendations to interpret and post-process the
model outputs. Finally, through a case study in the context of mouse immune cells, we illustrate howBASiCS can identify
highly and lowly variable genes within a cell population, as well as to compare expression profiles between experimental
conditions or cell types.

All source code used to generate the results presented in this article is available in Github and Zenodo.26 To ensure
the reproducibility of this workflow, the analysis environment and all software dependencies are provided as a Docker
image.35 The image can be obtained from Docker Hub, at https://hub.docker.com/r/alanocallaghan/basicswork
flow2020-docker.

Methods
Implementation
The BASiCS Bioconductor package uses a Bayesian hierarchical model to simultaneously perform data normalisation,
technical noise quantification and downstream analyses24–26 within a cell population or populations under study.
In this context, cell populations could correspond to groups set a priori by the experimental design (e.g. naive or
stimulated CD4+ T cells in Ref. 7), or to groups of cells that were computationally identified through clustering.
Moreover, instead of modelling expression patterns separately for each gene, BASiCS shares information between all
genes to robustly quantify transcriptional variability. For example, as described (see Software availability section),
pooling information across genes with similar mean expression levels helps to obtain more reliable transcriptional
variability estimates. The latter is particularly helpful for lowly expressed genes and sparse datasets, where less
information is available.

Page 4 of 61

F1000Research 2024, 11:59 Last updated: 09 MAY 2024

https://bioconductor.org/packages/3.13/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.13/scater
https://bioconductor.org/packages/3.13/scran
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://github.com/VallejosGroup/BASiCSWorkflow
https://hub.docker.com/r/alanocallaghan/basicsworkflow2020-docker
https://hub.docker.com/r/alanocallaghan/basicsworkflow2020-docker
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS


A high-level overview for the model implemented in BASiCS is shown in Figure 1, and a more detailed description is
provided in the ExtendedMethods document in the Zenodo repository for this manuscript (see Data availability). Model
parameters are designed to capture different aspects of scRNAseq data. First, nuisance parameters are used to capture
technical artifacts. This includes cell-specific parameters (indexed by a j subscript) used to perform global scaling
normalisation (similar to the size factors in scran) and global parameters designed to capture technical over-dispersion
(this can also be interpreted as measurement error) that is shared by all genes. Note that, whilst scran infers cell-specific
size factors as a pre-processing step, BASiCS uses an integrated approach wherein data normalisation and downstream
analyses are performed simultaneously, thereby propagating statistical uncertainty. Secondly, BASiCS summarises
expression patterns within the population of cells under study (e.g. a experimental condition or cell type) using two
sets of gene-specific parameters (indexed by a i subscript). Mean parameters μi quantify overall expression for each gene
i. In contrast, δi captures the excess of variability that is observed with respect to what would be expected in a
homogeneous cell population, beyond technical noise. The latter is used as a proxy to quantify transcriptional variability.

To account for the strong relationship that is typically observed between gene-specific mean expression and over-
dispersion estimates, Eling et al.26 introduced a joint prior specification for these parameters. This joint prior assumes that
genes with similar mean expression (μi) have similar over-dispersion parameters δi. Effectively, this shrinks over-
dispersion estimates towards a global trend that captures the relationship between mean and over-dispersion (Figure 1).
This improves posterior inference for over-dispersion parameters when the data is less informative (e.g. small sample
size, lowly expressed genes).26 This information-sharing approach is conceptually similar to that performed by Ref. 28
and others, where sparse data is pooled to obtain more reliable estimates. The global trend is then used to derive gene-
specific residual over-dispersion parameters εi that are not confounded by mean expression. Similar to the DM values
implemented in scran, these are defined as deviations with respect to the overall trend. These residual over-dispersion
values can be used to quantify transcriptional heterogeneity without any confounding with mean expression, though it
should be noted that residual over-dispersion may also arise due to structural heterogeneity (e.g. distinct cell sub-types or
states). For example,26 computationally explored the impact of unobserved structural heterogeneity by generating
artificially contaminated datasets. In contrast,7 showed that changes in transcriptional heterogeneity can relate to aging,
where older mice were shown to exhibit a more “bursting” or stochastic transcriptional pattern relative to younger mice.

Figure 1. A schematic representation of the features of the BASiCS model. BASiCS accounts for cell-to-cell and
batch-to-batch variability using nuisance parameters. Accounting for cell-to-cell and batch-to-batch technical vari-
ability allows BASiCS to robustly perform gene-level inference of mean and variability. Furthermore, by accounting
for the association between mean and variability in scRNAseq, BASiCS can also infer transcriptional noise using the
residual variability parameter εi.
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Additionally, technical variation is quantified using replication.36 In the absence of true technical replicates, we assume
that population-level characteristics of the cells are replicated using appropriate experimental design. This requires that
cells from the same population have been randomly allocated to different batches. Given appropriate experimental
design, BASiCS assumes that biological effects are shared across batches, while technical variation leads to spurious
differences between cells in different batches. Thus, BASiCS models cell-specific size factors yi, and batch-specific
technical dispersion θ. It is this version of the model that we focus on here, and that we recommend for most users.
Previous versions of the model are available within the package, but are primarily useful for reproducibility purposes or
for analysing datasets that contain spike-in genes.

While several differential expression tools have been proposed for scRNA-seq data (e.g. Refs. 37, 38), some evidence
suggests that these do not generally outperform popular bulk RNA-seq tools.39Moreover, most of thesemethods are only
designed to uncover changes in overall expression, ignoring the more complex patterns that can arise at the single cell
level.27 Instead, BASiCS embraces the high granularity of scRNA-seq data, uncovering changes in cell-to-cell expression
variability that are not confounded by differences in technical noise or in overall expression.

Operation
This step-by-step scRNA-seq workflow is primarily based on the Bioconductor package ecosystem40 for the R
programming language,41 and as such should run on any major operating system using R ≥ 4.0, although results may
differ slightly using different Bioconductor and R versions. A graphical overview is provided in and its main components
are described below. The libraries listed below are required for this workflow, all of which can be downloaded from
Bioconductor. Alternatively, we provide aDocker image containing all of the software necessary to runBASiCS at https://
hub.docker.com/r/alanocallaghan/basicsworkflow2020-docker.

Here, we load all the libraries that will be used throughout this workflow. First, we load Bioconductor libraries included in
Figure 2. We provide further explanation about their function in the following sections.

library("SingleCellExperiment")
library("scater")
library("scran")
library("BASiCS")

Next, we load other general purpose libraries used for data visualisation— e.g., ggplot2), colour scales (e.g., viridis, and
data manipulation (tidyr).

# Data visualisation
library("ggplot2")
library("ggpointdensity")
library("patchwork")
library("ComplexHeatmap")
# colour scales
library("viridis")
library("circlize")
library("RColorBrewer")
# data manipulation
library("tidyr")

Input data
We use the package SingleCellExperiment to convert an input matrix of raw read counts (molecule counts for UMI-based
protocols) into a SingleCellExperiment object that can also store its associated metadata, such as gene- and cell-
specific information. Moreover, when available, the same object can also store read counts for spike-in molecules (see
help("altExp")). A major advantage of using a SingleCellExperiment object as the input for scRNA-seq
analyses is the interoperability across a large number of Bioconductor packages.40

A critical step in scRNA-seq analyses is QC, removing low quality samples that may distort downstream analyses. The
OSCA online book provides an extensive overview on important aspects of how to perform QC of scRNA-seq data,
including exploratory analyses.40 Here, we use QC diagnostics to identify and remove samples that correspond to broken

Page 6 of 61

F1000Research 2024, 11:59 Last updated: 09 MAY 2024

https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.18/BASiCS
https://bioconductor.org/packages/3.13
https://bioconductor.org/packages/3.18/BASiCS
https://hub.docker.com/r/alanocallaghan/basicsworkflow2020-docker
https://hub.docker.com/r/alanocallaghan/basicsworkflow2020-docker
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=viridis
https://cran.r-project.org/package=tidyr
https://bioconductor.org/packages/3.13/SingleCellExperiment
https://bioconductor.org/books/release/OSCA/


cells, that are empty, or that contain multiple cells.42 We also remove lowly expressed genes that represent less reliable
information.

We recommend the Bioconductor package scater20 to calculate QC metrics for each cell (e.g. total read-count) and gene
(e.g. percentage of zeroes across all cells), respectively. We also recommend the visualisation tools implemented in the
scater to explore the input dataset and its associated QC diagnostic metrics. To perform further exploratory data analysis
we recommend the Bioconductor package scran.33 The latter is used to perform global scaling normalisation, calculating
cell-specific scaling factors that capture global differences in read-counts across cells (e.g. due to sequencing depth and
PCR amplification).43

Figure 2. Graphical overview for the single cell RNA sequencing analysis workflow described in this manu-
script. Starting from amatrix of expression counts, we use the scater and scran Bioconductor packages to perform
QC and initial exploratory analyses. To robustly quantify transcriptional heterogeneity within seemingly homoge-
neous cell populations, we apply the BASiCS Bioconductor package and illustrate howBASiCS can be used to analyse
a single or multiple pre-specified groups of cells.
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Note that the use of scran as a normalisation tool is not a requirement for BASiCS (which uses raw read-counts as input).
However, we recommend the use of scran normalisation as part of the exploratory data analysis. For example, normalised
read-counts can be used to visualise the data in a low-dimensional space (e.g. using principal component analysis). This
can help to explore the structure of the data, e.g. to examine potential batch effects.

Use cases
Case study: analysis of naive CD4+ T cells
The development of droplet-based scRNA-seq44,45 lead to a large increase in the number of cells that can be profiled per
experiment at a fixed cost. With this, large-scale scRNA-seq datasets have been generated to study development across
multiple time-points and capturing multiple tissues.46,47

To illustrate the use of BASiCS in this context, we use droplet-based scRNAseq generated using the 10X microfluidics
platform. An example using a dataset generated using a plate-based protocol including spike-ins is provided in the
AnalysisCD4T document of the Zenodo repository for this manuscript (see Data availability). In particular, we focus on
the data generated by Ref. 46 which contains expression profiles for 20,819 cells collected from E8.25 mouse embryos.
These data comprise a highly heterogeneous population of cells with over 20major cell types. The data is stored under the
accession number E-MTAB-6153 on ArrayExpress. The authors also provide additional information summarising the
experimental design (animal of source for each cell) and the cluster labels generated by in their analysis. The code
required to download these data is provided in theDataPreparationBASiCSWorkflow document of the Zenodo repository
for this manuscript (see Data availability).

As explained above, when analysing a heterogeneous population of cells, a clustering analysis is required to identify the
cell types that drive this heterogeneity prior to running BASiCS. BASiCS can then be used to quantify transcriptional
variability within each cell type, as well as to characterise differences between cell types. Here, we use the cluster labels
generated in the original publication. For illustration purposes, we focus on analysing presomitic and somitic mesoderm
cells. This is an arbitrary choice and the steps described in this workflow could be applied to any other pair of cell types.

Preparing the input data for BASiCS
While quality control and pre-processing is an important topic in scRNAseq analysis, we feel that it has been covered in
detail in other articles. For this analysis, we have performed quality control, pre-processing and exploratory data analysis
in the DataPreparationBASiCSWorkflow document of the Zenodo repository for this manuscript (see Data availability).
The code presented unprocessed raw data and prepares it for use in this workflow. Here, we load the pre-processed data.
This consists of two separate SingleCellExperiment data objects: one for presomitic and one for somitic mesoderm cells.

# Website where the files are located
files_website <- "https://zenodo.org/record/10251224/files/"
# To avoid timeout issues as we are downloading large files
options(timeout = 1000)
# File download
## The code below uses ‘file.exists’ to check if files were previously downloaded
## After download, files are then stored in an ‘rds’ sub-folder
if(!file.exists("rds/sce_sm.Rds")) {

download.file(
paste0(files_website, "sce_sm.Rds"),
destfile = "rds/sce_sm.Rds"

)
}
if(!file.exists("rds/sce_psm.Rds")) {

download.file(
paste0(files_website, "sce_psm.Rds"),
destfile = "rds/sce_psm.Rds"

)
}
# Pre-somitic mesoderm cells
sce_psm <- readRDS("rds/sce_psm.Rds")
# Somitic mesoderm cells
sce_sm <- readRDS("rds/sce_sm.Rds")
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In brief, we have filtered the original data to select presomitic mesoderm (PSM) and somitic mesoderm (SM) cells,
excluding a small cluster of cells which the authors identified a potential doublets (wheremultiple cells are captured in the
same droplet). We also exclude cells with more 25,000 UMI-counts. The processed dataset contains 871 pre-somitic and
724 somitic mesoderm cells.

Subsequently, we applied a gene filtering step to remove lowly expressed genes that were largely undetected through
sequencing. In particular, we removed genes that are not detected in at least 20 cells across all cells. This is to ensure a
reliable estimate of variability, and is roughly in line with the sample size requirements for the negative binomial
distribution.48 We also applied a filter to consider protein-coding genes only. After applying these filters 10862 will be
included in our analysis.

Since droplet-based scRNA-seq data are generated without including technical spike-in genes, BASiCS uses measure-
ment error models to quantify technical variation through replication.37 The different experimental batches used by
Ref. 46will be used for this purpose. In the case of the somitic and pre-somoiticmesoderm cells, twomouse embryos have
been used to generate the data. Cells isolated from the first embryo were split into two batches and processed
independently. Cells from the second embryo were processed together as a single batch. These three different groups
of cells are used as batches. Numbers of cells per batch and cell type are displayed below.

# Pre-somitic mesoderm cells
table(sce_psm$sample)
##
## 1.1 1.2 2
## 346 339 186
# Somitic mesoderm cells
table(sce_sm$sample)
##
## 1.1 1.2 2
## 285 284 155

To enable BASiCS to use this information, this should be stored as BatchInfo within the cell-level metadata.

# Pre-somitic mesoderm cells
colData(sce_psm)$BatchInfo <- colData(sce_psm)$sample
# Somitic mesoderm cells
colData(sce_sm)$BatchInfo <- colData(sce_sm)$sample

Parameter estimation using BASiCS
Parameter estimation is implemented in the BASiCS_MCMC function using an adaptive Metropolis within Gibbs
algorithm (see section 3 in Ref. 49). The primary inputs for BASiCS_MCMC correspond to:

• Data: a SingleCellExperiment object created as described in the previous sections.

• N: the total number of MCMC iterations.

• Thin: thining period for output storage (only the Thin-th MCMC draw is stored).

• Burn: the initial number of MCMC iterations to be discarded.

• Regression: if TRUE a joint prior is assigned to μi and δi,
26 and residual over-dispersion values εi are

inferred. Alternatively, independent log-normal priors are assigned to μi and δi.
25

• WithSpikes: if TRUE information from spike-in molecules is used to aid data normalisation and to quantify
technical noise.

• PriorParam: Defines the prior hyper-parameters to be used by BASiCS.
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As a default, we recommend to use Regression = TRUE, as the joint prior introduced by Ref. 26 leads to more stable
estimation, particularly for small sample sizes and lowly expressed genes. This approach also enables users to obtain a
measure of transcriptional variability that is not confounded by mean expression. Advanced users may use the
BASiCS_PriorParam function to adjust prior hyperparameters. If PriorMu = "EmpiricalBayes", μis are
assigned a log-normal prior with gene-specific location hyper-parameters defined via an empirical Bayes framework.
Alternatively, if PriorMu = "default", location hyper-parameters are set to be equal 0 for all genes.We recommend
that users use the defaults for PriorParam for most applications. We also recommend to use PriorMu =
"EmpiricalBayes" as we have observed that an empirical Bayes framework50 improves estimation performance
for sparser datasets. Extra parameters can be used to store the output (StoreChains, StoreDir, RunName) and to
monitor the progress of the algorithm (PrintProgress).

Here, we run the MCMC sampler separately for somitic and pre-somitic mesoderm cells. We use 30,000 iterations (N),
discarding the initial 15,000 iterations as burn-in, (Burn), and saving parameter values only once in each 15 iterations
(Thin). We recommend this setting for large datasets, as it generally produces reliable and reproducible results.
However, specific datasets may require a larger number of iterations to achieve convergence. Practical guidance about
MCMC convergence diagnostics is provided in the next section.

## MCMC results may vary slightly due to pseudorandom number generation.
## We fix a random seed for exact reproducibility,
## but this is not strictly required
set.seed(42)
chain_sm <- BASiCS_MCMC(

Data = sce_sm,
N = 30000,
Thin = 15,
Burn = 15000,
Regression = TRUE,
WithSpikes = FALSE,
PriorParam = BASiCS_PriorParam(sce_sm, PriorMu = "EmpiricalBayes"),
Threads = 4,
StoreChains = TRUE,
StoreDir = "rds/",
RunName = "SM"

)
set.seed(43)
chain_psm <- BASiCS_MCMC(

Data = sce_psm,
N = 30000,
Thin = 15,
Burn = 15000,
Regression = TRUE,
WithSpikes = FALSE,
PriorParam = BASiCS_PriorParam(sce_psm, PriorMu = "EmpiricalBayes"),
Threads = 4,
StoreChains = TRUE,
StoreDir = "rds/",
RunName = "PSM"

)

This first of these chains takes 140 minutes to complete on a 3.4 GHz Intel Core i7 4770k procesor with 32GB RAM,
while the second takes 159 minutes. For convenience, these can be obtained online at https://doi.org/10.5281/
zenodo.10251224.
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# Website were the files are located
chains_website <- "https://zenodo.org/record/10251224/files/"
# To avoid timeout issues as we are downloading large files
options(timeout = 1000)
# File download
## The code below uses ‘file.exists’ to check if files were previously downloaded
## After download, files are then stored in an ‘rds’ sub-folder
if(!file.exists("rds/chain_sm.Rds")) {

download.file(
paste0(chains_website, "chain_sm.Rds"),
destfile = "rds/chain_sm.Rds"

)
}

if(!file.exists("rds/chain_psm.Rds")) {
download.file(

paste0(chains_website, "chain_psm.Rds"),
destfile = "rds/chain_psm.Rds"

)
}
## Loads files after download
chain_sm <- readRDS("rds/chain_sm.Rds")
chain_psm <- readRDS("rds/chain_psm.Rds")

The output fromBASiCS_MCMC is aBASiCS_Chain object that contains the draws associated to allmodel parameters.
Given that (N - Burn) /Thin = (30,000 - 15,000) /15 = 1,000 the object contains 1,000 draws for each parameter. The
matrices of MCMC draws can be accessed using the displayChainBASiCS function — this may be useful for
estimating and visualising credible intervals using packages like bayesplot or tidybayes. For example, the following code
displays the first 2 MCMC draws for mean expression parameters associated to the first 3 genes.

displayChainBASiCS(chain_sm, Param = "mu")[1:2, 1:3]
## ENSMUSG00000025902 ENSMUSG00000033845 ENSMUSG00000025903
## [1,] 0.03320425 3.634436 0.9257323
## [2,] 0.03785246 3.645978 0.9858456

MCMC convergence diagnostics
Before interpreting the estimates generated by BASiCS, it is important to check the performance of theMCMC algorithm
used. This algorithm used to characterise the posterior distribution is stochastic by nature, and as such its performance
may vary even when used on the same dataset using the same settings. We perform quality control of the MCMC
algorithm in order to ensure that the results we observe are the result of properties of the underlying data, rather than being
an artefact of the stochastic algorithm used to characterise the data.

As part of performing quality control of MCMC performance, it is critical to assess the convergence of the MCMC
algorithm, i.e. whether theMCMC reached its stationary distribution. If convergence has been achieved, the trace for each
parameter should not evolve significantly across iterations, as MCMC draws are expected to be stochastic fluctuations
around a horizontal trend once the sampler has converged to its stationary distribution. It is not possible to prove
convergence, but multiple graphical and quantitative convergence diagnostics have been proposed to assess the lack of
convergence (e.g. Refs. 51, 52). Some advocate the use of multipleMCMC chains using different starting values in order
to ensure that the algorithm consistently converges to the same distribution and to avoid convergence to local modes. For
BASiCS, we have observed that using informed starting values (e.g. based on scran normalisation factors) and a
sufficiently large value for N and Burn generally leads to largely consistent estimates across multiple MCMC runs.
Hence, the focus of this section is to evaluate quantitative measures of convergence (e.g. Ref. 53) based on a single
MCMC chain.
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For illustration purposes, here we focus on the chains generated for the somatic mesoderm cells. However, it is important
to analyse convergence for allMCMC chains; we have omitted this analysis for pre-somitic mesoderm cells in the present
manuscript for brevity, but they can be viewed in the data preparation document (DataPreparationBASiCSWorkflow) in
the Zenodo repository for this manuscript (see Data availability).

Traceplots can be used to visually assess the history of MCMC iterations for a specific parameter (e.g., Figure 3 left
panel). Asmentioned above, significant departures from a horizontal trend suggest a lack of convergence. As illustrated in
Figure 3 (right panel), histograms can also be used to display the marginal distribution for each parameter. For BASiCS,
users should expect these to follow a unimodal distribution. Failure to satisfy these graphical diagnostics suggest that N
and Burnmust be increased. Alternatively, more stringent quality control could be applied to the input data, as we have
observed that genes with very low counts often suffer from slow convergence.

plot(chain_sm, Param = "mu", Gene = 1)

Trace plots should explore the posterior without getting stuck in one location or drifting over time towards a region of
higher density. High autocorrelation indicates that the number of effective independent samples is low. It is good practice
to perform this visualisation for many different parameters; here we only show one.

As BASiCS infers thousands of parameters, it is impractical to assess these diagnostics separately for each parameter.
Thus, it is helpful to use numerical diagnostics that can be applied to multiple parameters simultaneously. The function
BASiCS_DiagPlot can be used to visualise such diagnostic metrics. Here, we illustrate usage for two such metrics
focusing on the MCMC chain that was obtained for the somitic mesoderm cells (similar results were obtained for pre-
somitic mesoderm cells in the DataPreparationBASiCSWorkflow document of the Zenodo repository (see Data
availability)). First, we focus on the diagnostic criterion proposed by Geweke.53 The latter compares the average of
draws obtained during the initial (10% after burn in, by default) and the final part of the chain (50% by default) by
calculating Z-scores of the relative difference between the two sets of draws. Large absolute Z-scores suggest that the
algorithm has not converged (as a rule of thumb, a threshold at |Z| < 3 is often applied). For the somitic and pre-somitic
mesoderm datasets, most Z-scores associated to mean expression parameters μi were small in absolute value (see
Figure 4A), suggesting that the algorithm has largely converged.

0.025

0.050

0.075

0 250 500 750 1000
Iteration

P
ar

am
et

er
 v

al
ue

ENSMUSG00000025902

0.00

0.25

0.50

0.75

1.00

0 10 20 30
lag

ac
f

ENSMUSG00000025902

Figure 3. Trace plot, marginal histogram, and autocorrelation function of the posterior distribution of the
mean expression parameter for a gene in somitic mesoderm cells following MCMC sampling. Trace plots
should explore the posterior without getting stuck in one location or drifting over time towards a region of higher
density. High autocorrelation indicates that the number of effective independent samples is low. It is good practice
to perform these visualisation for many different parameters; here we only show one.
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Aswell as assessingMCMC convergence, it is important to ensure that theMCMC algorithm has efficiently explored the
parameter space. For example, the autocorrelation function (e.g. Figure 3, right panel) quantifies the correlation between
the chain and its lagged versions. Strong autocorrelation indicates that neighbouring MCMC samples are highly
dependent and suggest poor sampling efficiency. The latter may indicate that the MCMC draws do not contain sufficient
information to produce accurate posterior estimates. In other words, highly correlated MCMC samplers require more
samples to produce the same level ofMonte Carlo error for an estimate (defined as the variance of aMonte Carlo estimate
across repetitions).54

The effective sample size (ESS) is a related measure which represents a proxy for the number of independent draws
generated by the MCMC sampler.55 The latter is defined as:

ESS¼ Ntot

1þ2
P∞

k¼1ρ kð Þ ,

where Ntot represents the total number of MCMC draws (after burn-in and thining) and ρ(k) is the autocorrelation at lag
k. ESS estimates associated to mean expression parameters for the somitic mesoderm cells are displayed in Figure 4B.
Whilst ESS is around 1,000 (Ntot in this case) for most genes, we observe low ESS values for a small proportion of genes.
As described later in this manuscript, BASiCS_TestDE automatically excludes genes with low ESS during differential
expression testing (by default a threshold at ESS<100 is applied). However, if a large number of genes have largeGeweke
diagnostic values or low effective sample sizes in a certain dataset, then caution should be applied when interpreting the
results of the model. These issues can often be addressed by more stringent filtering of genes and cells before performing
inference or by increasing the number of iterations.

diag_p1 <- BASiCS_DiagPlot(chain_sm, Param = "mu", Measure = "geweke") +
theme(legend.position = "bottom")

diag_p2 <- BASiCS_DiagPlot(chain_sm, Param = "mu", Measure = "ess") +
theme(legend.position = "bottom")

diag_p1 + diag_p2 + plot_annotation(tag_levels = "A")

Figure 4. Markov chain Monte Carlo diagnostics for gene-specific mean expression parameters; somitic
mesoderm cells.A: Geweke Z-score formean expression parameters is plotted againstmean expression estimates.
Dashed lines represent absolute Z-scores of 3, outside of which we advise caution when interpreting results. B:
Effective sample size (ESS) is plotted against mean expression estimates. A dashed line shows a threshold of
100, below which we advise caution when interpreting results.
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Quantifying transcriptional variability using BASiCS
Studying gene-level transcriptional variability can provide insights about the regulation of gene expression, and how it
relates to the properties of genomic features (e.g. CpG island composition),16 transcriptional dynamics56 and aging,7

among others. The squared coefficient of variation (CV2) is widely used as a proxy for transcriptional variability. For
example, we can obtain CV2 estimates for each gene using scran normalised counts as input. In contrast, BASiCS infers
transcriptional variability using gene-specific over-dispersion parameters δi (see Methods). Figure 5 compares these
approaches, focusing on somitic mesoderm cells (repeating this analysis for pre-somitic mesoderm cells led to similar
results). For each of the panels in Figure 5, we use the R package ggpointdensity to visualise the local density of genes
along the axes. Note that the BASiCS_ShowFit function can be used to generate Figure 5C, but we generated the plot
manually to demonstrate how users can extract this information from a BASiCS_Chain object, and for visual
consistency with the other panels.

Figure 5. Comparison of gene-specific transcriptional variability estimates and mean expression estimates
obtained for each gene using BASiCS and scran. For this analysis, we exclude genes that are not expressed in at
least 2 cells. BASiCS estimates for each gene are defined by the posteriormedian of the associated parameter. scran
estimates for each gene are derived after applying the pooling normalisation strategy proposed by Lun et al. Points
are coloured according to the local density of genes along the x- and y- axis. A: scran squared CV estimates versus
BASiCS estimates for over-dispersion parameters. B: scran estimates for mean expression and the squared CV. C:
BASiCS estimates for mean expression and over-dispersion parameters. D: BASiCS estimates for residual over-
dispersion parameters versusDMvalues estimated by scran. E: scran estimates formean expression andDMvalues.
F: BASiCS estimates formean expression and residual over-dispersion parameters. Dashed red lines in panels A and
D represent the line given by x=y.
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As seen in Figure 5A, CV2 and posterior estimates for are highly correlated. Moreover, both variability metrics are
confounded by differences in mean expression, i.e. highly expressed genes tend to exhibit lower variability
(Figures 5B-C). We note, however, that scran infers a more narrow distribution of transcriptional variability estimates
for any given mean expression level. To remove the confounding observed in Figures 5B-C, scran and BASiCS derive
residual variability estimates as deviations with respect to an global mean-variability trend (see Methods). These are
derived using the DM approach57 and the residual over-dispersion parameters defined by Ref. 26, respectively. For the
somitic mesoderm cell data, both approaches led to correlated estimates (Figure 5D, Pearson’s correlation equal to 0.75)
but the residual variability estimates generated for these data are less consistent thanwhat we have observed in the context
of less sparse data (see the AnalysisCD4T document in the Zenodo repository for this manuscript (see Data availability).
For the majority of genes (7,697 out of 10,850 captured in at least 3 cells) both approaches led some broadly similar
results, inferring the same sign for their residual variability estimates.

## Get BASiCS point estimates for mean and variability - SM cells
summary_sm <- Summary(chain_sm)
parameter_df <- data.frame(

mean = displaySummaryBASiCS(summary_sm, Param = "mu")[, 1],
overdisp = displaySummaryBASiCS(summary_sm, Param = "delta")[, 1],
residualoverdisp = displaySummaryBASiCS(summary_sm, Param = "epsilon")[, 1]

)

## Calculate scran size factors - SM cells
sce_sm <- computeSumFactors(sce_sm)
## Get scran estimates for mean and variability - SM cells
sce_sm <- logNormCounts(sce_sm, log = FALSE)
parameter_df$mean_scran <- rowMeans(assay(sce_sm, "normcounts"))
parameter_df$cv2_scran <- rowVars(assay(sce_sm, "normcounts")) /

parameter_df$mean_scran^2
parameter_df$DM <- DM(

mean = parameter_df$mean_scran,
cv2 = parameter_df$cv2_scran

)

## Remove genes without counts in > 2 cells - BASiCS estimates not provided
sel_genes <- !is.na(parameter_df$residualoverdisp)

## The plots below are generated using ggplot2
## We use ‘plot_params’ to specify the format of
## such plots whilst avoiding code duplication
## The plots can be further customized using ggplot2 principles
## For example, we modify x- and y-axis limits in some of the plots below
plot_params <- list(

geom_pointdensity(size = 0.6, na.rm = TRUE),
scale_colour_viridis(name = "Density"),
theme(

text = element_text(size = rel(3)),
legend.position = "bottom",
legend.text = element_text(angle = 90, size = 8, hjust = 0.5, vjust = 0.5),
legend.key.size = unit(0.018, "npc")

)
)

g1 <- ggplot(parameter_df[sel_genes,], aes(log10(cv2_scran), log10(overdisp))) +
xlim(-3, 3) + ylim(-3, 3) +
geom_abline(

slope = 1,
intercept = 0,
colour = "firebrick",
linetype = "dashed"

)
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g2 <- ggplot(parameter_df[sel_genes,]) +
aes(log10(mean_scran), log10(cv2_scran)) +
xlim(-3, 2.2) + ylim(-3, 3)

g3 <- ggplot(parameter_df[sel_genes,], aes(log10(mean), log10(overdisp))) +
xlim(-3, 2.2) + ylim(-3, 3)

g4 <- ggplot(parameter_df[sel_genes,], aes(DM, residualoverdisp)) +
geom_abline(

slope = 1,
intercept = 0,
colour = "firebrick",
linetype = "dashed"

)

g5 <- ggplot(parameter_df[sel_genes,], aes(log10(mean_scran), DM))

g6 <- ggplot(parameter_df[sel_genes,], aes(log10(mean), residualoverdisp))

((g1 + g2 + g3) * plot_params) / ((g4 + g5 + g6) * plot_params) +
plot_annotation(tag_levels = "A") & theme(plot.tag = element_text(size = 15))

HVG/LVG detection using BASiCS
In BASiCS, the functions BASiCS_DetectHVG and BASiCS_DetectLVG can be used to identify genes with
substantially high (HVG) or low (LVG) transcriptional variability within a population of cells. If the input
BASiCS_Chain object was generated by BASiCS_MCMC with Regression = TRUE (recommended setting), this
analysis is based on the posterior distribution obtained for gene-specific residual over-dispersion parameters εi (alter-
natively, the approach introduced by Ref. 24 can be used). HVGs are marked as those for which εi exceeds a pre-defined
threshold with high probability, where the probability cut-off is chosen to match a given expected false discovery rate
(EFDR; by default the target EFDR is set to 10%).58 The expected false discovery rate we use is conceptually similar to
false discovery rate control procedures in frequentist statistics, such as the approach of Ref. 59, aiming to control the
proportion of false discoveries produced by the procedure. A similar approach is implemented for LVG detection, but
based on whether εi is below a pre-specified threshold EpsilonThreshold. For example, if the threshold for εi is
equal to log2 (the default), HVGs would be those genes for which the over-dispersion is estimated to be at least two times
higher than would be expected given the inferred mean expression level, while LVGs would be those genes for which the
residual over-dispersion is at least two times lower than would be expected on the same basis. In some circumstances, it
may be of interest to rank genes and to select those with the highest or the lowest residual over-dispersion, which can be
performed using the PercentileThreshold parameter; see help("BASiCS_DetectVG") for more details.

## Highly variable genes
hvg <- BASiCS_DetectHVG(chain_sm, EpsilonThreshold = log(2))
## For HVG detection task:
## the posterior probability threshold chosen via EFDR calibration is too low.
## Probability threshold automatically set equal to 'ProbThreshold'.
## Lowly variable genes
lvg <- BASiCS_DetectLVG(chain_sm, EpsilonThreshold = -log(2))

For subsequent visualisation and data exploration, here wemerge the output tables generated above and store these as part
of the gene-level metadata in the sce_sm object.
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## Merge HVG and LVG tables in a single data frame
vg_table <- merge(

as.data.frame(lvg, Filter = FALSE),
as.data.frame(hvg, Filter = FALSE),
by = c("GeneName", "GeneIndex", "Mu", "Delta", "Epsilon"),
suffixes = c("LVG", "HVG")

)
## Mark genes as highly variable, lowly variable, or not either.
vg_table$VG <- "Not HVG or LVG"
vg_table$VG[vg_table$HVG] <- "HVG"
vg_table$VG[vg_table$LVG] <- "LVG"
## Store as gene-level metadata
rowData(sce_sm) <- merge(

rowData(sce_sm), vg_table,
by.x = "ensembl_gene_id", by.y = "GeneName",
sort = FALSE

)

PerformingHVGand LVGdetection involves identifying a posterior probability threshold thatmatches a target EFDR.We
perform this choice using a grid search in which EFDR is calculated for a range of different probability thresholds between
0.5 and 1. As seen in Figure 6, for the somitic mesoderm cells, this leads to a threshold of 0.6666667 and 0.8035 for HVG
andLVGdetection, respectively (the value of these thresholds can be extracted from theProbThreshold slot in thehvg
and lvg objects, e.g. using hvg@ProbThreshold). For some datasets, the grid search may fail to identify a probability
threshold that matches the target EFDR. In such cases, the default minimum probability threshold of 2/3 is used.
This default threshold value can be changed using the 'ProbThreshold' argument when calling the 'BASiCS_
DetectLVG' and 'BASiCS_DetectHVG' functions.

Figure 6. Lines representing the EFDR and EFNR for a range of posterior probability thresholds for the HVG
(A) and LVG (B) detection tasks. The target EFDR is indicated by dashed horizontal lines, while the chosen posterior
probability threshold is indicated by a vertical dashed line.
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p1 <- BASiCS_PlotVG(hvg, Plot = "Grid")
p2 <- BASiCS_PlotVG(lvg, Plot = "Grid")

p1 + p2 +
plot_annotation(tag_levels = "A") +
plot_layout(guides = "collect") &
theme(legend.position = "bottom")

plotRowData(sce_sm, x = "Mu", y = "Epsilon", colour_by = "VG") +
scale_x_log10() +
geom_hline(yintercept = c(-log(2), 0, log(2)), lty = 2) +
labs(

x = "BASiCS means (log10)",
y = "BASiCS residual\nover-dispersion"

)

For the somitic mesoderm cells data, we obtained 923 HVG and 33 LVG. As shown in Figure 7, these genes are
distributed across a wide range of mean expression values. As an illustration, Figure 8 shows the distribution of
normalised expression values for selected HVG and LVG, focusing on examples with similar mean expression levels.
As expected, HVG tend to exhibit a wider and potentially bimodal distribution (Figure 8A). Instead, LVG tend to have
more narrow and unimodal distributions (Figure 8B).

Figure 7. HVG and LVG detection using BASiCS. For each gene, BASiCS posterior estimates (posterior medians)
associated tomean expression and residual over-dispersion parameters are plotted. Genes are coloured according
to HVG/LVG status. Genes that are not expressed in at least 2 cells are excluded.
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## Obtain normalised expression values and store them as an assay in sce_sm
assay(sce_sm, "BASiCS_norm") <- BASiCS_DenoisedCounts(

sce_sm, chain_sm, WithSpikes = FALSE
)

## Select HVG/LVG genes with similar mean expression values
low_exp <- 20
up_exp <- 40
is_mid_exp <- rowData(sce_sm)$Mu > low_exp & rowData(sce_sm)$Mu < up_exp
is_hvg <- is_mid_exp & rowData(sce_sm)$HVG
is_lvg <- is_mid_exp & rowData(sce_sm)$LVG

## Amongst those, order by epsilon and select top 5 HVG and LVG
top_hvg <- order(rowData(sce_sm)$Epsilon[is_hvg], decreasing = TRUE)[1:5]
top_lvg <- order(rowData(sce_sm)$Epsilon[is_lvg], decreasing = FALSE)[1:5]

## Generate violin plots for the selected HVG and LVG
## using scater::plotExpression
plot_hvg <- plotExpression(sce_sm,

rowData(sce_sm)$external_gene_name[is_hvg][top_hvg],
exprs_values = "BASiCS_norm",
swap_rownames = "external_gene_name",
feature_colours = FALSE,
point_fun = function(...) list() # disables drawing points

) +
ylim(0, 90)

plot_lvg <- plotExpression(
sce_sm,
rowData(sce_sm)$external_gene_name[is_lvg][top_lvg],
exprs_values = "BASiCS_norm",
swap_rownames = "external_gene_name",
feature_colours = FALSE,
point_fun = function(...) list() # disables drawing points

) +
ylim(0, 90)

plot_hvg + plot_lvg + plot_annotation(tag_levels = "A")

Figure 8. BASiCS denoised counts for example HVG (A) and LVG (B) with similar overall levels of expression.
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Differential mean and variability testing using BASiCS
This section highlights the use of BASiCS to perform differential expression tests for mean and variability between
different pre-specified populations of cells and experimental conditions. Here, we compare the somitic mesoderm cells,
analysed in the previous section, to pre-somitic mesoderm cells analysed in the same study. Differential expression
testing is performed via the BASiCS_TestDE function. The main input parameters are

• Chain1 and Chain2: two BASiCS_Chain objects created via the BASiCS_MCMC function. Each object
corresponds to a different pre-specified group of cells.

• EpsilonM and EpsilonR: introduce a minimum effect size (in a log2 fold change scale) for the detection of
changes in mean or residual over-dispersion, respectively. This enables us to discard small expression changes
that are less biologically meaningful. By default, we set these thresholds to be equivalent to a 50% change
between the groups. However, different thresholds may be required depending on the context. For example, if
most genes show strong differences in mean expression, it can be beneficial to increase the value of EpsilonM
to focus on strong changes in mean expression.

• EFDR_M and EFDR_R: define the target EFDR to calibrate the decision rule associated to changes in mean or
residual over-dispersion, respectively. Default: 10%.

• MinESS: genes with ESS values below this threshold will be excluded from the differential expression tests.
This is used to increase the robustness of the results, excludes genes for which the sampler explored the
parameter space less efficiently (see MCMC diagnostics Section). Default: MinESS = 100.

## Perform differential testing
test_de <- BASiCS_TestDE(

Chain1 = chain_sm,
Chain2 = chain_psm,
GroupLabel1 = "SM",
GroupLabel2 = "PSM",
EFDR_M = 0.1,
EFDR_R = 0.1,
MinESS = 100,
Plot = FALSE,
PlotOffset = FALSE

)
table_de_mean <- as.data.frame(

test_de,
Parameter = "Mean",
Filter = FALSE

)
table_de_resdisp <- as.data.frame(

test_de,
Parameter = "ResDisp",
Filter = FALSE

)
## combine results of differential mean and residual over-dispersion tests
table_de <- merge(table_de_mean, table_de_resdisp)
## Merge with gene-level metadata to obtain gene names used in figures
table_de <- merge(

table_de,
rowData(sce_sm)[, c("ensembl_gene_id", "external_gene_name")],
by.x = "GeneName", by.y = "ensembl_gene_id"

)
# convert to standard data.frame, not S4 DFrame, for ggplot2
table_de <- as.data.frame(table_de)
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After running the test, it is important to visualise the results to facilitate interpretation and to identify systematic patterns
among differentially expressed genes. It may also be useful to perform functional enrichment analysis to identify
biologically meaningful patterns among these genes. For example, this could be performed using the Bioconductor
package goseq.60 We do not perform this here, but a relevant workflow is described by Maksimovic et al.61

We first focus on the differential mean expression test. MA-plots (log fold changeMversusmean averageA) and volcano
plots (posterior probability versus log fold change) are popular graphical summaries in this context, and are presented in
Figure 9. These can be useful in ensuring that suitable magnitude and confidence thresholds have been chosen. In this
instance, it is clear that a large number of genes are differentially expressed between the two conditions, and the selected
probability threshold is suitable.

Figure 9. Upper panel presents the mean-difference plot associated to the differential mean expression test
between somitic and pre-somitic cells. Log-fold changes of average expression in somitic cells relative to
pre-somitic cells are plotted against average expression estimates combined across both groups of cells.
Bottom panel presents the volcano plot associated to the same test. Log-fold changes of average expression
in somitic cells relative to pre-somitic mesoderm cells are plotted against their associated tail posterior
probabilities. Colour indicates the differential expression status for each gene, including a label to identify
genes that were excluded from differential expression test due to low ESS.
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p1 <- BASiCS_PlotDE(test_de, Parameters = "Mean", Plots = "MA")
p2 <- BASiCS_PlotDE(test_de, Parameters = "Mean", Plots = "Volcano",

TransLogit = TRUE) ## logit-transforms the Y-axis, which can be clearer.
p1/p2

When interpreting the results of differential expression tests, it is useful to visualise expression patterns for differentially
expressed genes in order to appraise the significance of the results and guide interpretation. For this purpose, we obtain
normalised expression values for each group of cells after correcting for global changes in overall expression between the
groups, i.e. a global offset that leads to uniformly higher expression across genes within one group of cells (such step is
also internally done by BASiCS_TestDE). Among other causes, the latter can be due to overall differences in mRNA
content between the groups.

## Calculate a global offset between groups, using the SM population as reference
offset <- BASiCS_CorrectOffset(chain_psm, chain_sm)
offset$Offset
## [1] 0.9389425
## Get offset corrected chain
chain_psm <- offset$Chain
## Obtain normalised counts within for the PSM population
## Normalised counts were for the SM population were already obtained
## in the HVG/LVG analysis section
## Obtain normalised expression values and store them as an assay in sce_sm
assay(sce_psm, "BASiCS_norm") <- BASiCS_DenoisedCounts(

sce_psm, chain_psm,
WithSpikes = FALSE

)
denoised_counts <- SingleCellExperiment(

assays = list(
BASiCS_norm = cbind(

assay(sce_psm, "BASiCS_norm"),
assay(sce_sm, "BASiCS_norm")

)
),
colData = data.frame(

Celltype = c(
rep("presomitic", ncol(sce_psm)),
rep("somitic", ncol(sce_sm))

)
)

)

To visualise expression patterns for multiple genes at once, we use the Bioconductor package ComplexHeatmap62

package, grouping genes according to the result of the differential mean expression test (i.e. up-regulated in somitic/pre-
somitic cells or non differentially expressed; see Figures 10, 11 and 12). For example, among the non DE group, we
observeCox5a, a gene essential tomitochondrial function. Such visualisations may aid in the interpretation of such stable
or “housekeeping” genes, as well as genes which are up- or down-regulated in each population.

To do this in each dataset, we create a few small utility functions, starting with a function to select the genes with highest
probability of being differentially expressed, or the genes with smallest probability of being differentially expressed:

select_top_n <- function(table, condition, n=15, decreasing=TRUE) {
ind_condition <- table$ResultDiffMean == condition
table <- table[ind_condition,]
ind_diff <- order(table$ProbDiffMean, decreasing = decreasing)[1:n]
return(table$GeneName[ind_diff])

}
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Next, we define a function that uses this gene selection to subset the normalised counts for each population:

use_select <- function(sce, psm, sce_sm, select) {
counts_psm <- assay(sce_psm, "BASiCS_norm")[select,]
counts_sm <- assay(sce_sm, "BASiCS_norm")[select,]
rownames(counts_psm) <- rownames(counts_sm) <-

rowData(sce_sm)[select, "external_gene_name"]
list (psm = counts_psm, sm = counts_sm)

}

Next, we define a function that uses the circlize package to create a color scale for the heatmaps:

make_colorscale_counts <- function(counts_sm, counts_psm) {
colorRamp2(

breaks = seq(0,
log10(max(c(as.numeric(counts_sm), as.numeric(counts_psm)) + 1)),
length.out = 20

),
colors = viridis(20)

)
}

Next, we define a function that uses the circlize package to create a color scale for the side annotations displaying themean
expression values in each group:

make_colorscale_mu <- function(log_mu_sm, log_mu_psm) {
colorRamp2(

breaks = seq(0, max(c(log_mu_sm, log_mu_psm)), length.out = 20),
colors = viridis(20, option = "A", direction = 1)

)
}

Then, we define a function that uses the ComplexHeatmap package to create a single heatmap, with the normalised counts
for a single population, featuring the mean expression values for each gene as a side annotation:

make_heatmap <- function(counts, col, log_mu, mu_col, title) {
Heatmap(

log10(as.matrix(counts) + 1),
col = col,
right_annotation = rowAnnotation(

'log(mu)' = log_mu,
col = list('log(mu)' = mu_col)

),
name = "log10(count + 1)",
column_title = title,
show_column_names = FALSE,
cluster_columns = FALSE,
cluster_rows = FALSE,
row_names_gp = gpar(fontsize = 6)

)
}

Finally, we define a function that uses the functions we defined so far to create a combined heatmap showing the
normalised counts for both populations, with mean expression values as side annotations:
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plot_heatmap <- function(table, condition, decreasing = TRUE) {
select <- select_top_n(table_de, condition, decreasing = decreasing)
counts_sub <- use_select(sce, sce_psm, sce_sm, select)
counts_sm <- counts_sub$sm
counts_psm <- counts_sub$psm

## Subset table of DE results to extract mean estimates
match_order <- match(rownames (counts_sm), table_de$external_gene_name)
table_de_selected <- table_de[match_order,]

col <- make_colorscale_counts(counts_sm, counts_psm)
log_mu_sm <- log10(table_de_selected$Mean1)
log_mu_psm <- log10(table_de_selected$Mean2)

mu_col <- make_colorscale_mu(log_mu_sm, log_mu_psm)

h <- make_heatmap(counts_sm, col, log_mu_sm, mu_col, "Somitic cells") +
make_heatmap(counts_psm, col, log_mu_psm, mu_col, "Pre-somitic cells")

draw(h)
}

First, we show genes up-regulated in somitic cells:

plot_heatmap(table_de, "PSM+")

Figure 10.Normalised expression values (scale) for somitic andpre-somitic cells, showinggenesup-regulated
in PSM cells. For each group, 10 example genes are shown. These were selected according to the ranking of their
associated tail posterior probabilities associated to the differential mean expression test. Colour indicates expres-
sion level; colour bars on the right of heatmap segments indicate the inferredmean expression level (in log scale) for
each gene in each population.
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We can create a similar plot for genes up-regulated in SM cells:

plot_heatmap(table_de, "SM+")

Finally, we show non-differentially expressed genes:

plot_heatmap(table_de, "NoDiff", decreasing = FALSE)

While several computational tools exist to perform differential mean expression analysis using scRNAseq data,39 the key
focus of BASiCS is to perform differential variability testing: identifying changes in transcriptional variability between
the groups of cells. To avoid the confounding between mean and over-dispersion, we recommend to use residual over-
dispersion parameters εi as input to this analysis.

We can now visualise the changes in residual over-dispersion between somitic and pre-somitic mesoderm cells in the
form of a MA-plot (Figure 13). In this visualisation, the difference between the posterior medians of the residual over-
dispersion parameters εi are shown on the y-axis. Epsilon values for genes that are not expressed in at least two cells per
condition are marked as NA and are therefore not displayed.

p1 <- BASiCS_PlotDE(test_de, Parameters = "ResDisp", Plots = "MA")
p2 <- BASiCS_PlotDE(test_de, Parameters = "ResDisp", Plots = "Volcano",

TransLogit = TRUE)
p1/p2

Figure 11.Normalised expression values (scale) for somitic andpre-somitic cells, showinggenesup-regulated
in SM cells. For each group, 10 example genes are shown. These were selected according to the ranking of their
associated tail posterior probabilities associated to the differential mean expression test. Colour indicates expres-
sion level; colour bars on the right of heatmap segments indicate the inferredmean expression level (in log scale) for
each gene in each population.
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While one could focus on the sets of gene that show significant changes in residual over-dispersion, here we want to
highlight how to analyse changes in mean expression in parallel to changes in variability. For this, we first combine the
results of the differential mean expression and the differential residual over-dispersion test. These are independent
analyses, given that changes in residual over-dispersion are not confoundedwith changes inmean expression, as shown in
Figure 14.

## create list of generic plot parameters to use across a few plots
plot_params <- list(

geom_pointdensity(na.rm = TRUE),
scale_colour_viridis(name = "Density"),
theme(

# text = element_text(size = rel(3)),
legend.position = "bottom",
legend.text = element_text(angle = 45, size = 8, hjust = 1, vjust = 1),
legend.key.size = unit(0.018, "npc")

)
)
## plot log2FC against difference of residual over-dispersion
ggplot(table_de) +

aes(MeanLog2FC, ResDispDistance) +
plot_params +
xlim(-15, 15) +
labs(

x = "log2 fold change in mean expression",
y = "Difference in residual over-dispersion"

)

Figure 12. Normalised expression values (scale) for somitic and pre-somitic cells, showing non-differentially
expressed genes. For each group, 15 example genes are shown. These were selected according to the ranking of
their associated tail posterior probabilities associated to the differential mean expression test. Colour indicates
expression level; colour bars on the right of heatmap segments indicate the inferred mean expression level (in log
scale) for each gene in each population.
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Figure 13. Upper panel presents the mean-difference plot associated to the differential residual over-
dispersion test between somitic and pre-somitic cells. Differences of residual over-dispersion in somitic cells
relative to pre-somitic mesoderm cells are plotted against average expression estimates combined across
both groups of cells. Bottom panel presents the volcano plot associated to the same test. Differences of
residual over-dispersion in somitic cells relative to pre-somitic cells are plotted against their associated tail
posterior probabilities. Colour indicates the differential expression status for each gene, including a label to
identify genes that were excluded from differential expression test due to low ESS.
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Figure 14. Difference in residual over-dispersion against log2 fold change in mean expression.
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Genes with significant changes in residual over-dispersion often have similar levels of mean expression, as seen in
Figure 15. However, they may have a different proportion of zero counts in the two cell populations, indicating a more
bursting expression pattern, or similar proportion of zero counts but more varying expression levels.Wewill now explore
ways to identify genes in each of these categories.

## mean expression vs log2FC for genes with higher residual over-dispersion in
## somitic cells
g1 <- ggplot(

table_de[table_de$ResultDiffResDisp == "SM+",]
) +
aes(MeanOverall, MeanLog2FC) +
plot_params +
ylim(-15, 15) +
scale_x_log10() +
labs(x = "Mean expression", y = "log2 fold change") +
geom_hline(

yintercept = 0, colour = "firebrick", linetype = "dashed"
)

## mean expression vs log2FC for genes with higher residual over-dispersion in
## pre-somitic cells
g2 <- ggplot(

table_de[table_de$ResultDiffResDisp == "PSM+",]
) +
aes(MeanOverall, MeanLog2FC) +
plot_params +
ylim(-15, 15) +
scale_x_log10() +
labs(x = "Mean expression", y = "log2 fold change") +
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Figure 15. log2 change in expression against log mean expression for genes with higher residual over-
dispersion in somitic (A) cells and pre-somitic mesoderm (B) cells. Dashed red lines represent a log fold change
of zero, meaning no change in average expression.
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geom_hline(
yintercept = 0, colour = "firebrick", linetype = "dashed"

)
g1 + g2 + plot_annotation(tag_levels = "A")

Similarly to analysis of differential expression, it is useful to visualise the results of differential variability tests in order to
appraise the quality of the results, and to identify systematic patterns among the genes identified. One useful way to do
this is by examining the normalised counts on a gene-by-gene basis. To do this, we first add some gene-level summary
statistic about the normalised counts to the table_de object, and then define a function that selects the normalised counts
for a given gene, and then reshapes them into a form suitable for plotting.

## merge with some summary statistics about genes
gene_tests <- data.frame(

"GeneName" = rownames(sce_sm),
"ExpPropSM" = rowMeans(assay(sce_sm, "BASiCS_norm") > 0),
"ExpPropPSM" = rowMeans(assay(sce_psm, "BASiCS_norm") > 0)

)

table_de_genetests <- merge(table_de, gene_tests)
make_vg_df <- function(ind_vg) {

table_de_vg <- table_de[ind_vg,]
## If more than 4 genes,
## pick top 4 ranked by differences in residual over-dispersion
if (nrow(table_de_vg) > 4) {

table_de_vg <- table_de_vg[
order(abs(table_de_vg$ResDispDistance), decreasing = TRUE),]

table_de_vg <- table_de_vg[1:4,]
}
var_genes <- table_de_vg$GeneName
var_sm <- as.matrix(assay(sce_sm, "BASiCS_norm")[var_genes, , drop = FALSE])
var_psm <- as.matrix(assay(sce_psm, "BASiCS_norm")[var_genes, , drop = FALSE])
var_df <- rbind(

data.frame(t(var_sm), Group = "SM"),
data.frame(t(var_psm), Group = "PSM")

)
var_gene_names <- rowData(sce_sm)[var_genes, "external_gene_name"]
colnames(var_df)[-ncol(var_df)] <- var_gene_names
pivot_longer(var_df, cols = var_gene_names)

}

We can use this function to wrangle the data for a selection of genes we want to visualise. For example, all genes that are
identified as differentially variable in somitic cells:

df_vg_sm <- make_vg_df(table_de_genetests$ResultDiffResDisp %in% c("SM+"))
head(df_vg_sm)
## # A tibble: 6 � 3
## Group name value
## <chr> <chr> <dbl>
## 1 SM Krt19 0
## 2 SM Hesx1 0
## 3 SM Kdr 0
## 4 SM Uncx 0
## 5 SM Krt19 0
## 6 SM Hesx1 0
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We can then use this function to plot the normalised counts for genes that fill a number of criteria with respect to mean
expression, expression variability, and detection levels, by defining a function that uses the make_vg_df function we
just defined. This function takes a logical vector and uses it to subset the table_de, sce_sm and sce_psm objects,
merges them into a form suitable for plotting, and then plots them.

## Utility function that plots logcounts of a set of genes defined by "ind_vg"
plot_vg <- function(ind_vg) {

df <- make_vg_df(ind_vg)
ggplot (df, aes(x = name, y = value + 1, colour = Group)) +

geom_violin(width = 0.8, position = position_dodge(width = 0.8)) +
geom_point(

position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.8),
shape = 16,
alpha = 0.2

) +
scale_x_discrete(guide = guide_axis(angle = 45)) +
scale_y_log10() +
labs(x = "Gene", y = "Denoised count + 1") +
scale_colour_brewer(palette = "Set1")

}

First, we select genes that are more variable in somitic cells than in pre-somitic mesoderm cells, but which are not
differentially expressed. Furthermore, we narrow our selection to genes with similar levels of non-zero expression in both
populations, and which are expressed in at least 50% of cells within each population. These criteria are designed to select
genes that likely have a largely unimodal expression pattern, simply having higher cell-to-cell variability in somitic cells.
We then plot the normalised counts for these genes using the function we defined above, and save it to a variable called g1
for display later.

ind_vg_unimodal_sm <- table_de_genetests$ResultDiffResDisp %in% c("SM+") &
table_de_genetests$ResultDiffMean %in% c("NoDiff") &
abs(

table_de_genetests$ExpPropSM - table_de_genetests$ExpPropPSM
) < 0.05 &
pmin(

table_de_genetests$ExpPropSM, table_de_genetests$ExpPropPSM
) > 0.99

g1 <- plot_vg(ind_vg_unimodal_sm) +
theme (legend.position = "none")

Next, we select genes that are more variable in somitic cells than in pre-somitic mesoderm cells, but which are not
differentially expressed. Furthermore, we narrow our selection to genes with different levels of non-zero expression in
both populations, and which are expressed in at least 50% of cells within one or more of the populations. These are genes
that could be described as having a more bursting pattern of expression in somitic cells. We then plot the normalised
counts for these genes, and again save the plot object for display later.

ind_vg_bursting_sm <- table_de_genetests$ResultDiffResDisp %in% c("SM+") &
table_de_genetests$ResultDiffMean %in% c("NoDiff") &
abs(

table_de_genetests$ExpPropSM - table_de_genetests$ExpPropPSM
) > 0.1 &
pmax(

table_de_genetests$ExpPropSM, table_de_genetests$ExpPropPSM
) > 0.75

g2 <- plot_vg(ind_vg_bursting_sm)

Now, we use the same selection criteria, plotting first for genes that are largely unimodal, with a high cell-to-cell
variability in pre-somitic cells, and then for genes that have a more bursting expression pattern in pre-somitic cells:
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ind_vg_unimodal_psm <- table_de_genetests$ResultDiffResDisp %in% c("PSM+") &
table_de_genetests$ResultDiffMean %in% c("NoDiff") &
abs(

table_de_genetests$ExpPropSM - table_de_genetests$ExpPropPSM
) < 0.1 &
pmin(

table_de_genetests$ExpPropSM, table_de_genetests$ExpPropPSM
) > 0.75

g3 <- plot_vg(ind_vg_unimodal_psm) +
theme(legend.position = "none")

ind_vg_bursting_psm <- table_de_genetests$ResultDiffResDisp %in% c("PSM+") &
table_de_genetests$ResultDiffMean %in% c("NoDiff") &
abs(

table_de_genetests$ExpPropSM - table_de_genetests$ExpPropPSM
) > 0.10 &
pmax(

table_de_genetests$ExpPropSM, table_de_genetests$ExpPropPSM
) > 0.50

g4 <- plot_vg(ind_vg_bursting_psm)

Now that we have created four violin plots of the various types of differentially variable gene that we have defined, we can
combine the plots together to visualise them simultaneously:

(g1 + g2) / (g3 + g4) + plot_annotation(tag_levels = "A")
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Figure 16. Violin plots of denoised counts. A: Four genes with higher residual over-dispersion in somitic cells, and
similar levels of detection in pre-somitic and somitic populations. B: Four genes with higher residual over-dispersion
in somitic cells and different levels of detection in somitic and pre-somitic cells. C: Four genes with higher residual
over-dispersion in pre-somitic cells and similar levels of detection in somitic and pre-somitic cells. D: Four genes with
higher residual over-dispersion in pre-somitic cells and different levels of detection in somitic and pre-somitic cells.
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Figure 16 shows denoised counts for genes with significant differences in residual over-dispersion, with each panel
showing a different type of expression patterns. Exploration of such patterns is important component of any analysis of
differential variability, and should be undertaken with care. Figure 16B and 16D show genes with differing levels of
detection in both populations, aswell as higher levels of residual over-dispersion in somitic or pre-somiticmesoderm cells
(B and D, respectively). Thus, these genes may represent those with a more bursty expression pattern in one of the cell
population. They may also represent genes that are markers of extrinsic variability, for example cell sub-populations that
differ in abundance between the cell populations in question. In contrast, Figure 16A and 16C show genes with similar
levels of detection in both populations, as well as higher levels of residual over-dispersion in somitic or pre-somitic
mesoderm cells (A and C, respectively). These cases are likely driven bymore tight regulation, rather than transcriptional
burst or sub-population structure.

Discussion
In this article, we have explored the research questions that BASiCS seeks to resolve — chiefly, robustly quantifying
average and variability in expression in cell populations. We have outlined the appropriate quality control and data
visualisation steps to apply when undertaking an analysis using BASiCS in order to ensure high quality input data. We
have also outlined the steps needed to use BASiCS to quantify biological variability, identify highly variable genes, and
normalise scRNAseq data from a single population. We have also provided a limited comparison of the results of these
analyses using BASiCS and the result of similar analyses using scran. Furthermore, we have demonstrated functions
withinBASiCS that allow users to ensure theMCMCused inBASiCS has converged and produced adequate sample sizes.
Finally, we have demonstrated the use of BASiCS to robustly identify differentially expressed genes, in terms of mean
expression and in terms of biological variability.

Further challenges exist in analysing scRNAseq data.10,27 One area for future work is to study how post-selection
inference may affect the performance of BASiCS. For example, Ref. 63 have developed a framework for addressing
inflated type I errors when studying differences inmeans between groups of cells identified via hierarchical clustering, by
splitting counts into “train” and “test” sets. Another important challenge for BASiCS is computational efficiency. The
number of cells profiled in scRNAseq experiments has scaled exponentially since the development of the technology.64

Given thatBASiCS requires computationally intensiveMCMC sampling to estimate the posterior distribution, it becomes
computationally intractable to analyse data from very large numbers of cells. Alternative inference schemes such as
variational inference, maximum a posteriori estimation, or Hamiltonian Monte Carlo may be useful in this context.
Advanced users may wish to use the BASiCStan package to test these alternative inference schemes. This also provides
access to the model diagnostics, facilities for running multiple chains, and posterior summaries provided by Stan,65

while also being fully compatible with the workflow described in this manuscript via the function Stan2BASiCS, that
converts the output of the Stan inference procedure to the type of output generated byBASiCS_MCMC. However, we note
that the Hamiltonian Monte Carlo inference method provided by Stan is more computationally intensive than our default
implementation. Furthermore, the facster approximations provided by Stan, namely scalable variational inference and
maximum a posteriori estimation, are often unstable and less accurate.

Finally, we also anticipate potential extensions of BASiCS to account for the more complex experimental designs. For
example, in cohort studies where cells are extracted frommultiple individuals, the hierarchical model could be expanded
to quantify both for intra- and inter-individual transcriptional variability. As spatial transcriptomic technologiesmature,66

Bayesian hierarchical models such as the one implemented in BASiCS could also be designed to incorporate spatial (and,
potentially, temporal) structure (e.g. Ref. 67). We intend to update this workflow as the field evolves, and as we address
the issues and challenges outlined here.

Data availability
The data used in this article are available for download on EBI ArrayExpress under accession number E-MTAB-4888.
The MCMC chains used to generate this article can be found in Zenodo under the DOI 10.5281/zenodo.10251224.

Software availability
All software used in this workflow is available as part of Bioconductor 3.18 at: https://bioconductor.org/packages/3.18.

The source code for BASiCS, along with facilities contributing and reporting bugs is available at: https://github.com/
catavallejos/BASiCS/.

The source code used for this manuscript is available at: https://github.com/VallejosGroup/BASiCSWorkflow/, and as
archived source code at time of publication: https://zenodo.org/doi/10.5281/zenodo.5224614.26

License: GPL-2.0
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Reproducibility
The following software versions were used throughout this workflow:

• R version: R version 4.3.2 (2023-10-3)

• Bioconductor version: 3.18

• R packages:

- BASiCS 2.14.0

- scran 1.30.10

- scater 1.30.1

Version numbers for all remaining packages are available in the Session Info section.

ADocker image containing all software requirements is available atDocker hub. This image can be downloaded using the
command docker pull alanocallaghan/basicsworkflow2020-docker:0.5.3.

Session Info

sessionInfo()
## R version 4.3.2 (2023-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
## LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;
LAPACK version 3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: Etc/UTC
## tzcode source: system (glibc)
##
## attached base packages:
## [1] grid stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] tidyr_1.3.0 RColorBrewer_1.1-3
## [3] circlize_0.4.15 viridis_0.6.4
## [5] viridisLite_0.4.2 ComplexHeatmap_2.18.0
## [7] patchwork_1.1.3 ggpointdensity_0.1.0
## [9] BASiCS_2.14.0 scran_1.30.0
## [11] scater_1.30.1 scuttle_1.12.0
## [13] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
## [15] Biobase_2.62.0 GenomicRanges_1.54.1
## [17] GenomeInfoDb_1.38.1 IRanges_2.36.0
## [19] S4Vectors_0.40.2 BiocGenerics_0.48.1
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## [21] MatrixGenerics_1.14.0 matrixStats_1.1.0
## 23] ggplot2_3.4.4 knitr_1.45
## [25] BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] rstudioapi_0.15.0 tensorA_0.36.2
## [3] shape_1.4.6 magrittr_2.0.3
## [5] magick_2.8.1 ggbeeswarm_0.7.2
## [7] farver_2.1.1 rmarkdown_2.25
## [9] fs_1.6.3 GlobalOptions_0.1.2
## [11] zlibbioc_1.48.0 vctrs_0.6.4
## [13] Cairo_1.6-2 DelayedMatrixStats_1.24.0
## [15] RCurl_1.98-1.13 tinytex_0.48
## [17] usethis_2.2.2 htmltools_0.5.6.1
## [19] S4Arrays_1.2.0 distributional_0.3.2
## [21] BiocNeighbors_1.20.0 SparseArray_1.2.2
## [23] plyr_1.8.9 igraph_1.5.1
## [25] mime_0.12 lifecycle_1.0.3
## [27] iterators_1.0.14 pkgconfig_2.0.3
## [29] rsvd_1.0.5 Matrix_1.6-1.1
## [31] R6_2.5.1 fastmap_1.1.1
## [33] GenomeInfoDbData_1.2.11 shiny_1.7.5.1
## [35] clue_0.3-65 digest_0.6.33
## [37] colorspace_2.1-0 dqrng_0.3.2
## [39] irlba_2.3.5.1 beachmat_2.18.0
## [41] labeling_0.4.3 fansi_1.0.5
## [43] httr_1.4.7 abind_1.4-5
## [45] compiler_4.3.2 withr_2.5.1
## [47] doParallel_1.0.17 backports_1.4.1
## [49] BiocParallel_1.36.0 hexbin_1.28.3
## [51] highr_0.10 MASS_7.3-60
## [53] DelayedArray_0.28.0 rjson_0.2.21
## [55] bluster_1.12.0 tools_4.3.2
## [57] vipor_0.4.5 beeswarm_0.4.0
## [59] httpuv_1.6.12 glue_1.6.2
## [61] promises_1.2.1 checkmate_2.3.0
## [63] cluster_2.1.4 reshape2_1.4.4
## [65] generics_0.1.3 gtable_0.3.4
## [67] BiocSingular_1.18.0 ScaledMatrix_1.10.0
## [69] metapod_1.10.0 utf8_1.2.4
## [71] XVector_0.42.0 stringr_1.5.0
## [73] ggrepel_0.9.4 foreach_1.5.2
## [75] pillar_1.9.0 ggExtra_0.10.1
## [77] limma_3.58.1 posterior_1.5.0
## [79] later_1.3.1 BiocWorkflowTools_1.28.0
## [81] dplyr_1.1.4 lattice_0.22-5
## [83] tidyselect_1.2.0 locfit_1.5-9.8
## [85] miniUI_0.1.1.1 git2r_0.33.0
## [87] gridExtra_2.3 bookdown_0.36
## [89] edgeR_4.0.2 xfun_0.40
## [91] statmod_1.5.0 stringi_1.7.12
## [93] yaml_2.3.7 evaluate_0.22
## [95] codetools_0.2-19 tibble_3.2.1
## [97] BiocManager_1.30.22 cli_3.6.1
## [99] xtable_1.8-4 munsell_0.5.0
## [101] Rcpp_1.0.11 coda_0.19-4
## [103] png_0.1-8 parallel_4.3.2
## [105] ellipsis_0.3.2 assertthat_0.2.1
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## [107] sparseMatrixStats_1.14.0 bitops_1.0-7
## [109] scales_1.3.0 purrr_1.0.2
## [111] crayon_1.5.2 GetoptLong_1.0.5
## [113] rlang_1.1.1 cowplot_1.1.1

References

1. Stegle O, Teichmann SA,Marioni JC: Computational and analytical
challenges in single-cell transcriptomics. Nat. Rev. Genet. jan
2015; 16(3): 133–145.
PubMed Abstract|Publisher Full Text

2. Prakadan SM, Shalek AK, Weitz DA: Scaling by shrinking:
empowering single-cell’omics’ with microfluidic devices. Nat.
Rev. Genet. 2017; 18(6): 345–361.
PubMed Abstract|Publisher Full Text

3. Patange S, Girvan M, Larson DR: Single-cell systems biology:
Probing the basic unit of information flow. Curr. Opin. Syst. Biol.
2018; 8: 7–15.
Publisher Full Text

4. Kiselev VY, Andrews TS, Hemberg M: Challenges in unsupervised
clustering of single-cell RNA-seq data. Nat. Rev. Genet. 2018. 2019;
20: 273–282.
PubMed Abstract|Publisher Full Text|Reference Source

5. Saelens W, Cannoodt R, Todorov H, et al. : A comparison of single-
cell trajectory inference methods. Nat. Biotechnol. May 2019;
37(5): 547–554.
Publisher Full Text

6. Mojtahedi M, Skupin A, Zhou J, et al. : Cell Fate Decision as High-
Dimensional Critical State Transition. PLoS Biol. December 2016;
14(12): e2000640.
PubMed Abstract|Publisher Full Text

7. Martinez-Jimenez CP, Eling N, Chen H-C, et al.:Aging increases cell-
to-cell transcriptional variability upon immune stimulation.
Science. 2017; 355: 1433–1436.
PubMed Abstract|Publisher Full Text

8. Lin Y, Ghazanfar S, Strbenac D, et al. : Evaluating stably expressed
genes in single cells. GigaScience. September 2019; 8(9): giz106.
PubMed Abstract|Publisher Full Text

9. Elowitz MB, Levine AJ, Siggia ED, et al.: Stochastic gene expression
in a single cell. Science. 2002; 2970(5584): 1183–1186.
Publisher Full Text|Reference Source

10. Eling N, Morgan MD, Marioni JC: Challenges in measuring and
understanding biological noise. Nat. Rev. Genet. September 2019;
200(9): 536–548.
Publisher Full Text

11. Zopf CJ, Quinn K, Zeidman J, et al. : Cell-Cycle Dependence of
TranscriptionDominatesNoise inGeneExpression.PLoSComput.
Biol. 2013; 9(7): 1–12.
Publisher Full Text

12. Iwamoto K, Shindo Y, Takahashi K: Modeling Cellular Noise
Underlying Heterogeneous Cell Responses in the Epidermal
Growth Factor Signaling Pathway. PLoS Comput. Biol. 2016; 12(11):
e1005222.
PubMed Abstract|Publisher Full Text

13. Kiviet DJ, Nghe P,Walker N, et al.: Stochasticity ofmetabolism and
growth at the single-cell level. Nature. 2014; 514(7522): 376–379.
PubMed Abstract|Publisher Full Text

14. Eberwine J, Kim J: Cellular Deconstruction: Finding Meaning in
Individual Cell Variation. Trends Cell Biol. 2015; 25(10): 569–578.
Publisher Full Text

15. Faure AJ, Schmiedel JM, Lehner B: Systematic Analysis of the
Determinants of Gene Expression Noise in Embryonic Stem
Cells. Cell Systems. 2017; 5(5): 471–484.e4.
Publisher Full Text

16. MorganMD,Marioni JC: CpG island composition differences are a
source of gene expression noise indicative of promoter
responsiveness. Genome Biol. 2018; 19(1): 81.
PubMed Abstract|Publisher Full Text

17. Brennecke P, Anders S, Kim JK, et al. : Accounting for technical
noise in single-cell RNA-seq experiments. 2013; 10(11):
1093–1095.
PubMed Abstract|Publisher Full Text

18. Vallejos CA, RissoD, ScialdoneA, et al.:Normalizing single-cell RNA
sequencing data: challenges and opportunities. Nat. Methods.
2017; 14(6): 565–571.
PubMed Abstract|Publisher Full Text|Free Full Text

19. External RNA Controls Consortium: Proposedmethods for testing
and selecting the ERCC external RNA controls. BMC Genom. 2005;
6(1): 150.
PubMed Abstract|Publisher Full Text

20. McCarthy DJ, Campbell KR, Lun ATL, et al. : Scater: Pre-processing,
quality control, normalization and visualization of single-cell
RNA-seq data in R. Bioinformatics. 2017; 33(8): 1179–1186.
PubMed Abstract|Publisher Full Text

21. Islam S, Zeisel A, Joost S, et al. : Quantitative single-cell RNA-seq
with unique molecular identifiers. Nat. Methods. February 2014;
11(2): 163–166.
Publisher Full Text

22. Haque A, Engel J, Teichmann SA, et al.: A practical guide to single-
cell RNA-sequencing for biomedical research and clinical
applications. Genome Med. December 2017; 9(1): 75.
Publisher Full Text

23. Bacher R, Kendziorski C: Design and computational analysis of
single-cell RNA-sequencing experiments. Genome Biol. 2016;
17(1): 63.
Publisher Full Text

24. Vallejos CA, Marioni JC, Richardson S: BASiCS: Bayesian analysis of
single-cell sequencingdata. PLoS Comput. Biol. 2015;11: e1004333.
PubMed Abstract|Publisher Full Text

25. Vallejos CA, Richardson S, Marioni JC: Beyond comparisons of
means: understanding changes in gene expression at the
single-cell level. Genome Biol. 2016; 170(70).
Publisher Full Text|Reference Source

26. Eling N, Richard AC, Richardson S, et al. : Correcting the Mean-
Variance Dependency for Differential Variability Testing Using
Single-Cell RNASequencingData.Cell Systems.2018;7(3): 284–294.
e12.
PubMed Abstract|Publisher Full Text|Reference Source

27. Lähnemann D, Köster J, Szczurek E, et al.: Eleven grand challenges
in single-cell data science. Genome Biol. December 2020; 21(1): 31.
PubMed Abstract|Publisher Full Text

28. LoveMI, HuberW,Anders S:Moderatedestimationof fold change
and dispersion for RNA-seq datawith DESeq2. Genome Biol. 2014;
15(12): 550.
PubMed Abstract|Publisher Full Text|Free Full Text

29. Svensson V: Droplet scRNA-seq is not zero-inflated. Nat.
Biotechnol. February 2020; 38(2): 147–150.
Publisher Full Text

30. Townes WF: Review of Probability Distributions for Modeling
Count Data. arXiv:2001.04343 [stat]. January 2020.

31. Townes WF, Hicks SC, Aryee MJ, et al. : Feature
selection and dimension reduction for single-cell RNA-Seq
based on a multinomial model. Genome Biol. December 2019;
20(1): 295.
PubMed Abstract|Publisher Full Text

32. Zappia L, Phipson B, Oshlack A: Splatter: Simulation of single-cell
RNA sequencing data. Genome Biol. 2017; 18(1): 174.
PubMed Abstract|Publisher Full Text|Free Full Text

33. Lun ATL, McCarthy DJ, Marioni JC: A step-by-step workflow for
basic analyses of single-cell RNA-seq data. F1000Res. 2016;
5(2122).
Publisher Full Text

34. Kim B, Lee E, Kim JK: Analysis of Technical and Biological
Variabilityin Single-Cell RNA Sequencing. Computational Methods
for Single-Cell Data Analysis. 2019; volume 1935. pages 25–43.
Publisher Full Text

Page 35 of 61

F1000Research 2024, 11:59 Last updated: 09 MAY 2024

http://www.ncbi.nlm.nih.gov/pubmed/25628217
https://doi.org/1471-0056. doi: 10.1038/nrg3833
https://doi.org/1471-0056. doi: 10.1038/nrg3833
https://doi.org/1471-0056. doi: 10.1038/nrg3833
http://www.ncbi.nlm.nih.gov/pubmed/28392571
https://doi.org/10.1038/nrg.2017.15
https://doi.org/10.1038/nrg.2017.15
https://doi.org/10.1038/nrg.2017.15
https://doi.org/10.1016/j.coisb.2017.11.011
http://www.ncbi.nlm.nih.gov/pubmed/30617341
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://doi.org/10.1038/s41576-018-0088-9
https://www.nature.com/articles/s41576-018-0088-9?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+nrg%2Frss%2Fcurrent+%28Nature+Reviews+Genetics+-+Issue%29
https://www.nature.com/articles/s41576-018-0088-9?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+nrg%2Frss%2Fcurrent+%28Nature+Reviews+Genetics+-+Issue%29
https://www.nature.com/articles/s41576-018-0088-9?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+nrg%2Frss%2Fcurrent+%28Nature+Reviews+Genetics+-+Issue%29
https://doi.org/10.1038/s41587-019-0071-9
http://www.ncbi.nlm.nih.gov/pubmed/28027308
https://doi.org/10.1371/journal.pbio.2000640
https://doi.org/10.1371/journal.pbio.2000640
https://doi.org/10.1371/journal.pbio.2000640
http://www.ncbi.nlm.nih.gov/pubmed/28360329
https://doi.org/10.1126/science.aah4115
https://doi.org/10.1126/science.aah4115
https://doi.org/10.1126/science.aah4115
http://www.ncbi.nlm.nih.gov/pubmed/31531674
https://doi.org/10.1093/gigascience/giz106
https://doi.org/10.1093/gigascience/giz106
https://doi.org/10.1093/gigascience/giz106
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12183631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12183631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12183631
https://doi.org/10.1038/s41576-019-0130-6
https://doi.org/10.1371/journal.pcbi.1003161
http://www.ncbi.nlm.nih.gov/pubmed/27902699
https://doi.org/10.1371/journal.pcbi.1005222
https://doi.org/10.1371/journal.pcbi.1005222
https://doi.org/10.1371/journal.pcbi.1005222
http://www.ncbi.nlm.nih.gov/pubmed/25186725
https://doi.org/10.1038/nature13582
https://doi.org/10.1038/nature13582
https://doi.org/10.1038/nature13582
https://doi.org/10.1016/j.tcb.2015.07.004
https://doi.org/10.1016/j.cels.2017.10.003
http://www.ncbi.nlm.nih.gov/pubmed/29945659
https://doi.org/10.1186/s13059-018-1461-x
https://doi.org/10.1186/s13059-018-1461-x
https://doi.org/10.1186/s13059-018-1461-x
http://www.ncbi.nlm.nih.gov/pubmed/24056876
https://doi.org/10.1038/nmeth.2645
https://doi.org/10.1038/nmeth.2645
https://doi.org/10.1038/nmeth.2645
http://www.ncbi.nlm.nih.gov/pubmed/28504683
https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1038/nmeth.4292
https://doi.org/10.1038/nmeth.4292
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549838
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549838
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549838
http://www.ncbi.nlm.nih.gov/pubmed/16266432
https://doi.org/10.1186/1471-2164-6-150
https://doi.org/10.1186/1471-2164-6-150
https://doi.org/10.1186/1471-2164-6-150
http://www.ncbi.nlm.nih.gov/pubmed/28088763
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1038/nmeth.2772
https://doi.org/10.1186/s13073-017-0467-4
https://doi.org/10.1186/s13059-016-0927-y
http://www.ncbi.nlm.nih.gov/pubmed/26107944
https://doi.org/10.1371/journal.pcbi.1004333
https://doi.org/10.1371/journal.pcbi.1004333
https://doi.org/10.1371/journal.pcbi.1004333
https://doi.org/10.1101/035949
http://biorxiv.org/content/early/2016/01/05/035949.abstract
http://biorxiv.org/content/early/2016/01/05/035949.abstract
http://biorxiv.org/content/early/2016/01/05/035949.abstract
http://www.ncbi.nlm.nih.gov/pubmed/30172840
https://doi.org/10.1016/j.cels.2018.06.011
https://doi.org/10.1016/j.cels.2018.06.011
https://doi.org/10.1016/j.cels.2018.06.011
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302783
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302783
https://linkinghub.elsevier.com/retrieve/pii/S2405471218302783
http://www.ncbi.nlm.nih.gov/pubmed/32033589
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s13059-020-1926-6
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4302049
https://doi.org/10.1038/s41587-019-0379-5
http://www.ncbi.nlm.nih.gov/pubmed/31870412
https://doi.org/10.1186/s13059-019-1861-6
https://doi.org/10.1186/s13059-019-1861-6
https://doi.org/10.1186/s13059-019-1861-6
http://www.ncbi.nlm.nih.gov/pubmed/28899397
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1186/s13059-017-1305-0
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596896
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596896
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596896
https://doi.org/10.12688/f1000research.9501.1
https://doi.org/10.1007/978-1-4939-9057-3


35. Boettiger C: An introduction to Docker for reproducible
research. ACM SIGOPS Operating Systems Review. January 2015;
49(1): 71–79.
Publisher Full Text

36. Carroll RJ: Measurement Error in Epidemiologic Studies.
Published online2005: 38.
Publisher Full Text

37. Kharchenko PV, Silberstein L, Scadden DT: Bayesian approach to
single-cell differential expression analysis.Nat. Methods. jul 2014;
11(7): 740–742.
PubMed Abstract|Publisher Full Text|Reference Source

38. Finak G, McDavid A, Yajima M, et al. : MAST: A flexible statistical
framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing
data. Genome Biol. December 2015; 16(1): 278.
PubMed Abstract|Publisher Full Text

39. Soneson C, Robinson MD: Bias, robustness and scalability in
single-cell differential expression analysis. Nat. Methods.
April 2018; 150(4): 255–261.
Publisher Full Text

40. Amezquita OA, Carey VJ, Carpp LN, et al.:Orchestrating Single-Cell
Analysis with Bioconductor. Preprint, Genomics. March 2019.

41. R Core Team: R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing;
2021.
Reference Source

42. Ilicic T, Kim JK, Kolodziejczyk AA, et al. : Classification of low
quality cells from single-cell RNA-seq data. Genome Biol. 2016;
17(29): 29–15.
PubMed Abstract|Publisher Full Text

43. Lun ATL, Bach K, Marioni JC: Pooling across cells to normalize
single-cell RNA sequencingdatawithmany zero counts.Genome
Biol. 2016; 17(1): 75.
PubMed Abstract|Publisher Full Text

44. Klein AM,Mazutis L, Akartuna I, et al.:Droplet barcoding for single-
cell transcriptomics applied to embryonic stem cells. Cell. 2015;
161(5): 1187–1201.
PubMed Abstract|Publisher Full Text|Free Full Text

45. Macosko EZ, Basu A, Satija R, et al. : Highly parallel genome-wide
expression profiling of individual cells using nanoliter droplets.
Cell. 2015; 161(5): 1202–1214.
PubMed Abstract|Publisher Full Text|Free Full Text

46. Ibarra-Soria X, Jawaid W, Pijuan-Sala B, et al. : Defining murine
organogenesis at single-cell resolution reveals a role for the
leukotriene pathway in regulating blood progenitor formation.
Nat. Cell Biol. 2018; 20(2): 127–134.
PubMed Abstract|Publisher Full Text|Free Full Text

47. Kernfeld EM, Genga RMJ, Neherin K, et al. : A Single-Cell
Transcriptomic Atlas of Thymus Organogenesis Resolves
Cell Types and Developmental Maturation. Immunity. 2018; 48:
1258–1270.e6.
Publisher Full Text

48. Lloyd-Smith JO:MaximumLikelihood Estimation of the Negative
Binomial Dispersion Parameter for Highly Overdispersed Data,
with Applications to Infectious Diseases. PLoS One. 2007; 2(2):
e180.
PubMed Abstract|Publisher Full Text|Free Full Text

49. Roberts GO, Rosenthal JS: Examples of Adaptive MCMC. J. Comput.
Graph. Stat. January 2009; 180(2): 349–367.
Publisher Full Text

50. Casella G: An Introduction to Empirical Bayes Data Analysis.
Am. Stat. May 1985; 39(2): 83.
Publisher Full Text

51. Cowles MK, Carlin BP: Markov chain monte carlo convergence
diagnostics: A comparative review. J. Am. Stat. Assoc.1996; 91(434):
883–904.
Publisher Full Text

52. Brooks SP, Gelman A: General methods for monitoring
convergence of iterative simulations. J. Comput. Graph. Stat. 1998;
7(4): 434–455.
Publisher Full Text

53. Geweke J, In F: Evaluating the accuracy of sampling-based
approaches to the calculation of posteriormoments. 1995; 4. 11.

54. Koehler E, Brown E, Sebastien J-PAH:On the Assessment of Monte
Carlo Error in Simulation-Based Statistical Analyses. Am. Stat.
May 2009; 630(2): 155–162.
Publisher Full Text

55. Gelman A, Carlin J, Stern H, et al. : Bayesian Data Analysis. CRC Press;
2014. ISBN 978-1439840955.

56. Antolović V, Miermont A, Corrigan AM, Chubb JR: Generation of
Single-Cell Transcript Variability by Repression. Curr. Biol. 2017;
27: 1811–1817.e3.
PubMed Abstract|Publisher Full Text|Reference Source

57. Kolodziejczyk AA, Kim JK, Tsang JCH, et al. : Single cell RNA-
sequencing of pluripotent states unlocks modular
transcriptional variation. Cell Stem Cell. 2015; 17: 471–485.
PubMed Abstract|Publisher Full Text|Reference Source

58. Newton MA: Detecting differential gene expression with a
semiparametric hierarchical mixture method. Biostatistics. April
2004; 50(2): 155–176.
Publisher Full Text

59. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing. J. R. Stat.
Soc., Ser. B, Methodol. 1995; 57(1): 289–300.

60. YoungMD, Wakefield MJ, Smyth GK, et al.: Gene ontology analysis
for RNA-seq: accounting for selection bias. Genome Biol. 2010; 11.
PubMed Abstract|Publisher Full Text|Reference Source

61. Maksimovic J, PhipsonB,OshlackA:Across-packageBioconductor
workflow for analysing methylation array data [version 3; peer
review: 4 approved]. F1000Res. 2020; 5(1281).
PubMed Abstract|Publisher Full Text

62. Gu Z, Eils R, Schlesner M: Complex heatmaps reveal patterns and
correlations in multidimensional genomic data. Bioinformatics.
Published online 2016.

63. Neufeld A, Gao LL, Popp J, et al. : Inference after latent variable
estimation for single-cell RNA sequencing data. Published online
July2022; 25: 270–287.
Publisher Full Text|Reference Source

64. Svensson V, Vento-Tormo R, Teichmann SA: Exponential scaling of
single-cell RNA-seq in the past decade. Nat. Protoc. April 2018;
130(4): 599–604.
Publisher Full Text

65. Carpenter B, Gelman A, Hoffman MD, et al. : Stan: A probabilistic
programming language. J. Stat. Softw. 2017; 76(1): 1–32.
PubMed Abstract|Publisher Full Text|Free Full Text

66. Marx V: Method of the Year: Spatially resolved transcriptomics.
Nat. Methods. 2021; 18(1): 9–14.
PubMed Abstract|Publisher Full Text

67. Äijö T, Maniatis S, Vickovic S, et al. : Splotch: Robust Estimation of
Aligned Spatial Temporal Gene Expression Data. Bioinformatics.
2019.
Publisher Full Text

Page 36 of 61

F1000Research 2024, 11:59 Last updated: 09 MAY 2024

https://doi.org/10.1145/2723872.2723882
https://doi.org/10.1002/0470011815.b2a03082
http://www.ncbi.nlm.nih.gov/pubmed/24836921
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.2967
http://www.ncbi.nlm.nih.gov/pubmed/24836921
http://www.ncbi.nlm.nih.gov/pubmed/24836921
http://www.ncbi.nlm.nih.gov/pubmed/24836921
http://www.ncbi.nlm.nih.gov/pubmed/26653891
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1038/nmeth.4612
https://www.R-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/26887813
https://doi.org/10.1186/s13059-016-0888-1
https://doi.org/10.1186/s13059-016-0888-1
https://doi.org/10.1186/s13059-016-0888-1
http://www.ncbi.nlm.nih.gov/pubmed/27122128
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1186/s13059-016-0947-7
https://doi.org/10.1186/s13059-016-0947-7
http://www.ncbi.nlm.nih.gov/pubmed/26000487
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1016/j.cell.2015.04.044
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441768
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441768
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4441768
http://www.ncbi.nlm.nih.gov/pubmed/26000488
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481139
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481139
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481139
http://www.ncbi.nlm.nih.gov/pubmed/29311656
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1038/s41556-017-0013-z
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787369
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787369
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5787369
https://doi.org/10.1016/j.immuni.2018.04.015
http://www.ncbi.nlm.nih.gov/pubmed/17299582
https://doi.org/10.1371/journal.pone.0000180
https://doi.org/10.1371/journal.pone.0000180
https://doi.org/10.1371/journal.pone.0000180
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1791715
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1791715
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1791715
https://doi.org/10.1198/jcgs.2009.06134
https://doi.org/10.2307/2682801
https://doi.org/10.1080/01621459.1996.10476956
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1198/tast.2009.0030
http://www.ncbi.nlm.nih.gov/pubmed/28602650
https://doi.org/10.1016/j.cub.2017.05.028
https://doi.org/10.1016/j.cub.2017.05.028
https://doi.org/10.1016/j.cub.2017.05.028
http://linkinghub.elsevier.com/retrieve/pii/S096098221730564X
http://linkinghub.elsevier.com/retrieve/pii/S096098221730564X
http://linkinghub.elsevier.com/retrieve/pii/S096098221730564X
http://www.ncbi.nlm.nih.gov/pubmed/26431182
https://doi.org/10.1016/j.stem.2015.09.011
https://doi.org/10.1016/j.stem.2015.09.011
https://doi.org/10.1016/j.stem.2015.09.011
http://linkinghub.elsevier.com/retrieve/pii/S193459091500418X
http://linkinghub.elsevier.com/retrieve/pii/S193459091500418X
http://linkinghub.elsevier.com/retrieve/pii/S193459091500418X
https://doi.org/10.1093/biostatistics/5.2.155
http://www.ncbi.nlm.nih.gov/pubmed/20132535
https://doi.org/10.1186/gb-2010-11-2-r14
https://doi.org/10.1186/gb-2010-11-2-r14
https://doi.org/10.1186/gb-2010-11-2-r14
http://genomebiology.com/2010/11/2/R14
http://genomebiology.com/2010/11/2/R14
http://genomebiology.com/2010/11/2/R14
http://www.ncbi.nlm.nih.gov/pubmed/27347385
https://doi.org/10.12688/f1000research.8839.3
https://doi.org/10.12688/f1000research.8839.3
https://doi.org/10.12688/f1000research.8839.3
https://doi.org/10.1093/biostatistics/kxac047
https://arxiv.org/abs/2207.00554
https://arxiv.org/abs/2207.00554
https://arxiv.org/abs/2207.00554
https://doi.org/10.1038/nprot.2017.149
http://www.ncbi.nlm.nih.gov/pubmed/36568334
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788645
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788645
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788645
http://www.ncbi.nlm.nih.gov/pubmed/33408395
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1038/s41592-020-01033-y
https://doi.org/10.1101/757096


Open Peer Review
Current Peer Review Status:    

Version 2

Reviewer Report 09 May 2024

https://doi.org/10.5256/f1000research.162017.r274782
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Oliver M. Crook   
Department of Statistics, University of Oxford, Oxford, UK 

I greatly appreciate the updated article and, from my perspective, is more focused towards its 
target audience. The work here represent a significant effort on the author's part to ensure their 
work is reproducible and, importantly, useable to their intended community.  
 
I have a few (extremely minor) comments. 
 
1) In the description of `Thin`, I would suggest something like the following definition: A value r 
such that the sequence of draws indexed by 1 + rn, for integer values of n, are stored (e.g. reduce 
the size by roughly 1/r). I think the current definition is incorrect e.g. for a Thin of 4, you wish to 
store values 1, 5, 9,... ? Not just the 4th? Perhaps I am mis-undertanding  
 
2) I would be a bit more pedantic (sorry!) about \mu_i and \delta_i. You want carefully distinguish 
different way this could be (mis)-interpreted. The main point is to be really careful about 
independence between \mu and \delta vs independence between \mu_j and \mu_i. For example, 
the following options are all possible given some of the descriptions but I think only two (A and C) 
are what you intend? 
 
A) The pair (\mu_i, \delta_i) has a joint prior p(\mu_i, \delta_i) (e.g. there is a single global prior for 
all i) 
 
B) The pairs (\mu_i, \delta_i), indexed by i, have joint priors p_i (e.g. each pair has a seperate prior 
from the same family) 
 
C) independent univariate log-normal priors are assigned to each of \mu_i and to \delta_i 
 
D) a joint prior is applied over all \mu_i and a joint prior over all \delta_i 
 
3) Increasing the value of `EpsilonM`. I think I bit more of a hint as to what sort of range of values 
one might consider would be useful.  
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4) Bayesian inference is quite a nice solution to post-selection inference because you can condition 
on everything but that requires you to model any clustering process heirachically. I think cut a 
model would also be appropriate - again more modelling for a another time!
 
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Biostatistics, Bayesian methodology, R, data-intensive biology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 19 April 2022
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© 2022 Naslavsky M. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Michel S Naslavsky   
Human Genome and Stem Cell Research Center, University of São Paulo, São Paulo, Brazil 

O'Callaghan and colleagues present an approach to analyze single-cell RNA sequencing data in a 
stepwise manner. This is very useful both to readers and to students engaged in learning applied 
bioinformatics. As a user (non-developer, non-expert in RNA analysis tool evaluation), my 
contribution will be from a different perspective from the other reviewers who made excellent and 
detailed comments on this manuscript. 
 
1) Introduction, 2nd paragraph: “Moreover, these variability estimates can also be inflated by the 
technical noise that is typically observed in scRNA-seq data” 
 
Comment: Please illustrate with examples of technical noise as presented above for 
extrinsic and intrinsic noise, e.g. RNA differential degradation, ligation bias, etc. 
 
2) Introduction, 3rd paragraph: “However, despite the benefits associated to the use of spike-ins 
and UMIs, these are not available for all scRNA-seq protocols.” 
 
Comment: Please provide a reason - something like “due to the very nature of the assay, 
which isolates library prep from external spike-ins and uses UMIs to map single-cell 
libraries…” or that spike-ins added to the library after pooling limit the full advantage of 
using them across single-cell populations. 
 
3) Methods, 2nd paragraph: “Mean parameters μi quantify the overall expression for each gene i 
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across the cell population under study.”  
 
Comment: Please define cell population as sample (all cells within a scRNA-seq assay) or 
post-processing UMAP, t-SNE, or similar clustering grouping. I understood the latter, but 
readers should be certain, and we need to understand which step these parameters refer to. 
 
4) After Figure 5: “These thresholds can vary across datasets and should be informed by gene-
specific QC metrics such as those shown in Figure 5 as well as prior knowledge about the cell types 
and conditions being studied, where available”. 
 
Comment: I understand this is not the intent of this study, but if possible include some 
rationale behind thresholds for QCing gene exclusion based on types and conditions. Maybe 
bringing the choice for the example explored here. 
 
5) After spike-in calculation step: “To update the sce_naive and sce_active objects, the user must 
create a data.frame whose first column contains the spike-in labels (e.g. ERCC-00130) and whose 
second column contains the number of molecules calculated above. We add this as row metadata 
for altExp (sce_naive) and altExp (sce_active).” 
 
Comment: By ‘update’, do the authors mean ‘update after normalisation with spike-in’? If so, 
please specify. 
 
7) MCMC diagnostics 
 
Comment: I am by far not an expert on the analysis, but the authors were very successful in 
explaining the protocol in a stepwise manner. I would kindly ask if they can add the reason 
why this is needed: “to ensure that comparisons of gene expression are not random” or 
something in that direction. Readers will appreciate it. 
 
8) Figures 15 and 16 
 
Comment: These explanations are important to establish a convincing argument for using 
this workflow. Authors can explore further the ‘tight regulation’ versus ‘transcriptional 
burst’ or ‘sub-population structure’ scenarios with other examples (either from the 
literature or running an orthogonal analysis on larger scRNA-seq datasets of CD4+ T cells.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
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and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Population and medical genomics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 29 Jan 2024
Alan O'Callaghan 

O'Callaghan and colleagues present an approach to analyse single-cell RNA sequencing 
data in a stepwise manner. This is very useful both to readers and to students engaged in 
learning applied bioinformatics. As a user (non-developer, non-expert in RNA analysis tool 
evaluation), my contribution will be from a different perspective from the other reviewers 
who made excellent and detailed comments on this manuscript. 
 
Authors’ response: 
We are grateful for the positive comment provided by Dr Naslavsky about the usefulness of 
our workflow. Many thanks for highlighting the issues listed below, we believe that the 
clarity of our manuscript has substantially improved after addressing these comments. Edits 
to the main text are highlighted in italics.  
 
Reviewer comment: 
1) Introduction, 2nd paragraph: “Moreover, these variability estimates can also be inflated 
by the technical noise that is typically observed in scRNA-seq data” 
Comment: Please illustrate with examples of technical noise as presented above for 
extrinsic and intrinsic noise, e.g. RNA differential degradation, ligation bias, etc. 
Authors’ response: 
We have edited the Introduction to provide additional information about potential sources 
for technical noise. The following text has been added at the end of the second paragraph: 
This technical noise relates to systematic differences between cells that may be introduced by the 
data generating process (e.g., due to differences in dilution or sequencing depth) [@Vallejos2017]. 
 
Reviewer comment: 
2) Introduction, 3rd paragraph: “However, despite the benefits associated to the use of 
spike-ins and UMIs, these are not available for all scRNA-seq protocols.” 
Comment: Please provide a reason - something like “due to the very nature of the assay, 
which isolates library prep from external spike-ins and uses UMIs to map single-cell 
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libraries…” or that spike-ins added to the library after pooling limit the full advantage of 
using them across single-cell populations. 
Authors’ response: 
We have added the following text to note the difficulties in using UMIs and spike-ins with 
some assays. For more detail, see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823857/. 
In particular, spike-ins are of limited use in droplet-based protocols, as spike-ins can only be 
added to the reagent mixture in a known concentration, and the exact quantity in each droplet 
necessarily remains unknown [@Bacher2016]. 
 
Reviewer comment: 
3) Methods, 2nd paragraph: “Mean parameters μi quantify the overall expression for each 
gene i across the cell population under study.”  
Comment: Please define cell population as sample (all cells within a scRNA-seq assay) or 
post-processing UMAP, t-SNE, or similar clustering grouping. I understood the latter, but 
readers should be certain, and we need to understand which step these parameters refer 
to. 
Authors’ response: 
In order to clarify this, we have edited the Introduction to describe the experimental 
designs in which the BASiCS model can be applied:  
The model was initially motivated by supervised experimental designs in which experimental 
conditions correspond to groups of cells defined *a priori* (e.g. selected cell types obtained 
through FACS sorting). However, the approach can also be used in cases where the groups of cells 
of interest are computationally identified through clustering. In such cases, the model does not 
currently address issues associated to *post-selection inference*, where the same data is 
analysed twice: first to perform clustering and then to compare expression profiles between the 
clusters [@Lahnemann2020]; this is an inherent limitation of most differential expression tools. 
Furthermore, we have now included the following text in the Methods, “BASiCS - Bayesian 
Analysis of Single Cell Sequencing data” subsection:  
… within a cell population or populations under study. In this context, cell populations could 
correspond to groups set a priori by the experimental design (e.g. naive or stimulated CD4+ T 
cells in [@Martinez-jimenez2017]), or to groups of cells that were computationally identified 
through clustering. 
 
Reviewer comment: 
4) After Figure 5: “These thresholds can vary across datasets and should be informed by 
gene-specific QC metrics such as those shown in Figure 5 as well as prior knowledge about 
the cell types and conditions being studied, where available”. 
Comment: I understand this is not the intent of this study, but if possible include some 
rationale behind thresholds for QCing gene exclusion based on types and conditions. 
Maybe bringing the choice for the example explored here. 
Authors’ response: 
We have removed the comments about choosing thresholds based on types and conditions, 
as we feel it does not reflect the true use of these thresholds for our use case. We thank the 
reviewer for the note, and have replaced this an explanation of our motivation: 
This is to ensure a reliable estimate of variability, and is roughly in line with the sample size 
requirements for the negative binomial distribution outlined in @Lloyd-Smith2007. 
 

 
Page 41 of 61

F1000Research 2024, 11:59 Last updated: 09 MAY 2024



Reviewer comment: 
5) After spike-in calculation step: “To update the sce_naive and sce_active objects, the user 
must create a data.frame whose first column contains the spike-in labels (e.g. ERCC-00130) 
and whose second column contains the number of molecules calculated above. We add this 
as row metadata for altExp (sce_naive) and altExp (sce_active).” 
Comment: By ‘update’, do the authors mean ‘update after normalisation with spike-in’? If so, 
please specify. 
Authors’ response: 
Apologies for the confusion. By “update” in this context, we refer to adding the relevant 
information about spike-ins to the sce_naive and sce_active objects. We note that the spike-
in analysis workflow has been moved to the Zenodo repository. 
 
Reviewer comment: 
7) MCMC diagnostics 
Comment: I am by far not an expert on the analysis, but the authors were very successful in 
explaining the protocol in a stepwise manner. I would kindly ask if they can add the reason 
why this is needed: “to ensure that comparisons of gene expression are not random” or 
something in that direction. Readers will appreciate it. 
Authors’ response: 
We agree that it is important to explain the rationale behind these diagnostics; we have 
update the text to reflect this as follows: 
Before interpreting the estimates generated by `r Biocpkg("BASiCS")`, it is important to check the 
performance of the MCMC algorithm used. This algorithm used to characterise the posterior 
distribution is stochastic by nature, and as such its performance may vary even when used on the 
same dataset using the same settings. We perform quality control of the MCMC algorithm in 
order to ensure that the results we observe are the result of properties of the underlying data, 
rather than being an artefact of the stochastic algorithm used to characterise the data. 
 
Reviewer comment: 
8) Figures 15 and 16 
Comment: These explanations are important to establish a convincing argument for using 
this workflow. Authors can explore further the ‘tight regulation’ versus ‘transcriptional burst’ 
or ‘sub-population structure’ scenarios with other examples (either from the literature or 
running an orthogonal analysis on larger scRNA-seq datasets of CD4+ T cells. 
Authors’ response: 
The various sources of transcriptional variability are indeed essential to justifying the use of 
this workflow. We note that previous work has highlighted these different aspects in detail. 
For example, Eling et al 2018 explored the role of population structure by generating 
artificially contaminated datasets. Similarly, Martinez-Jimenez 2017 showed the change in 
transcriptional bursting patterns relating to ageing, where older mice were found to have 
more stochastic gene expression patterns relative to younger mice. To clarify this point, we 
have briefly discussed this in the introduction: 
For example, @Eling2018 computationally explored the impact of unobserved structural 
heterogeneity by generating artificially contaminated datasets. In contrast, @Martinez-
Jiminenez2017 showed that changes in transcriptional heterogeneity can related to aging, where 
older mice were shown to exhibit a more "bursting" or stochastic transcriptional pattern relative 
to younger mice.  
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Competing Interests: No competing interests were disclosed.

Reviewer Report 01 April 2022
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© 2022 McDavid A. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Andrew McDavid   
Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 
USA 

This is an extensive workflow on applying the authors' BASiCS method to a plate-based single-cell 
RNAseq data. The authors discuss preparing data downloaded from an external repository, 
evaluation of QC metrics, interrogation of convergence of a Bayesian model, interpretation of 
model parameters, and comparative tests in the two sample settings. Code to generate an 
expansive array of figures is provided. 
 
All said, it's a comprehensive workflow demoing well-documented software. I do have a few 
concerns about how other users would apply the workflow to their data:

The authors demo their method on some naive CD4 cells from inbred mice - really the ideal 
data set to illustrate a method looking at intrinsic sources of gene heterogeneity or 
homogeneity. How would prospective users of BASiCS adapt it to more typical datasets from 
droplet-based scRNAseq, either from samples with more heterogeneity (human) or of less 
purified cells, where spike-ins are absent and the "horizontal integration" model must be 
invoked? I am left wondering:

a. What sort of QC would be needed?○

b. How should the data be stratified (into fairly fine-grained cell types on the basis of 
unsupervised clustering of the expression vector? Though this sort of double-dipping 
will change the inferential properties of the model).

○

c. How can violations of the Bayesian model be detected, or of unresolved sub-
population heterogeneity, indicating more clustering is needed?

○

d. Given that with K populations, we'd have K-times the output from a single run of 
BASiCS to interpret. How to prioritize or understand it? (Perhaps an approach like 
muscat uses here would be helpful?1).

○

e. What techniques can aid in fitting this computationally-intensive model on larger 
datasets (e.g. thousands of cells)? Should we downsample cells, or apply more 
aggressive pre-filtering of genes? I see there's some provision to apply a "divide and 
conquer strategy" to fit the model on tranches of the data in parallel. How should this 
be used in practice? 
 

○

1. 

The workflow is quite lengthy, enough that I found it hard to follow at times, and that I 2. 
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might be missing the forest for the trees. It would be nice if it could be condensed to 
emphasize model interpretation. A couple of suggestions on this end:

a. The initial vignette about data download and QC could be moved to an appendix, 
since it's not very specific to the BASiCS model, and there is a lot of boilerplate code, 
e.g. converting gene symbols. Then we could start from a binary 
SingleCellExperiment object.

○

b. The plotting code is quite verbose. It would be nice from a usability standpoint to 
have commonly-used plots included as part of the functionality of the package.

○

c. Is there some way to provide better navigation among sections of the workflow 
(this may not be possible via F1000?)? This combined with a paragraph in the 
introduction ("This case study is organized as follows...section 3.1 describes 
downloading data from ArrayExpression, 3.2 annotates gene symbols, 3.3 examines 
QC,...") would make it easier for a reader to find the relevant section of the workflow.

○

d. Or the version of this workflow that's at 
https://github.com/VallejosGroup/BASiCSWorkflow/ could be rendered and made 
available on Github, perhaps with some nice markdown features like code-folding 
and a floating TOC to make it easier to read. 
 

○

The comparison between the model estimates and the scran estimates in Figure 8 does help 
orient someone who is not completely familiar with the BASiCS model, but it would be nice 
to have a brief recap of the model in the Methods section (one or two equations), with 
interpretations, to explain the key parameters being estimated.  

3. 

Minor comments:
I encountered some issues regarding the formatting of the code, which the other reviewer 
also remarked upon. This may be limited to the html version of the article.

a. newlines in `website` strings resulting in mal-formed URL.○

b. ^ rendered in some odd font that wouldn't execute when I copied a chunk into 
Rstudio.

○

c. concentration.in..Mix.1.attomoles.ul was missing an `.` 
 

○

1. 

The built-in MCMC diagnostics are nice, but I do feel like Rhat (testing within vs between-
chain variance, e.g. Vehtari et al., 20212) is maybe what I want most. Is there any provision 
for running parallel chains? 
 

2. 

It seemed that when I ran the `BASiCS_DetectHVG` function as specified, I got a couple of 
warning messages: "The posterior probability threshold chosen via EFDR calibration is too 
low. Probability threshold automatically set equal to 'ProbThresholdM'." 
 

3. 

Regarding differential expression testing, could the authors comment on the modeling 
assumptions about the two "populations" of cells? If I had biological replicates in some 
conditions (e.g. distinct mice, humans, or plots of stimulated cells), how would they be used 
here, or does the framework require assuming null inter-replicate variability? 
 

4. 

Figure 15: Caption says "log2 change in expression against against log mean expression for 
genes with higher residual over-dispersion in naive (A) cells and active (D) cells", but seems 
to refer to panels A and C. More broadly, it's not really clear what sort of conclusions we are 
supposed to draw from this sort of figure.

5. 
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Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
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Reviewer Expertise: Bioinformatics, biostatistics, single-cell transcriptomics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 29 Jan 2024
Alan O'Callaghan 

We thank the reviewer for their positive assessment of our manuscript, and the detailed 
comments, which we have used to revise and improve the workflow. Edits to the main text 
are highlighted in italics.  
 
Reviewer comment: 
The authors demo their method on some naive CD4 cells from inbred mice - really the ideal 
data set to illustrate a method looking at intrinsic sources of gene heterogeneity or 
homogeneity. How would prospective users of BASiCS adapt it to more typical datasets from 
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droplet-based scRNAseq, either from samples with more heterogeneity (human) or of less 
purified cells, where spike-ins are absent and the "horizontal integration" model must be 
invoked? I am left wondering: 
        a. What sort of QC would be needed? 
        b. How should the data be stratified (into fairly fine-grained cell types on the basis of 
unsupervised clustering of the expression vector? Though this sort of double-dipping will 
change the inferential properties of the model). 
        c. How can violations of the Bayesian model be detected, or of unresolved sub-
population heterogeneity, indicating more clustering is needed? 
        d. Given that with K populations, we'd have K-times the output from a single run of 
BASiCS to interpret. How to prioritize or understand it? (Perhaps an approach like muscat 
uses here would be helpful?1). 
        e. What techniques can aid in fitting this computationally-intensive model on larger 
datasets (e.g. thousands of cells)? Should we downsample cells, or apply more aggressive 
pre-filtering of genes? I see there's some provision to apply a "divide and conquer strategy" 
to fit the model on tranches of the data in parallel. How should this be used in practice? 
Authors’ response:

We thank the reviewer for this note. Due to its popularity, we have therefore modified 
the workflow to examine droplet-based data instead. The original analysis of CD4 T 
cells is now provided in an additional repository hosted on Zenodo. Furthermore, to 
improve the flow of the manuscript, we have removed data pre-processing and 
quality control to the same Zenodo repository, as we feel that this topic has been 
covered in detail by previous work (Lun et al. 2016, 
https://f1000research.com/articles/5-2122, Amezquita et al. 2019 
https://doi.org/10.1038/s41592-019-0654-x).

1. 

 
Typical droplet-based datasets exhibit substantial cell-to-cell heterogeneity linked to 
the presence of distinct cell types or states. This needs to be accounted for before 
running the BASiCS model. In practice, this means that users should identify similar 
groups of cells (e.g. cell types) through clustering. As mentioned by Dr McDavid, this 
introduces a double-dipping effect where the same data is used twice: first to 
perform clustering and then to compare expression profiles between clusters. This 
effect is not yet addressed in BASiCS, but we believe it is an important area for future 
work. 

1. 

 
We have now edited the Introduction in order to clarify this: 
The model was initially motivated by supervised experimental designs in which experimental 
conditions correspond to groups of cells defined *a priori* (e.g. selected cell types obtained 
through FACS sorting). However, the approach can also be used in cases where the groups of cells 
of interest are computationally identified through clustering. In such cases, the model does not 
currently address issues associated to *post-selection inference*, where the same data is 
analysed twice: first to perform clustering and then to compare expression profiles between the 
clusters [@Lahnemann2020]; this is an inherent limitation of most differential expression tools. 
Furthermore, the Discussion now highlights the importance of assessing how post-selection 
inference may affect the performance of BASiCS (which is beyond the scope of this 
manuscript): 
One area for future work is to study how post-selection inference may affect the performance of `r 
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Biocpkg("BASiCS")`. For example, @Neufeld2022 have developed a framework for addressing 
inflated type I errors when studying differences in means between groups of cells identified via 
hierarchical clustering, by splitting counts into "train" and "test" sets.

Ideally, structural heterogeneity associated with the presence of distinct cell types will 
be addressed before applying the BASiCS model either experimentally (via cell 
sorting) or computationally (via clustering). Eling et al, 
https://doi.org/10.1016/j.cels.2018.06.011, explored a case in which “contamination” 
was present, with a subpopulation of cells that had a distinct expression profile. We 
have observed in previous studies that highly variable genes were enriched by 
markers of such subpopulations. We have added a brief note explaining this in the 
introduction:

1. 

These residual over-dispersion values can be used to quantify transcriptional heterogeneity 
without any confounding with mean expression, though it should be noted that high residual 
over-dispersion may also arise due to structural heterogeneity (e.g. distinct cell sub-types or 
states).

If the data consists of $K$ pre-specified cell groups (e.g. types or states), BASiCS can 
be run separately within each group (as such, omputation can be trivially parallelised 
if multiple cores are available). Once the algorithm has been run, the MCMC chains 
can be post-processed to perform e.g. differential testing. 

1. 

 
Currently, our decision rules for differential expression are performed using two groups. 
Therefore, it is more suitable to focused situations in which a handful of pairwise 
comparisons (hypothesis) are prioritised a priori. However, in principle the posterior 
distributions for gene-level parameters could be combined across multiple chains to test 
other hypotheses, such as an omnibus-type hypothesis (similar to the ANOVA F-test). 
However, this is outside the scope of this workflow. 
 

We recently obtained very promising results about the use of more scalable 
algorithms for Bayesian inference (e.g. divide-and-conquer MCMC, see Bardenet et al. 
2015 https://arxiv.org/abs/1505.02827). We plan to demonstrate the properties and 
practical applications of computationally scalable inference in a future manuscript (in 
preparation). We plan to update this workflow once our benchmarks for this new, 
more scalable, implementation are completed and the updated BASiCS package is 
available in Bioconductor. However, for the time being, we have added a brief note 
regarding this.

1. 

          
Reviewer comment: 
    The workflow is quite lengthy, enough that I found it hard to follow at times, and that I 
might be missing the forest for the trees. It would be nice if it could be condensed to 
emphasise model interpretation. A couple of suggestions on this end: 
        a. The initial vignette about data download and QC could be moved to an appendix, 
since it's not very specific to the BASiCS model, and there is a lot of boilerplate code, e.g. 
converting gene symbols. Then we could start from a binary SingleCellExperiment object. 
        b. The plotting code is quite verbose. It would be nice from a usability standpoint to 
have commonly-used plots included as part of the functionality of the package. 
        c. Is there some way to provide better navigation among sections of the workflow (this 
may not be possible via F1000?)? This combined with a paragraph in the introduction ("This 
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case study is organised as follows...section 3.1 describes downloading data from 
ArrayExpression, 3.2 annotates gene symbols, 3.3 examines QC,...") would make it easier for 
a reader to find the relevant section of the workflow. 
        d. Or the version of this workflow that's at 
https://github.com/VallejosGroup/BASiCSWorkflow/ could be rendered and made available 
on Github, perhaps with some nice markdown features like code-folding and a floating TOC 
to make it easier to read. 
Authors’ response:

Many thanks for this suggestion. We have now moved the data preparation  steps to 
a separate repository for clarity, as single cell data pre-processing and quality control 
have been covered in detail by previous work (Lun et al. 2016, 
https://f1000research.com/articles/5-2122, Amezquita et al. 2019 
https://doi.org/10.1038/s41592-019-0654-x).

1. 

We agree that the plotting code is quite verbose, and detracts from the flow of the 
manuscript. We have moved the pre-processing code to a separate repository for 
clarity, and where possible have simplified the code to improve the reading 
experience.

2. 

We have included a short summary of the workflow sections in the introduction, to 
hopefully aid in navigation.

3. 

Following peer review, we intend to submit a version of this workflow to 
Bioconductor as a Bioconductor workflow (
https://www.bioconductor.org/packages/release/BiocViews.html#___Workflow) so 
that it can be regularly built as part of the Bioconductor build system.

4. 

          
Reviewer comment: The comparison between the model estimates and the scran 
estimates in Figure 8 does help orient someone who is not completely familiar with the 
BASiCS model, but it would be nice to have a brief recap of the model in the Methods 
section (one or two equations), with interpretations, to explain the key parameters being 
estimated.   
Authors’ response: 
Many thanks for this suggestion. We decided to provide a high level description of the 
model suitable for less technical audiences. However, we agree that further information 
would help to better interpret the use and output of BASiCS. Therefore, we have now 
updated the manuscript to include a graphical overview for the BASiCS models and the 
relevant parameters. This includes a graphical representation of the overall 
mean/overdispersion trend and how this is used to derive  residual overdispersion 
estimates (as deviations with respect to the overall trend). We hope this helps to clarify the 
links with the DM estimates provided by scran.  
 
 
Minor comments: 
Reviewer comment: 
I encountered some issues regarding the formatting of the code, which the other reviewer 
also remarked upon. This may be limited to the html version of the article. 
        a. newlines in `website` strings resulting in mal-formed URL. 
        b. ^ rendered in some odd font that wouldn't execute when I copied a chunk into 
Rstudio. 
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        c. concentration.in..Mix.1.attomoles.ul was missing an `.` 
Authors’ response: 
This is a formatting issue which should be resolved now. 
          
Reviewer comment: 
The built-in MCMC diagnostics are nice, but I do feel like Rhat (testing within vs between-
chain variance, e.g. Vehtari et al., 20212) is maybe what I want most. Is there any provision 
for running parallel chains? 
Authors’ response: 
Due to the running times of the current MCMC sampler, we have not suggested users to 
routinely run multiple MCMC chains as part of their analyses. However, throughout the 
years, we have run BASiCS multiple times in a variety of settings and we have generally 
observed that different runs of the algorithm converge to similar values. Whilst this does 
not guarantee that the same would hold for a new dataset, our experience strongly 
suggests that the proposed diagnostic criteria are sufficient when evaluating MCMC 
convergence for BASiCS. Nevertheless, we have added support for the Rhat diagnostic 
criterion, and acknowledge that running multiple chains may be useful and we will aim to 
implement this in future versions of the BASiCS library. In particular, we recently obtained 
very promising results about the use of more scalable algorithms for Bayesian inference 
(e.g. divide-and-conquer MCMC, see Bardenet et al. 2015 https://arxiv.org/abs/1505.0282; 
manuscript in preparation). This will facilitate running the algorithm multiple times in a 
timely manner. We plan to update this workflow once our benchmarks for this new, more 
scalable, implementation are completed and the updated BASiCS package is available in 
Bioconductor. 
      
Reviewer comment: 
It seemed that when I ran the `BASiCS_DetectHVG` function as specified, I got a couple of 
warning messages: "The posterior probability threshold chosen via EFDR calibration is too 
low. Probability threshold automatically set equal to 'ProbThresholdM'."    
Authors’ response: 
This message relates to the choice of a probability threshold that controls the EFDR at the 
chosen level. This is normal behaviour that can be controlled using the ProbThreshold 
argument, and we have explained it using the following note in the text: 
Performing HVG and LVG detection involves identifying a posterior probability threshold that 
matches a target EFDR. We perform this choice using a grid search in which EFDR is calculated for 
a range of different probability thresholds between 0.5 and 1. As seen in Figure \@ref(fig:efdr-
plot-vg-SM), for the somitic mesoderm cells, this leads to a threshold of `r hvg@ProbThreshold` 
and `r lvg@ProbThreshold` for HVG and LVG detection, respectively (the value of these thresholds 
can be extracted from the `ProbThreshold` slot in the `hvg` and `lvg` objects, e.g. using 
`hvg@ProbThreshold`). For some datasets, the grid search may fail to identify a probability 
threshold that matches the target EFDR. In such cases, the default minimum probability threshold 
of $\frac{2}{3}$ is used. This default threshold value can be changed using the `ProbThreshold` to 
`BASiCS_DetectHVG` and `BASiCS_DetectLVG`. 
 
Reviewer comment: 
Regarding differential expression testing, could the authors comment on the modelling 
assumptions about the two "populations" of cells? If I had biological replicates in some 
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conditions (e.g. distinct mice, humans, or plots of stimulated cells), how would they be used 
here, or does the framework require assuming null inter-replicate variability? 
Authors’ response: 
In principle, the differential expression testing approach could be used to compare 
expression profiles between two arbitrary groups of cells. The typical use-case is two cell 
types or experimental conditions for a given cell type (naive vs stimulated, grown in two 
different media). Users could potentially apply the model to different biological replicates. 
In such cases, our over-dispersion parameters will quantify intra-replicate cell-to-cell 
variability and our differential expression test will quantify systematic differences between 
biological replicates. However, this approach does not share information across biological 
replicates when estimating model parameters (this can be useful in situations where a small 
number of cells is available per biological replicate, or when the data is sparse). Moreover, 
this would not scale well to cohort studies (e.g. van der Wijst et al. 2018, 
https://doi.org/10.1038/s41588-018-0089-9) where multiple biological replicates are 
present. We have added a brief note about this extension in the Discussion section.  
Finally, we also anticipate potential extensions of `r Biocpkg("BASiCS")` to account for the more 
complex experimental designs. For example, in cohort studies where cells are extracted from 
multiple individuals, the hierarchical model could be expanded to quantify both for intra- and 
inter-individual transcriptional variability. 
 
Reviewer comment: 
Figure 15: Caption says "log2 change in expression against against log mean expression for 
genes with higher residual over-dispersion in naive (A) cells and active (D) cells", but seems 
to refer to panels A and C. More broadly, it's not really clear what sort of conclusions we are 
supposed to draw from this sort of figure. 
Authors’ response: 
We agree that this figure was somewhat unclear, and we apologise for the mis-labelled 
panels. We have removed this figure from the revised manuscript as we feel it was not 
necessary.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 08 March 2022

https://doi.org/10.5256/f1000research.78169.r124656

© 2022 Crook O. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Oliver M. Crook   
Department of Statistics, University of Oxford, Oxford, UK 

Summary: 
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O’Callaghan and co-authors provide a workflow for the popular method BASiCS and its extensions. 
This workflow is intended to display the bioconductor infrastructure of BASiCS and provide a 
template for analysis for others to streamline their data analysis. I find the workflow quite 
comprehensive and takes me through the analysis points that I would expect to see. First of all, I 
must confess I am not an expert in processing scRNA data and so I cannot assess whether the 
choices of filtering, thresholding etc are up-to-date. I will leave this assessment to other reviewers. 
Here, I wish to focus my review on the communication of sophisticated methods presented, the 
Bayesian analysis, visualizations and the code. I believe this is an extremely valuable contribution 
to the scRNA community, the workflow community and applied Bayesians. I would also like to 
thank the authors’ attention to detail, I found the article well-written and logically structured.  
 
I would encourage you to update your version of R to 4.2 as the next version of Bioconductor will 
use this. 
 
General comments: 
 
Whilst the method itself is presented technically in other papers, I don’t quite get a good picture of 
the model and its variants. Referring to the other papers I find myself confronted with lots of 
equations, whilst I can make my way through these details I think the intended users might 
struggle. The workflow might benefit from a narrative description or recipe that highlights its 
generative nature. A cartoon or graphic can be particularly insightful. 
 
As good statisticians, we should incorporate experimental design into our models. I think before 
the data are introduced it would be useful to have a short description of the type of experiments 
that could be analysed with BASiCS, when BASiCS would be useful over other approaches, when 
not to apply BASiCS. What sort of data would it be optimal to collect if I wish to analysed it using 
BASiCS? How valuable are spike-ins for example? 
 
I had to spend quite some time on the code chunks, working out what was going on. I think these 
could be decorated with useful comments so your intended user is allowed to be as lazy as 
possible (which is what you want so they will use your package!). This was particularly the case for 
the pre-processing and parameter estimation. 
 
There are some quite long code chunks that I felt represented fairly repetitive tasks, mostly 
related to plotting. If you're using ggplot2 then you can write a function which returns a ggplot 
object with nice defaults and you can explain that it can be customized using the ggplot principles. 
I think the current style is written to allow this customization but I think it's currently unexplained 
and perhaps working against you.  
 
In the section of parameter estimation, the discussion on priors is quite brief and quite unclear 
currently. I’m not quite sure what the "joint prior" is here, I think your intended audience would 
appreciate a narrative description of these priors. The other choices of independent log Normal is 
also unclear. The logMean and logSd appear to be set automatically using the data - is that what 
you mean by Empirical Bayes here? When I dive deeper into changing the priors 
BASiCS_PriorParam is quite daunting. I think there are some helpful things you can do for your 
readers. For example, you explain whether the analysis is sensitive to the prior choice and 
generally how they affect the analysis. You could guide your users through a prior predictive 
check, in which you simulate parameters from the prior and then fake data from the likelihood. 
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You could then show users how well calibrated their prior choices are. General advice of setting 
the prior or whether they should just leave these alone would be useful. 
 
I assume that multiple chains are run, are there any MCMC diagnostics based on running parallel 
chains? 
 
In a Bayesian analysis I expected to be able to manipulate posterior distributions or credible 
intervals. Maybe I missed it but can we visualize the full posterior distribution for \mu_i vs \delta_i 
and \mu_i vs \epsilon_i or some other parameters of interest?   
 
I think I haven’t quite grasped the "variance decomposition" the authors mention into biological 
and technical components. This could be \delta_i and \epsilon_i, but I feel I am missing something? 
I do not yet think the methods section is quite clear on this point. 
 
For the volcano plots the posterior probability is quite bunched up, would this be better on the 
logit scale? Also It appears the probabilities concentrate around 0.5? Is there an intuitive 
explanation for this? Indeed, the distribution generated by hist(p2$data$ProbDiffMean) was quite 
unexpected, are these probabilities calibrated in any way? 
 
You mention computational challenges in the discussion, what is lost by performing maximum 
likelihood estimation or maximum a posteriori estimation? Perhaps the weighted likelihood 
bootstrap or variant could be a useful approach, if you have lots of cores. 
 
What are the challenges of applying this to scRNA data with spatial autocorrelation? It is common 
to now obtain expression data in such a context, does this additional confounding obstruct the 
model? 
 
Specific comments: 
 
In the first code chunks, in `website <- " https …” I think there is an initial space which stops this 
from running correctly. 
 
Remember to include spaces after commas e.g. [a, ] rather than [a,], it is much clearer to read. 
 
I think it would be better to load all the packages at the beginning, I had to restart my session 
several times to install the packages that I realized I needed x% of the way through the workflow. 
 
In figure 4, the axis dimensions of the PCA misrepresents the variance explained. The ratio of axis 
dimensions should closely match the ratios of the variance explained so that the visualization is 
faithful to the dimensionality reduction.  
 
Constants used in the package could be saved as global variables, it’s very easy to make a typo 
with these conversions. 
 
In the chunk starting ## Moles per microliter, I had to edit the first line of the code chunk to get it 
to work. Perhaps it has been malformatted? 
 
\log is a symbol and should always be lower-case 
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In the abstract, you write "strong technical noise". I don’t quite understand what "strong" is 
adding here.  
 
A number of concepts are left unexplained such as "joint prior", "negative binomial framework", 
"borrows information", "expected false discovery rate". These are all familiar concepts to someone 
with advanced statistical knowledge but the casual scRNA reader might find this off putting. 
  
Figure 12 there is a typo in the legend "\log_{1}0 -> \log_{10}". 
 
In Figure 12 the dendrogram is unexplained and I’m not sure what it means in this context.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: I receive funding from GlaxoSmithKline.

Reviewer Expertise: Biostatistics, Bayesian methodology, R, data-intensive biology

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 29 Jan 2024
Alan O'Callaghan 

We would like to thank Dr Crook for such a positive assessment of our manuscript. A 
detailed point-by-point response for the remaining comments is provided below. Edits to 
the main text are highlighted in italics.  
 
Reviewer comment: I would encourage you to update your version of R to 4.2 as the next 
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version of Bioconductor will use this. 
Author’s response: We have now updated the workflow to use R version 4.3 which is the 
current version suggested by Bioconductor.  
 
Reviewer comment: Whilst the method itself is presented technically in other papers, I 
don’t quite get a good picture of the model and its variants. Referring to the other papers I 
find myself confronted with lots of equations, whilst I can make my way through these 
details I think the intended users might struggle. The workflow might benefit from a 
narrative description or recipe that highlights its generative nature. A cartoon or graphic 
can be particularly insightful. 
 
Author’s response: Many thanks for this suggestion. We have now updated the manuscript 
to include a graphical overview for the BASiCS model (see Figure 2 in the revised 
manuscript). This enables us to better introduce the role of different model parameters. In 
terms of the different variations of the BASiCS model, we provide a high level description for 
the latest version (as per Eling et al 2018) as this is what we recommend to use as default. 
We hope this provides a better overview of the methodology whilst ensuring that  the 
workflow is accessible to a wide range of users.  
 
Reviewer comment: As good statisticians, we should incorporate experimental design into 
our models. I think before the data are introduced it would be useful to have a short 
description of the type of experiments that could be analysed with BASiCS, when BASiCS 
would be useful over other approaches, when not to apply BASiCS. What sort of data would 
it be optimal to collect if I wish to analysed it using BASiCS? How valuable are spike-ins for 
example? 
Author’s response: We agree a more explicit description of the experimental design 
assumed by BASiCS would be useful to potential issues. To address this, we included the 
following text in the Introduction: 
The model was initially motivated by supervised experimental designs in which experimental 
conditions correspond to groups of cells defined *a priori* (e.g. selected cell types obtained 
through FACS sorting). However, the approach can also be used in cases where the groups of cells 
of interest are computationally identified through clustering. In such cases, the model does not 
currently address issues associated to *post-selection inference*, where the same data is 
analysed twice: first to perform clustering and then to compare expression profiles between the 
clusters [@Lahnemann2020]; this is an inherent limitation of most differential expression tools. 
 
Furthermore, the Discussion now highlights the importance of assessing how post-selection 
inference may affect the performance of BASiCS (which is beyond the scope of this 
manuscript): 
One area for future work is to study how post-selection inference may affect the performance of `r 
Biocpkg("BASiCS")`. For example, @Neufeld2022 have developed a framework for addressing 
inflated type I errors when studying differences in means between groups of cells identified via 
hierarchical clustering, by splitting counts into "train" and "test" sets. 
 
Reviewer comment: I had to spend quite some time on the code chunks, working out what 
was going on. I think these could be decorated with useful comments so your intended user 
is allowed to be as lazy as possible (which is what you want so they will use your package!). 
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This was particularly the case for the pre-processing and parameter estimation. 
Author’s response: Indeed, clarity is an important element for this type of analysis 
workflows. We have now added further comments in the code chunks. We hope this helps 
to clarify specific steps. Furthermore, we have moved the code dealing with data QC to a 
separate repository, as the topic has been covered in previous F1000Research workflow 
articles (e.g. Lun et al 2016, https://f1000research.com/articles/5-2122). We hope these 
changes have reduced the complexity of the code and improve the flow of our article. 
  
Reviewer comment: There are some quite long code chunks that I felt represented fairly 
repetitive tasks, mostly related to plotting. If you're using ggplot2 then you can write a 
function which returns a ggplot object with nice defaults and you can explain that it can be 
customised using the ggplot principles. I think the current style is written to allow this 
customization but I think it's currently unexplained and perhaps working against you.  
Author’s response: As mentioned above, we have moved the code dealing with data QC to 
a separate repository, which should reduce the complexity of the code that readers need to 
process. We have also attempted to reduce the complexity of later plots by splitting them 
into smaller chunks with better explanation, which we hope aids the readability of the 
manuscript. 
 
Reviewer comment: In the section of parameter estimation, the discussion on priors is 
quite brief and quite unclear currently. I’m not quite sure what the "joint prior" is here, I 
think your intended audience would appreciate a narrative description of these priors. The 
other choices of independent log Normal is also unclear. The logMean and logSd appear to 
be set automatically using the data - is that what you mean by Empirical Bayes here? When I 
dive deeper into changing the priors BASiCS_PriorParam is quite daunting. I think there are 
some helpful things you can do for your readers. For example, you explain whether the 
analysis is sensitive to the prior choice and generally how they affect the analysis. You could 
guide your users through a prior predictive check, in which you simulate parameters from 
the prior and then fake data from the likelihood. You could then show users how well 
calibrated their prior choices are. General advice of setting the prior or whether they should 
just leave these alone would be useful. 
Authors’ response: We agree that further information/intuition about the priors will 
improve our manuscript. To address this, we have now extended the model description. As 
noted above, we have primarily focused on the latest version of the model (Eling et al 2018) 
as that is the default recommended setting. In particular, we have now provided additional 
information to clarify the definition of our "joint prior" and the use of an empirical Bayes 
approach. This includes the bottom right panel in Figure 2 and edits to the “BASiCS - 
Bayesian Analysis of Single Cell Sequencing data” sub-section within Methods: 
To account for the strong relationship that is typically observed between gene-specific mean 
expression and over-dispersion estimates, Eling *et al.*  [@Eling2018] introduced a *joint prior* 
specification for these parameters. This joint prior assumes that genes with similar mean 
expression ($\mu_i$) have similar over-dispersion parameters $\delta_i$. Effectively, this shrinks 
over-dispersion estimates towards a global trend that captures the relationship between mean 
and over-dispersion (Figure 2). This improves posterior inference for over-dispersion parameters 
when the data is less informative (e.g. small sample size, lowly expressed genes) [@Eling2018]. 
This information-sharing approach is conceptually similar to that performed by @Love2014 and 
others, where sparse data is pooled to obtain more reliable estimates. The global trend is then 
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used to derive gene-specific *residual over-dispersion* parameters $\epsilon_i$ that are not 
confounded by mean expression. Similar to the DM values implemented in `r Biocpkg("scran")`, 
these are defined as deviations with respect to the overall trend. 
In terms of the prior hyper-parameter choices, we recommend users to apply the default 
settings as we have tested these in a variety of contexts. Furthermore, as shown in Vallejos 
et al (2015), most posterior estimates are robust to different hyper-parameter choices (the 
exception is for gene-specific parameters for lowly expressed genes, which benefit from the 
use of the joint prior introduced by Eling et al 2018 
https://doi.org/10.1016/j.cels.2018.06.011 and the empirical Bayes framework). Finally, as 
shown by Zappia et al (2017) https://doi.org/10.1186/s13059-017-1305-0, the BASiCS model 
is able to successfully recapitulate the main properties of typical scRNAseq data when used 
as a generative model (posterior predictive checks). To emphasise this, we have added the 
following text to the manuscript:  
A previous study has shown that BASiCS, when used as a generative model, is well-tuned to 
capture and recapitulate the main properties of typical scRNAseq data using posterior predictive 
checks [@Zappia2017]. 
 
Reviewer comment: I assume that multiple chains are run, are there any MCMC 
diagnostics based on running parallel chains? 
Authors’ response: Due to the running times of the current MCMC sampler, we have not 
suggested users to routinely run multiple MCMC chains as part of their analyses. However, 
throughout the years, we have run BASiCS multiple times in a variety of settings and we 
have generally observed that different runs of the algorithm converge to similar values. 
Whilst this does not guarantee that the same would hold for a new dataset, our experience 
strongly suggests that the proposed diagnostic criteria are sufficient when evaluating 
MCMC convergence for BASiCS. Nevertheless, we acknowledge that running multiple chains 
may be useful and we will aim to implement this in future versions of the BASiCS library. In 
particular, we recently obtained very promising results about the use of more scalable 
algorithms for Bayesian inference (e.g. divide-and-conquer MCMC, see Bardenet et al. 2015 
https://arxiv.org/abs/1505.02827; manuscript in preparation). This will facilitate running the 
algorithm multiple times in a timely manner. We plan to update this workflow once our 
benchmarks for this new, more scalable, implementation are completed and the updated 
BASiCS package is available in Bioconductor. We also provide the facility for users to run 
multiple chains and to manipulate posteriors manually using rstan (
https://bioconductor.org/packages/release/bioc/html/BASiCStan.html), although we note 
that for data of any appreciable size the Hamiltonian Monte Carlo algorithm used by Stan 
becomes computationally intractable. We have added a brief note to the discussion 
regarding this, as follows: 
Given that `r Biocpkg("BASiCS")` requires computationally intensive MCMC sampling to estimate 
the posterior distribution, it becomes computationally intractable to analyse data from very large 
numbers of cells. Alternative inference schemes such as variational inference for maximum *a 
posteriori* estimation, or Hamiltonian Monte Carlo may be useful in this context. Advanced users 
may wish to use the `r Biocpkg("BASiCStan")` package to test these alternative inference schemes. 
This also provides access to the model diagnostics, facilities for running multiple chains, and 
posterior summaries provided by Stan [@Carpenter2017], while also being fully compatible with 
the workflow described in this manuscript via the function `Stan2BASiCS`, that converts the output 
of the Stan inference procedure to the type of output generated by `BASiCS_MCMC`. However, we 
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note that the Hamiltonian Monte Carlo inference method provided by Stan is more 
computationally intensive than our default implementation. Furthermore, the faster 
approximations provided by Stan, namely scalable variational inference and maximum *a 
posteriori* estimation, are often unstable and less accurate. 
 
Reviewer comment: In a Bayesian analysis I expected to be able to manipulate posterior 
distributions or credible intervals. Maybe I missed it but can we visualize the full posterior 
distribution for \mu_i vs \delta_i and \mu_i vs \epsilon_i or some other parameters of 
interest?   
Authors’ response: As the parameter space for the BASiCS model is high-dimensional, it is 
not practical to visualise the joint posterior distribution posterior of all parameters. 
However, displaySummaryBASiCS() can be used to obtain point estimates (posterior 
medians) and the 95% Highest Posterior Density (HPD) intervals for individual parameters. 
Furthermore, the displayChainBASiCS() function can be used to extract the MCMC chains 
which can be then manipulated separately by the user. To clarify this, we have added the 
following sentence to the “Parameter estimation using BASiCS section”.   
The matrices of MCMC draws can be accessed using the `displayChainBASiCS` 
function --- this may be useful for estimating and visualising credible intervals using 
packages like `r CRANpkg("bayesplot")` or `r CRANpkg("tidybayes")`. 
 
Reviewer comment: I think I haven’t quite grasped the "variance decomposition" the 
authors mention into biological and technical components. This could be \delta_i and 
\epsilon_i, but I feel I am missing something? I do not yet think the methods section is quite 
clear on this point. 
Authors’ response: We used the term “variance decomposition” to denote BASiCS’ ability to 
separate the observed variability into a technical and a biological component, which then 
enables downstream analysis of transcriptional variability: detection of highly and lowly 
variable genes, and differential variability testing. We have thus removed the explicit use of 
the term “variance decomposition” from the paper, and we apologise for any confusion this 
caused. 
 
Reviewer comment: For the volcano plots the posterior probability is quite bunched up, 
would this be better on the logit scale? Also It appears the probabilities concentrate around 
0.5? Is there an intuitive explanation for this? Indeed, the distribution generated by 
hist(p2$data$ProbDiffMean) was quite unexpected, are these probabilities calibrated in any 
way? 
Authors’ response: Thanks for the suggestion. We have changed these plots to use an 
(adjusted) logit scale, and this does appear to be more informative in most cases. The logit 
scale is adjusted to avoid undefined values, i.e., logit(0) and logit(1) by adding or subtracting 
a small value from probabilities with undefined logit values. 
In terms of calibration, this is difficult to assess in the absence of ground truth. However, as 
shown in Vallejos et al (2016), synthetic data examples showed good error rate performance 
for our differential expression test, provided that a non-zero log-fold change threshold is 
used (default in the BASiCS_TestDE function is shown by the vertical lines in the volcano 
plots). This is similar to the approach by McCarthy and Smith (2009) 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654802/, avoiding the identification of 
genes with statistically significant differences but whose associated log-fold changes are not 
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biologically significant.  
 
Reviewer comment: You mention computational challenges in the discussion, what is lost 
by performing maximum likelihood estimation or maximum a posteriori estimation? 
Perhaps the weighted likelihood bootstrap or variant could be a useful approach, if you 
have lots of cores. 
Authors’ response: 
We have explored the variational inference algorithm implemented in Stan as a fast method 
to obtain maximum a posteriori point estimates for BASiCS. However, we have generally 
observed that inference is less reliable. Moreover, beyond point estimates, it is critical for 
BASiCS to obtain reliable estimates of posterior uncertainty as these are required for our 
differential test which relies on tail posterior probabilities. This is particularly problematic 
when using a mean-field approximation for the posterior, which is what is currently  used in 
our Stan implementation.  
As an alternative approach to address these computational challenges, we recently 
explored more scalable algorithms (e.g. divide-and-conquer MCMC, see Bardenet et al. 2015 
https://arxiv.org/abs/1505.02827) to perform inference using the BASiCS model. Our results 
are promising and a manuscript is in preparation.  
 
Reviewer comment: What are the challenges of applying this to scRNA data with spatial 
autocorrelation? It is common to now obtain expression data in such a context, does this 
additional confounding obstruct the model? 
Authors’ response: 
The current BASiCS model assumes that cells are conditionally independent (given gene-
specific and other global parameters). As a result our model does not account for the more 
complex structure that arises in spatial assays. Whilst we have not explored this yet, we 
hypothesise that ignoring this temporal correlation structure will likely lead to biassed over-
dispersion estimates. We have now updated the Discussion to mention that the BASiCS 
model could be adapted to address more complex correlation structures across cells, such 
as those introduced by spatial assays and cohort studies in which cells are extracted from 
multiple donors (e.g. patients): 
Finally, we also anticipate potential extensions of `r Biocpkg("BASiCS")` to account for the more 
complex experimental designs. For example, in cohort studies where cells are extracted from 
multiple individuals, the hierarchical model could be expanded to quantify both for intra- and 
inter-individual transcriptional variability. As spatial transcriptomic technologies mature 
[@Marx2021], Bayesian hierarchical models such as the one implemented in `r Biocpkg("BASiCS")` 
could also be designed to incorporate spatial (and, potentially, temporal) structure (e.g. 
[@Aijo2019]). We intend to update this workflow as the field evolves, and as we address the issues 
and challenges outlined here. 
   
Specific comments: 
 
Reviewer comment: 
In the first code chunks, in `website <- " https …” I think there is an initial space which stops 
this from running correctly. 
Authors’ response: 
This is a formatting issue which should be resolved now. 
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Reviewer comment: 
Remember to include spaces after commas e.g. [a, ] rather than [a,], it is much clearer to 
read. 
Authors’ response: 
Agreed, thank you for pointing this out; we have addressed this in our code formatting. 
 
Reviewer comment: 
I think it would be better to load all the packages at the beginning, I had to restart my 
session several times to install the packages that I realized I needed x% of the way through 
the workflow. 
Authors’ response: 
We initially loaded the packages when they were first used in order to emphasise their role 
within the analysis pipeline. However, we do acknowledge that some users may prefer to 
load all the packages from the start, to prevent installation issues during their analysis (note 
that installation issues are resolved when using the provided Docker image that contains all 
software requirements). To address this, all libraries are now loaded at the start of the 
analysis. Explanations for the use of each library are provided in relevant sections.  
 
Reviewer comment: 
In figure 4, the axis dimensions of the PCA misrepresents the variance explained. The ratio 
of axis dimensions should closely match the ratios of the variance explained so that the 
visualisation is faithful to the dimensionality reduction.  
 
Authors’ response: 
Thank you for highlighting this. We have now swapped the x- and y-axes such that the 
larger axis represents the larger component of variation in the data, although the x-axis is 
still disproportionate given the small amount of variation represented by that PC. However 
given the difference in scale here (20% vs 1%, we feel that directly proportional scaling 
would be excessive. 
Reviewer comment: 
Constants used in the package could be saved as global variables, it’s very easy to make a 
typo with these conversions. 
 
Authors’ response: 
We have implemented a helper function, BASiCS_CalculateERCC, to handle this conversion 
process. We note that the spike-in analysis workflow has been moved to the Zenodo 
repository. 
Reviewer comment: 
In the chunk starting ## Moles per microliter, I had to edit the first line of the code chunk to 
get it to work. Perhaps it has been malformatted? 
 
Authors’ response: 
This is another formatting error and should now be resolved. We note that the spike-in 
analysis workflow has been moved to the Zenodo repository. 
Reviewer comment: 
\log is a symbol and should always be lower-case 
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Authors’ response: 
This has been resolved. 
Reviewer comment: 
In the abstract, you write "strong technical noise". I don’t quite understand what "strong" is 
adding here.  
 
Authors’ response: 
The usage of “strong” aimed to emphasise that the level of technical noise was substantially 
higher than what was observed in bulk-level assays (see [3]). To clarify this, we have 
modified the abstract as follows: 
… but it is prone to technical noise, beyond what is observed in bulk-level assays. 
Reviewer comment: 
A number of concepts are left unexplained such as "joint prior", "negative binomial 
framework", "borrows information", "expected false discovery rate". These are all familiar 
concepts to someone with advanced statistical knowledge but the casual scRNA reader 
might find this off putting. 
 
Authors’ response: 
This is an excellent suggestion. We have now edited the text to explain these concepts.  
To explain the “negative binomial framework” we have added the following text to the 
Introduction: 
The negative binomial distribution is commonly used to model count data when the observed 
variability exceeds what can be captured by a simpler Poisson model --- this is typically referred 
to as over-dispersion.  
To explain the concept behind the "borrows information" statement, the first paragraph in 
the “BASiCS - Bayesian Analysis of Single Cell Sequencing data” sub-section within Methods 
has been edited as follows: 
[…] instead of modelling expression patterns separately for each gene, `r Biocpkg("BASiCS")` 
shares information between all genes to robustly quantify transcriptional variability. For example, 
as described by [@Eling2018], pooling information across genes with similar mean expression 
levels helps to obtain more reliable transcriptional variability estimates. The latter is particularly 
helpful for lowly expressed genes and sparse datasets, where less information is available. 
 
 
To clarify the definition of our "joint prior" statement, the third paragraph in the “BASiCS - 
Bayesian Analysis of Single Cell Sequencing data” sub-section within Methods has been 
edited to include further information: 
To account for the strong relationship that is typically observed between gene-specific mean 
expression and over-dispersion estimates, Eling *et al.* [@Eling2018] introduced a *joint prior* 
specification for these parameters. This joint prior assumes that genes with similar mean 
expression ($\mu_i$) have similar over-dispersion parameters $\delta_i$. Effectively, this shrinks 
over-dispersion estimates towards a global trend that captures the relationship between mean 
and over-dispersion (Figure \@ref(fig:basics-schematic)). This improves posterior inference for 
over-dispersion parameters when the data is less informative (e.g. small sample size, lowly 
expressed genes) [@Eling2018]. This information-sharing approach is conceptually similar to that 
performed by @Love2014 and others, where sparse data is pooled to obtain more reliable 
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estimates. The global trend is then used to derive gene-specific *residual over-dispersion* 
parameters $\epsilon_i$ that are not confounded by mean expression. Similar to the DM values 
implemented in `r Biocpkg("scran")`, these are defined as deviations with respect to the overall 
trend. 
 
In the “HVG/LVG detection using BASiCS” sub-section within the case study, we have added 
the following text to explain the expected false discovery rate: 
The expected false discovery rate we use is conceptually similar to false discovery rate control 
procedures in frequentist statistics, such as the approach of @Benjamini1995, aiming to control 
the proportion of false discoveries produced by the procedure. 
Reviewer comment: 
Figure 12 there is a typo in the legend "\log_{1}0 -> \log_{10}". 
Authors’ response: 
This has been resolved. 
 
Reviewer comment: 
In Figure 12 the dendrogram is unexplained and I’m not sure what it means in this context. 
Authors’ response: 
This dendrogram shows the similarity between cells, but it is not required here and 
therefore has been removed.  
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