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Excessive insulin secretion independent of insulin resis-
tance, defined as primary hypersecretion, is associated
with obesity and an unfavorable metabolic phenotype. We
examined the characteristics of adipose tissue of youth
with primary insulin hypersecretion and the longitudinal
metabolic alterations influenced by the complex adipo-
insular interplay. In a multiethnic cohort of adolescents
with obesity but without diabetes, primary insulin hyper-
secretors had enhanced model-derived b-cell glucose
sensitivity and rate sensitivity but worse glucose toler-
ance, despite similar demographics, adiposity, and insulin
resistance measured by both oral glucose tolerance test
and euglycemic-hyperinsulinemic clamp. Hypersecretors
hadgreater intrahepatic and visceral fat depots at abdominal
MRI, hypertrophic abdominal subcutaneous adipocytes,
higher free fatty acid and leptin serum levels per fat mass,
and faster in vivo lipid turnover assessedbya long-term2H2O
labeling protocol. At 2-year follow-up, hypersecretors had
greater fat accrual and a threefold higher risk for abnormal
glucose tolerance, while individuals with hypertrophic adipo-
cytes or higher leptin levels showedenhancedb-cell glucose
sensitivity. Primary insulin hypersecretion is associated with
marked alterations in adipose tissue distribution, cellularity,
and lipid dynamics, independent of whole-body adiposity
and insulin resistance. Pathogenetic insight into the meta-
bolic crosstalk between b-cell and adipocyte may help to

identify individuals at risk for chronic hyperinsulinemia, body
weightgain, andglucose intolerance.

The pathological sequence leading to obesity-related type 2
diabetes (T2D) is incompletely known, thereby hindering
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• Excessive insulin secretion independent of insulin re-
sistance, named primary hypersecretion, has been as-
sociated with obesity and glucose intolerance.

• We examined whether early alterations in adipose tis-
sue phenotype and function are linked to primary insu-
lin hypersecretion in a complex interplay influencing
glucose tolerance, b-cell function, and adiposity.

• In adolescents with obesity, insulin hypersecretors
have greater ectopic fat depots, hypertrophic adipo-
cytes, higher leptin and free fatty acid levels per fat
mass, and greater lipid turnover than normosecretors.

• Hypertrophic adipocytes and hyperleptinemia predict
short-term increases in b-cell glucose sensitivity, while
the hypersecretory phenotype identifies individuals at risk
of glucose intolerance and accruing adiposity over time.
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the development of targeted preventive strategies to miti-
gate the growing incidence and socioeconomic burden of
the disease (1). Chronic hyperinsulinemia due to excess in-
sulin secretion has been postulated as the primum movens
of T2D, preceding and leading to insulin resistance, b-cell
exhaustion, and ultimately dysglycemia (2–9). We previ-
ously demonstrated that adolescents and adults with nor-
mal glucose tolerance (NGT) and an inappropriate insulin
secretion that more than compensates for the degree of in-
sulin resistance, defined as primary insulin hypersecretion,
have a worse metabolic profile and increased risk of pro-
gression to dysglycemia over time (10). Furthermore, the
Restoring Insulin Secretion (RISE) study revealed that
youth with impaired glucose tolerance (IGT) or recently di-
agnosed T2D have greater insulin responses for any degree
of insulin resistance compared with adults, despite similar
glucose tolerance, which may contribute to a more rapid
b-cell failure regardless of pharmacological treatment
(11,12). However, the role of primary hyperinsulinemia in
the early disease course is yet to be established (13), and
further studies are needed to define the mechanisms of
b-cell overstimulation in the absence of insulin resistance
and glucose dysregulation.

Excess circulating substrates, including free fatty acids
(FFAs) (14–17) and their precursors triglycerides (TGs)
(18–20), can overstimulate the b-cell to increase fasting and
postprandial insulin secretion. In turn, prolonged hyperin-
sulinemia can lead to weight gain and increased adiposity,
particularly in youth (21). A recent study suggested that obe-
sity itself stimulates insulin secretion, independent of insu-
lin resistance and glucose tolerance (9). The adipose tissue is
devoted to the storage and release of lipids and when in ex-
cess, can induce insulin hyperresponsiveness via increased
release of both FFAs (17) and adipocyte-derived hormones
(named adipokines), including leptin and adiponectin
(22–24). Although adipose tissue accumulates predomi-
nantly as subcutaneous adipose tissue (SAT), other fat de-
pots like visceral adipose tissue (VAT) and intrahepatic
fat are abundant in individuals with obesity, thereby
influencing insulin clearance (25) and possibly secretion
(26,27). During weight gain, adipose depots expand through
an increase in adipocyte size and/or number. Enlarged adi-
pocytes, typically observed in obesity, are less susceptible to
insulin’s antilipolytic action (28) and show increased leptin
release (29,30). Furthermore, adipocyte size strongly corre-
lates with insulin levels, independent of BMI or fat mass
(FM) (31,32).

To gain a better understanding of the complex metabolic
crosstalk between b-cells and adipocyte cellularity/endocrine
function, we examined the metabolic phenotype of primary
insulin hypersecretors in a multiethnic cohort of adolescents
with obesity by 1) measuring b-cell function and insulin
sensitivity via euglycemic-hyperinsulinemic clamp and 3-h,
frequently sampled oral glucose tolerance test (OGTT) with
C-peptide/glucose modeling; 2) measuring fat depot distri-
bution and intrahepatic fat via abdominal MRI; 3) assessing

adipocyte morphology in abdominal SAT biopsies; 4) mea-
suring dynamic fluxes of adipose TGs and de novo lipogene-
sis (DNL) in vivo using long-term 2H2O labeling; and 5)
analyzing the trajectories and mutual influence of b-cell
function and adiposity over time via longitudinal metabolic
assessments.

RESEARCH DESIGN AND METHODS

Study Participants
The Yale Pathogenesis of Youth-Onset Type 2 Diabetes
(PYOD) study is a long-term project aimed at examining
early alterations in glucose homeostasis in relation to body
fat patterns in children and adolescents with obesity (age
7–21 years, BMI$85th percentile for age and sex). Exclusion
criteria included any relevant medical therapy or condition
affecting glucose and lipidmetabolism, including alcohol con-
sumption and smoking. A detailedmedical and family history
was obtained from all participants, and a physical examina-
tion was performed by a trained pediatrician. Tanner stage
was determined by a pediatric endocrinologist based on
breast development in girls and genitalia development in
boys. All participants underwent a 3-h, frequently sampled
OGTT; anthropometric measurements, including total body
composition by DEXA scan; and an accurate assessment of
abdominal fat distribution by MRI. After enrollment, partici-
pants received standard nutritional guidance as well as rec-
ommendations for physical activity and were scheduled to be
followed up every 4–6 months according to routine clinical
practice. One hundred participants agreed to have an abdom-
inal SAT biopsy for the determination of adipocyte size at
baseline and were included in this analysis. Subsets of these
participants also underwent a euglycemic-hyperinsulinemic
clamp, a long-term labeling protocol with 2H2O for the deter-
mination of lipid dynamics, and/or additional OGTTs and
DEXA scans at follow-up, as detailed below. Characteristics
of participant subsets are reported in Supplementary Tables
1–3.

The study was conducted according to the principles ex-
pressed in the Declaration of Helsinki and was approved by
the Yale human investigation committee. All participants,
or parents of minors, gave their written informed consent
before enrollment.

Frequently Sampled OGTT
All participants underwent a 3-h, 75-g OGTT at baseline,
and 68 participants returned for a follow-up OGTT after a
median follow-up of 2 years. OGTTs were performed at the
Yale Center for Clinical Investigation at 8:00 A.M. after an
overnight fast. Before the test, participants were asked to
follow a weight maintenance diet consisting of at least 250 g
of carbohydrates daily for 7 days and to avoid intense physi-
cal activity. Baseline fasting blood samples were obtained for
measurement of glucose, insulin, C-peptide, lipid profile,
FFAs, adipokines, and routine biochemical analyses. Blood
samples were taken every 10 min for the first 30 min, then
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every 30 min until the end of the study to measure plasma
glucose, insulin, and C-peptide levels.

In agreement with the current diagnostic criteria of the
American Diabetes Association, NGT was defined as fasting
and 120-min glucose values<5.6 mmol/L and<7.8 mmol/L,
respectively; impaired fasting glucose (IFG) as fasting glucose
between 5.6 and 6.9 mmol/L; and IGT as 120-min glucose
between 7.8 and 11.0 mmol/L. Participants with repeated
OGTTs were defined as progressors in the case of progression
from NGT to IFG/IGT or persistence of IFG/IGT from the
first to the second OGTT (33).

Euglycemic-Hyperinsulinemic Clamp
Fifty-nine participants underwent an euglycemic-
hyperinsulinemic clamp at the Yale Center for Clinical Inves-
tigation at 7:30 A.M. after an overnight fast (Supplementary
Table 1). An antecubital catheter was inserted for insulin
and glucose intravenous infusion. Insulin was infused at a
primed continuous infusion rate of 80 mU · m�2 · min�1 for
120 min. The glucose infusion rate was adjusted every 5 min
to reach and maintain a target plasma glucose value of
5.1 mmol/L (92 mg/dL) throughout the test.

Abdominal MRI and Body Composition
Abdominal MRI studies were performed on a Siemens So-
nata 1.5-T system to quantify the area of VAT and SAT de-
pots on a single slice obtained at the L4/L5 disc space level,
as previously described (26). Hepatic fat fraction (HFF)
was measured using an advanced magnitude-based liver fat
quantification MRI technique, the two-point Dixon, as
modified by Fishbein et al. (34) and validated against liver
biopsy in adolescents with obesity (25,27). Total body com-
position was measured by DEXA using a Hologic scanner
(Hologic, Boston, MA) in all participants at baseline and in
the 68 participants in the longitudinal cohort.

Adipose Tissue Biopsy and Cell Size Analysis
All participants underwent a biopsy of the abdominal SAT
according to a standard procedure (35) to measure adipocyte
size and number. Two samples weighing 20–30 mg were
fixed with osmium (Multisizer 3; Beckman Coulter, Miami,
FL), and the adipose cell size distribution was determined
using a curve-fitting analysis (Supplementary Fig. 1), as pre-
viously described (36). The peak diameter was identified as
the mean diameter at which the frequency of the large cell
population reached a maximum. The nadir diameter was de-
fined as the mean cell diameter corresponding to the lowest
point in frequency between the large and small cell popula-
tions. Thus, the two populations of small and large adipo-
cytes were identified as the adipose cells with diameters
below and above the nadir diameter, respectively. The num-
ber of large and small adipocyte cells were calculated as the
percentage of large or small cells in SAT biopsies multiplied
by the total number of cells, which was estimated based on
the average cell and SAT volume for each individual (37).

Lipid Dynamics by 2H2O Labeling
A total of 17 participants underwent an 8-week 2H2O label-
ing protocol prior to SAT biopsy (Supplementary Table 2), as
previously detailed (35). Participants drank varying daily
amounts of 70% 2H2O to achieve a plateau in 2H2O body en-
richment, and their body weight was closely monitored to
avoid weight gain or changes in FM. The Folch technique
was used to isolate TGs from SAT adipocytes (38). Incorpora-
tion of deuterium (2H) from 2H2O into TG-glycerol from all-
source TG synthesis was measured to assess the net newly
synthesized TG retained in SAT during the labeling period
(TG turnover). 2H incorporation into TG-palmitate was mea-
sured as a marker of DNL. TG-glycerol and TG-palmitate
were measured by gas chromatography mass spectrometry
andmass isotopomer distribution analysis (35).

Biochemical Analyses
Plasma glucose was determined at bedside during both OGTT
and clamp with the glucose oxidase method (Beckman Instru-
ments, Brea, CA). Plasma insulin, leptin, and adiponectin
were measured by radioimmunoassays (Linco, St. Charles,
MO). Plasma C-peptide was measured by ELISA using ALPCO
immunoassays (Salem, NH). Lipid levels were determined
with an autoanalyzer (model 747-200; Roche Diagnostic,
Indianapolis, IN). Liver enzymes and FFAs were measured
by using standard automated kinetic enzymatic assays.
Plasma adipokine and FFA levels were adjusted for FM (kg)
to provide an estimate of leptin, adiponectin, and FFA secre-
tion per unit of adipose tissue. Plasma adipokine levels were
also adjusted for the target tissue mass (i.e., lean body mass
[LBM]).

Calculations

b-Cell Function and Insulin Clearance
The C-peptide deconvolution method was used to estimate
the insulin secretion rate (ISR). b-Cell function was assessed
from the OGTT using a validated mathematical model (39).
Through the analysis of ISR and glucose concentrations, this
model allows the determination of the following compo-
nents: 1) b-cell glucose sensitivity, which describes the de-
pendence of ISR on absolute glucose concentration through
a dose-response function, whose intercept at a fixed glucose
level of 5 mmol/L is identified by the ISR@5; 2) potentiation
factor, which accounts for glucose- and nonglucose-mediated
modulation of the ISR during the OGTT and is expressed as
the ratio between values at 160–180 min and 0–20 min; and
3) b-cell rate sensitivity, which describes the dynamic depen-
dence of ISR on the rate of change of glucose concentration
and is related to early insulin release.

Insulin clearance was calculated as the ratio between
the areas under the curves of ISR and plasma insulin
during the OGTT, calculated using the trapezoid rule
(25). Fasting insulin clearance was calculated as the ra-
tio between ISR and plasma insulin measured at fasting
(25).
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Insulin Sensitivity
Whole-body insulin sensitivity was estimated by the whole-
body insulin sensitivity index (WBISI), calculated as 10,000/
the square root of ([fasting glucose · fasting insulin] · [mean
glucose · mean insulin during OGTT]), which was validated in
obese adolescents against the euglycemic-hyperinsulinemic
clamp (40). Insulin sensitivity was also measured as the glu-
cose disposal rate (M value) during the last 30 min of the eu-
glycemic-hyperinsulinemic clamp, expressed as mg of glucose
infused per min per kg of LBM.

Hepatic insulin resistance was estimated by the liver
insulin resistance index, calculated using an algorithm based
on OGTT insulin levels, percent FM (FM%), BMI, and HDL
cholesterol, which has been validated against tracer-derived
measures of liver insulin resistance in individuals without
diabetes (41).

Statistical Analysis
Continuous variables with normal and nonnormal distribu-
tion are presented as mean ± SD or median (interquartile
range [IQR]), respectively. Nominal variables are reported
as counts with percentages. Differences between indepen-
dent groups were tested using Mann-Whitney U test for
continuous variables and Fisher exact test for nominal vari-
ables. Cohen k-coefficient was used to estimate the agree-
ment between different classifications. The Wilcoxon signed
rank test was used to test for changes in repeated measures.
Logistic regression analysis was used to calculate odds ratios
and 95% CIs.

Statistical analyses were performed using JMP Pro 16.0
software (SAS Institute, Cary, NC). A two-sided a-level of
0.05 was considered significant. A complete case analysis
approach was used to account for any missing data. Graph-
ical representations were created using GraphPad Prism
8.4.3 software (GraphPad Software, La Jolla, CA).

Data and Resource Availability
The data sets generated and/or analyzed during the cur-
rent study are available from the corresponding authors
upon reasonable request.

RESULTS

Study Cohort
The study population consisted of 100 adolescents of vari-
ous ethnicities/races from the PYOD study who were over-
weight or obese and free of diabetes (age 15.8 ± 2.7 years,
39 girls, BMI z score 2.2 [IQR 2.0–2.6]). Their main and
metabolic clinical characteristics are reported in Table 1.

Identification of Primary Insulin Hypersecretors
Primary insulin hypersecretion was defined based on the
residuals’ distribution of the best fit line (log-log) between
total ISR and WBISI during a 3-h OGTT (10). The partici-
pants belonging to the upper tertile of the residuals’ distri-
bution were classified as having insulin hypersecretion
(HyperS) (n = 33), whereas participants in the middle and

lower tertile were classified as having normal insulin secre-
tion (NormS) (n = 67) (Fig. 1A). This classification showed
an almost perfect level of agreement (k = 0.809) with the
classification based on the M value measured during the
euglycemic-hyperinsulinemic clamp (available for 59 of
100 participants) (Supplementary Table 1), with WBISI
and M value being strongly correlated (r = 0.79, P <
0.0001).

Metabolic Phenotype of Primary Insulin
Hypersecretors
Participants with HyperS and NormS had similar demo-
graphic and anthropometric characteristics, lipid profiles, and
liver enzymes (Table 1). Fasting plasma glucose was slightly
higher in participants with NormS than those with HyperS,
despite similar insulin levels. Conversely, 2-h and mean
plasma glucose and insulin levels during the OGTT were
higher in the HyperS group (Fig. 1B and C). According to the
classification criteria, both fasting and glucose-stimulated
ISR were markedly higher in the HyperS compared with the
NormS group (21% and 62%, respectively) (Fig. 1D–F).
Among model-derived parameters of b-cell secretory func-
tion, participants with HyperS showed a 36% higher b-cell
glucose sensitivity, 49% higher ISR@5, and 71% higher
b-cell rate sensitivity, indicating enhanced static and dy-
namic b-cell response to glucose, with no difference in the
potentiation factor (Fig. 1G–J). Insulin clearance during the
OGTT (Fig. 1K) and whole-body insulin sensitivity assessed
by either WBISI (Fig. 1L) or M value (Table 1) were similar
between groups, while both hepatic insulin resistance index
(Table 1) and fasting insulin clearance (1.05 [IQR 0.86–1.36]
vs. 0.83 [0.70–1.02] L · min�1 · m�2, P = 0.001) were higher
in the HyperS than NormS group.

Abdominal Fat Distribution
Participants with HyperS and NormS had similar degrees
of adiposity as measured by DEXA scan (Table 1) and ab-
dominal MRI (Fig. 2A and B). However, the HyperS group
showed a 34% higher VAT proportion (VAT/[VAT 1
SAT]) and a threefold higher HFF compared with the
NormS group (Fig. 2C and D).

Adipocyte Cell Morphology
The size distribution profile of adipocytes from the abdomi-
nal SAT depot demonstrated a hypertrophic phenotype of
the large adipocyte population in participants with HyperS,
characterized by enlarged cell size and reduced cell number.
In participants with HyperS, the peak and nadir diameters
of the large cell population were 6.0% and 7.5% larger, respec-
tively, compared with participants with NormS (Fig. 2E and F),
while the number of large adipocytes was significantly lower
(393 [IQR 324–530] · 106 vs. 570 [374–849] · 106 cells,
P = 0.008). The number of small adipocytes (376 [278–717]
· 106 vs. 430 [278–615] · 106 cells, P = 0.725) and the mean
cell size (86 [75–91] vs. 83 [75–94] mm, P = 0.698) did not
differ between groups.
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Adipocyte Endocrine Function
The HyperS group showed 47% higher leptin levels normal-
ized for FM compared with the NormS group (Fig. 2G),
while both FM-adjusted adiponectin levels and the leptin/
adiponectin ratio were similar between groups (Fig. 2H

and I). Furthermore, the HyperS group showed 23% nu-
merically higher leptin levels normalized for LBM com-
pared with the NormS group (0.79 [IQR 0.60–1.21] vs.
0.64 [0.38–0.91] ng · mL�1 · kgLBM

�1, P = 0.053), but simi-
lar LBM-adjusted adiponectin (P = 0.457) and leptin/

Table 1—Participant characteristics
Whole cohort
(N = 100)

HyperS
(n = 33)

NormS
(n = 67) P

Age, years 15.8 ± 2.7 15.6 ± 2.5 16.0 ± 2.7 0.365

Girls 39 (39.0) 9 (27.3) 30 (44.8) 0.127

Race and ethnicity 0.345
Non-Hispanic Black 35 (35) 13 (39.4) 22 (32.8)
Non-Hispanic White 32 (32) 11 (33.3) 21 (31.3)
Hispanic 30 (30) 7 (21.2) 23 (34.3)
Other 3 (3) 2 (6.1) 1 (1.5)

Tanner stage 0.515
I 5 (5.0) 1 (3.0) 4 (6.0)
II–III 24 (24.0) 10 (30.3) 14 (20.9)
IV–V 71 (71.0) 22 (66.7) 49 (73.1)

Body weight, kg 100.7 (83.7–118.1) 91.0 (79.7–111.1) 101.8 (85.6–123.0) 0.106

BMI z score, kg/m2 2.2 (2.0–2.6) 2.2 (1.9–2.5) 2.3 (2.0–2.7) 0.136

FM% 42.5 ± 10.1 40.7 ± 8.2 41.9 ± 9.2 0.489

LBM, kg 55.2 ± 11.3 52.8 ± 11.3 56.4 ± 11.3 0.133

Waist circumference, cm 108.2 ± 18.2 106.0 ± 12.2 109.3 ± 20.6 0.342

Waist-to-hip ratio 0.92 ± 0.08 0.93 ± 0.07 0.92 ± 0.09 0.409

Total cholesterol, mg/dL 147 (132–174) 153 (123–174) 147 (139–175) 0.890

HDL cholesterol, mg/dL 38 (30–45) 41 (35–48) 44 (35–52) 0.467

LDL cholesterol, mg/dL 87 (70–108) 85 (65–111) 88 (74–107) 0.567

Triglycerides, mg/dL 90 (52–129) 98 (73–156) 86 (52–135) 0.096

FFA, mmol/L 485 (364–679) 524 (369–713) 467 (359–653) 0.180

Leptin, ng/mL 37 (23–57) 36 (30–68) 37 (21–56) 0.207

Adiponectin, ng/mL 6.0 (4.4–8.6) 5.1 (4.2–8.2) 6.2 (5.0–8.6) 0.188

Fasting glucose, mmol/L 5.1 ± 0.6 5.0 ± 0.4 5.3 ± 0.6 0.017

2-h Glucose, mmol/L 6.6 ± 1.6 7.0 ± 1.2 6.4 ± 1.7 0.046

Mean glucose, mmol/L 6.7 ± 1.3 7.0 ± 0.9 6.6 ± 1.4 0.026

IFG/IGT 13 (13.0) 9 (27.3) 8 (11.9) 0.087

Fasting insulin, pmol/L 150 (108–224) 141 (105–233) 150 (111–225) 0.857

Mean insulin, pmol/L 641 (457–962) 903 (516–1,368) 579 (426–808) 0.004

HOMA of insulin resistance 6.0 (4.0–9.8) 5.5 (3.8–9.7) 6.1 (4.0–9.8) 0.595

WBISI 1.9 (1.3–2.8) 1.7 (1.0–2.4) 1.9 (1.3–2.8) 0.200

M valuea, mg � kgLBM-1 � min�1 4.73 (3.67–9.40) 4.34 (3.38–8.58) 5.34 (3.75–10.12) 0.131

Liver insulin resistance index 2.64 (2.41–2.81) 2.69 (2.56–2.92) 2.53 (2.38–2.76) 0.005

ALT, units/L 16 (11–25) 16 (12–33) 16 (10–24) 0.334

AST, units/L 20 (17–25) 21 (15–25) 19 (17–25) 0.701

Data are mean ± SD for normally distributed variables, median (IQR) for nonnormally distributed variables, and n (%) for categorical
variables. Differences between HyperS and NormS were tested using Mann-Whitney U test for continuous variables or x2 test for
categorical variables. P # 0.05 (indicated in boldface type) was considered statistically significant. aAvailable in 59 participants
(HyperS, n = 19; NormS, n = 40).
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Figure 1—Glucose homeostatic mechanisms in participants with HyperS or NormS. A: Identification of participants with HyperS and
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adiponectin ratio (P = 0.267). Correlation analyses between
plasma leptin and either FM or LBM in the HyperS and
NormS groups are shown in Supplementary Fig. 2.

In Vivo Lipid Dynamics
Fasting FFA levels normalized to FM were higher in the
HyperS than NormS group (Fig. 2J). Correlation analyses be-
tween plasma FFA and either FM or LBM in participants with
HyperS and NormS are shown in Supplementary Fig. 3. To as-
sess in vivo lipid dynamics, a subset of participants (n = 17)
underwent a long-term 2H2O labeling protocol prior to SAT
biopsy (Supplementary Table 2). Participants with HyperS

showed accelerated TG turnover, as indicated by a 35% higher
percentage of newly synthesized, 2H2O-labeled TG-glycerol.
Fractional DNL, indicated by newly synthesized TG-palmitate,
was similar between groups (Fig. 2K and L).

Longitudinal Effect of Insulin Hypersecretion on
Glucose Tolerance and Adiposity
Sixty-eight of the 100 participants returned after a median
follow-up of 2.3 (IQR 2.0–3.4) years for a second OGTT
(Supplementary Table 3). Total body weight increased on
average by 8.0 ± 2.5 kg at the end of follow-up (P = 0.002),
without significant group differences (P = 0.372), as
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Figure 2—Adipose tissue distribution, morphology, and function in participants with HyperS or NormS. A–D: SAT, VAT, VAT proportion
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expected in growing youth. However, the BMI z score re-
mained stable over time in both the participants with
HyperS (P = 0.329) and NormS (P = 0.954). Total FM signif-
icantly increased in participants with HyperS (6.6 ± 2.5 kg,
P = 0.017), while remaining stable in participants with
NormS (�0.8 ± 2.2 kg, P = 0.712). Consistently, the degree
of adiposity indicated by FM% was substantially unchanged
in the HyperS group (P = 0.170) but significantly reduced in
the NormS group (P = 0.021), leading to a 13% group differ-
ence in FM% percent change (Fig. 3A). Numerical differ-
ences between the HyperS and NormS groups in changes in
WBISI (�0.6 [IQR�0.7 to 0.3] vs. 0.4 [�0.4 to 1.0], respec-
tively, P = 0.110) and b-cell glucose sensitivity (�24 [�67
to 85] vs. 6 [�55 to 54] pmol · min�1 · m�2 · mmol/L�1,
P = 0.901) did not reach statistical significance.

Ten participants with HyperS (48%) and 10 partici-
pants with NormS (21%) were identified as progressors,
with those with HyperS having a threefold greater odds

for IFG/IGT at follow-up compared with those with
NormS (odds ratio 3.36 [95% CI 1.11–10.16], P = 0.043)
(Fig. 3B). Progressors showed a significant worsening in
WBISI over time compared with nonprogressors (�0.5
[�0.9 to 0.1] vs. 0.5 [�0.2 to 1.1], respectively, P = 0.0002),
whose extent was similar in HyperS and NormS progressors
(�0.3 [�0.9 to 0.1] vs. �0.5 [�1.8 to 0], P = 0.462).
Changes in b-cell glucose sensitivity were similar between
progressors and nonprogressors in the whole longitudinal
cohort (P = 0.231) and in the HyperS (P = 0.637) and NormS
(P = 0.919) groups.

Longitudinal Effect of Adipocyte Characteristics on
b-Cell Function
To investigate the relationships between the main adipo-
cyte characteristics and the longitudinal changes in b-cell
function, the participants of the original cohort were stratified
based on themedian adipocyte peak diameter (121.5mm) and
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Figure 3—Longitudinal changes in FM, glucose tolerance, and b-cell function. A and B: Percent change in FM% and progression from NGT to
IFG/IGT or persistence in the IFG/IGT phenotype of participants with HyperS or NormS.C: Percent change inmodel-derived b-cell glucose sen-
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leptin levels (0.9 ng � mL�1 � kgFM�1). b-Cell glucose sensitiv-
ity numerically increased over time in participants with larger
adipocytes (P = 0.103) and numerically decreased in those
with smaller adipocytes (P = 0.053), leading to a significant
44% group difference in b-cell glucose sensitivity percent
change (Fig. 3C). Similarly, b-cell glucose sensitivity numeri-
cally increased in participants with higher leptin levels (P =
0.126) and numerically decreased in those with lower leptin
levels (P = 0.102), leading to a significant 39% group differ-
ence in b-cell glucose sensitivity percent change (Fig. 3D).

DISCUSSION

In a multiethnic cohort of youth with obesity extensively
characterized for glucose tolerance andmain glucose homeo-
static mechanisms, including model-derived insulin secre-
tion and b-cell function parameters, insulin clearance, and
OGTT- and clamp-derived insulin sensitivity, we identified
individuals with an augmented oral glucose-stimulated insu-
lin secretion that more than compensated for the degree of
insulin resistance. These participants, classified as primary
insulin hypersecretors, showed greater ectopic fat depots at
abdominal MRI, enlarged adipocytes from SAT biopsies,
higher leptin and FFA serum levels per FM, and greater lipid
turnover as assessed by a long-term 2H2O labeling protocol,
despite similar demographics, adiposity, and insulin resis-
tance, compared with normosecretors. Notably, the hyperse-
cretory phenotype showed worsening glucose tolerance and
accruing adiposity in longitudinal assessments. In turn, hy-
pertrophic adipocytes and high leptin levels at baseline pre-
dicted increases in b-cell glucose sensitivity over time. These
results are consistent with the hypothesis of a complex
adipo-insular axis mutually influencing the trajectories of
glucose tolerance, b-cell function, and adiposity, whose earli-
est alterations could promote chronic hyperinsulinemia and
progression to T2D in populations at risk.

Chronic hyperinsulinemia can induce body weight gain
by inhibiting lipolysis and stimulating lipogenesis in adi-
pose tissue, as supported by epidemiological (42–44) and
intervention studies (45,46). In fact, the evidence that
mice genetically incapable of sustained hyperinsulinemia
(47–49) or with fat-specific insulin receptor knockout (50)
are protected against diet-induced obesity strongly corrob-
orates the causal role for hyperinsulinemia in obesity (51).
In turn, fat buildup and obesity lead to ectopic fat accumu-
lation in visceral depots and the liver, whose detrimental
effects on glucose homeostasis can further worsen hyperin-
sulinemia (52,53). VAT exhibits a higher rate of lipolysis
compared with SAT, resulting in an excess of circulating
FFAs. VAT abundance also positively correlates with first-
and second-phase insulin secretion in adult patients with
T2D, independently of BMI and SAT (54). In agreement
with these observations, we found a greaterMRI-determined
VAT proportion in relation to the total abdominal fat de-
pots in youth with insulin hypersecretion, as well as nu-
merically higher FFA levels, which may contribute to b-cell

overstimulation (17) along with other adipocyte-derived
metabolites and hormones (55,56).

The preferential influx of FFAs from VAT into the liver
via the portal circulation can promote intrahepatic fat accu-
mulation and hepatic insulin resistance. Indeed, the current
study provides the first direct evidence confirming a greater
degree of liver steatosis, quantified by abdominal MRI, in in-
dividuals with primary insulin hypersecretion, which was
previously proposed in adults and adolescents based on sur-
rogate indexes (10). The current study also corroborates
previous indirect evidence in support of the impaired sup-
pression of endogenous glucose release during the OGTT
as the principal mechanism for the worse glucose tolerance
in primary insulin hypersecretors (10). Remarkably, intrahe-
patic fat and hepatic insulin resistance may further worsen
hyperinsulinemia by reducing first-pass insulin clearance
(25,57). This mechanism, demonstrated in a large cohort of
adults, has not been confirmed in two independent cohorts
of adolescents, including the present one (10). A plausible
explanation relies on the higher degree of obesity and insu-
lin resistance in the pediatric populations analyzed, showing
markedly lower insulin clearance even among normosecre-
tors (median insulin clearance 1.7 L � min�1 � m�2 in adults
vs. 0.6 L �min�1 �m�2 in both cohorts of youth).

The expansion of adipose tissue is allowed by an in-
crease in adipocyte number (hyperplasia) and size (hyper-
trophy). Hyperplastic growth appears only at early stages
of adipose tissue development, leveling off during adoles-
cence, while hypertrophy can occur later in life to increase
fat storage capacity in response to overfeeding (58). In our
study, the cell size distribution profile of abdominal SAT bi-
opsies revealed fewer but larger adipocytes in participants
classified as hypersecretors, in whom adipose hypertrophy
prevails over hyperplasia. Furthermore, a larger adipocyte
size at baseline was associated with short-term increases in
b-cell glucose sensitivity, possibly perpetuating chronic hy-
perinsulinemia, which is noteworthy in a population where
b-cell function generally deteriorates over time (12,59).
These observations align with the current knowledge that
hypertrophic adipocytes are less susceptible to insulin anti-
lipolytic action and may provide a chronic FFA overload to
the b-cell (28) to enhance insulin secretion (31,32).

Adipocyte size is also an important determinant of adi-
pokine secretion (29), with leptin release being proportional
to adipocyte diameter (60). Thus, the increased serum leptin
levels observed in the HyperS group, independent of FM,
are likely related to the hypertrophic adipocyte phenotype.
A direct correlation between leptin levels and b-cell func-
tion, indirectly assessed from fasting glucose and insulin lev-
els through the HOMA-b index, was previously reported in
a large cohort of adolescents (61). Our study confirms this
finding through more accurate measures of b-cell function
and provides the first evidence of a longitudinal association
between overstimulated leptin and insulin secretion. Hyper-
insulinemia directly enhances leptin secretion by the adipose
tissue, while leptin has been shown to inhibit insulin
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production and secretion in some (62–65), but not all stud-
ies (22,23,66) likely because of indirect effects. Given that
leptin and insulin exert opposite effects on lipolysis and lipo-
genesis, an inhibitory feedback of leptin on insulin secretion
has been proposed as a protective mechanism against insu-
lin-stimulated adipogenesis (67).

An increased adipose lipid turnover, resulting from faster
lipogenesis and lipolysis, is an important factor for the long-
term development of obesity (29) and may contribute to ec-
topic fat accrual and the associated metabolic derangements
(35). Using an elaborate long-term 2H2O labeling protocol,
we found that fractional 2H incorporation into TG-glycerol
from SAT biopsies (representing newly synthesized TG re-
tained in adipocytes over the course of 2H exposure) was sig-
nificantly different between groups, with the HyperS group
having higher turnover rates. The reduced capacity of SAT to
retain stored TG reflects marked resistance to the insulin
antilipolytic action, especially in the context of chronic hy-
perinsulinemia. In turn, increased lipolysis can be responsible
for the altered fat distribution and b-cell overstimulation in
participants with HyperS by increasing systemic FFA and
glycerol availability. Interestingly, the two groups had a simi-
lar fractional DNL, which suggests that the increased TG
turnover does not depend on newly synthesized fatty acids
(i.e., increased lipogenesis stimulated by hyperinsulinemia)
but mostly on fat from diet or liver.

This study provides novel insight into the relationships
between adipocyte morphology and lipid turnover with
metabolic parameters. It also corroborates the unfavorable
role of primary insulin hypersecretion and chronic hyperin-
sulinemia on glucose homeostasis, largely supporting prior
evidence (10). The contrasting observation of lower (rather
than higher) fasting glucose levels in HyperS can be attrib-
uted to the markedly higher degree of liver insulin resis-
tance in the previous youth cohort (10) compared with the
current one. In the present study, portal hyperinsulinemia
occurred in participants with HyperS even in response to
low glucose values (as indicated by high ISR@5) and may
still be able to restrain endogenous glucose production, at
least in the fasting state, given that the difference in liver
insulin resistance between the HyperS and NormS groups
was rather small (�6%). Indeed, the ISR@5 has been identi-
fied as the main determinant of fasting glucose homeosta-
sis among b-cell parameters (68).

The main strengths of this study include the young age
and multiethnic composition of the cohort, the accurate char-
acterization of b-cell function using mathematical C-peptide
modeling during frequently sampled OGTTs, the direct as-
sessment of abdominal fat distribution by MRI, and the use
of SAT biopsies and labeled water to assess adipocyte cell
morphology and TG kinetics. Furthermore, longitudinal data
are provided in support of the bidirectional pathogenetic link
between overstimulated b-cell function and adipose tissue al-
terations. Several study limitations also must be acknowl-
edged, including the small sample size in subset analyses,
which warrants caution in the interpretation of negative

findings, and the exclusion of youth with normal body
weight, which confines the validity of current findings to
the obese population. Glucose fluxes were not directly mea-
sured during the OGTT by means of multiple glucose trac-
ers. This hindered the opportunity to establish whether less
suppressed endogenous glucose release and/or faster intesti-
nal glucose absorption (e.g., because of a more rapid gastric
emptying or reduced first-pass splanchnic glucose uptake
[69,70]) occurred in participants with primary insulin hyper-
secretion, leading to postprandial hyperglycemia. Moreover,
we could not quantify the potential contribution of reduced
glucose disposal in the HyperS versus NormoS group, which
would be consistent with numerically lowerM values in par-
ticipants with available clamp data, and we could not obtain
direct measures of liver insulin resistance. The use of two
OGTT-derived estimates of insulin secretion and resistance
for participant classification was mandated by the lack of
an independent and direct measure of insulin resistance
(M value) in those who refused to undergo the clamp. It is
worth noting, however, that the two estimates derive from
distinct C-peptide (ISR) and insulin (WBISI) measurements
and that the classification based on theM value (available in
most participants) showed an excellent level of agreement
with the classification based on the WBISI.

In summary, the current study provides novel inte-
grated insight into the complex metabolic interplay be-
tween b-cells and adipose tissue in a multiethnic cohort of
youth with obesity. Primary insulin hypersecretion, inde-
pendent of insulin resistance and adiposity, is associated
with ectopic fat accumulation, adipose hypertrophy, higher
FFA and leptin levels per FM, and faster lipid turnover and
predicts progression to dysglycemia and FM gain. In turn,
alterations in adipocyte size and secretory phenotype ob-
served in hypersecretors can influence the trajectory of
b-cell function over time, perpetuating the hyperinsuline-
mic status at least in the short term (i.e., until b-cell exhaus-
tion eventually occurs). This metabolic phenotype embraces
all the early alterations that precede the onset of obesity-
related T2D, identifying individuals at increased metabolic
risk whomay benefit the most from targeted interventions.
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