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Abstract 

Alterations in the tumor suppressor ATRX are recurrently observed in mesenchymal neoplasms. ATRX has multiple epigenetic functions includ- 
ing heterochromatin formation and maintenance and regulation of transcription through modulation of chromatin accessibility. Here, we show 

in murine mesenchymal progenitor cells (MPCs) that Atrx deficiency aberrantly activ ated mesench ymal differentiation programs. T his includes 
adipogenic pathw a y s where ATRX loss induced expression of adipogenic transcription factors and enhanced adipogenic differentiation in re- 
sponse to differentiation stimuli. These changes are linked to loss of heterochromatin near mesenchymal lineage genes together with increased 
chromatin accessibility and gains of active chromatin marks. We additionally observed depletion of H3K9me3 at transposable elements, which 
are derepressed including near mesenchymal genes where they could serve as regulatory elements. Finally, we demonstrated that loss of ATRX 

in a mesenchymal malignancy, undifferentiated pleomorphic sarcoma, results in similar epigenetic disruption and de-repression of transposable 
elements. Together, our results re v eal a role f or ATRX in maint aining epigenetic st ates and transcriptional repression in mesenchymal progenitors 
and tumor cells and in pre v enting aberrant differentiation in the progenitor context. 

Gr aphical abstr act 

 

 

 

 

 

 

 

 

 

 

Introduction 

Alpha thalassemia / mental retardation syndrome X-linked
(ATRX) belongs to the SWI / SNF family of ATP-dependent
chromatin remodeling proteins ( 1 ). Germline mutations in
ATRX cause cognitive impairment as part of the alpha-
thalassemia (ATR-X) syndrome, which is accompanied by dis-
turbances of DNA methylation ( 2 ), highlighting the function
of ATRX in development ( 3 ). Somatic alterations in ATRX
occur in cancers, such as sarcomas ( 4 ). 

ATRX is an important epigenetic regulator, functioning as a
chromatin remodeler and promoting the formation and main-
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tenance of heterochromatin ( 5 ). For example, ATRX cooper- 
ates with the H3K9 methyltransferase SETDB1 to establish 

and maintain heterochromatin, including at retrotransposons 
( 5 ). ATRX also binds to H3K9me3 via its ADD domain to di- 
rectly target it to heterochromatin, which may be important 
for its role in maintaining H3K9me3 domains ( 5 ). ATRX also 

binds to DAXX, functioning as a histone chaperone deposit- 
ing H3.3 into telomeric regions ( 6 ,7 ). 

Loss of function genetic alterations in ATRX are highly re- 
current in several cancers including gliomas, pancreatic neu- 
roendocrine tumors, and multiple sarcoma subtypes ( 8 ,9 ).
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ithin sarcomas, ATRX is altered in more than 10 percent
f undifferentiated pleomorphic sarcoma, leiomyosarcoma,
yxofibrosarcoma, perivascular epithelioid tumors, pleomor-
hic liposarcoma and angiosarcoma. In uterine leiomyosar-
oma (ULMS), the frequency of ATRX alterations is approx-
mately one third of cases ( 8 ). Consistent with these genetic
tudies, loss of ATRX expression occurs in 20–30% of undif-
erentiated pleomorphic sarcoma (UPS) and leiomyosarcomas
 10 ,11 ). While the role of ATRX deficiency in the alternative
engthening of telomeres pathway is well described in sarco-
as and other ATRX deficient cancers, the chromatin-specific

onsequences of ATRX loss are not fully understood in the
ontext of disease mechanisms ( 12 ,13 ). 

Sarcomas are mesenchymal neoplasms occurring in con-
ective tissue such as fat, bone, cartilage and muscle ( 14 ).
t has been proposed that sarcomagenesis occurs, at least in
art, through aberrant differentiation of mesenchymal pro-
enitor cells (MPCs), which has been modeled by introduc-
ng sarcoma-relevant driver alterations into MPCs ( 15–19 ).

PCs are multipotent cells that are able to self-renew and un-
ergo differentiation ( 20 ) making them well-suited to study
erturbations in epigenetic states, which are a key determi-
ants of cell fate and lineage commitment ( 21–26 ). For exam-
le, sarcoma-associated mutations in histone genes, which al-
er histone posttranslational modifications, are sufficient to in-
uce sarcomagenesis when expressed in MPCs ( 27 ,28 ). Given
he high frequency of ATRX alterations in soft tissue sar-
oma, we sought to investigate the effect of ATRX deficiency
n chromatin and chromatin-dependent processes in the mes-
nchymal context. 

Our findings demonstrate that deletion of ATRX leads
o abnormal differentiation in MPCs, which is associated
ith perturbations in the profiles of histone post-translational
odifications and chromatin accessibility in specific regions,

nd accompanied by the activation of transposable elements.
imilar epigenetic effects were observed in an ATRX defi-
iency patient-derived sarcoma cell compared to a wildtype
sogenic control. Our results suggest an important role for the
pigenetic regulatory functions of ATRX in the mesenchymal
ineage. 

aterials and methods 

ell culture 

3H / 10T1 / 2 (CCL-226) cells (MPCs) were obtained from
TCC. Except where otherwise stated for specific experi-
ents, cells were cultured in DMEM (Corning, 10-013-CV)
lus 10% FBS (A TLANT A biologicals, S11150, heat inactive)
ith 1% penicillin / streptomycin (Gibco, 15140-122) at 37 

◦C
ulture condition with 5% CO 2 . The parental cell line was
ested for mycoplasma and authenticated by ATCC. The un-
ifferentiated pleomorphic sarcoma cell line (UPS, 3672–3)
as developed in the Singer lab ( TP53 deficient with retained
B1 expression) ( 29 ). The cells were cultured in DMEM:F12

1:1) (Gibco, 11330-032) plus 10% FBS (A TLANT A biolog-
cals, S11150) and l -glutamine (Gibco, 25030-081) with 1%
enicillin / streptomycin (Gibco, 15140-122) at 37 

◦C with 5%
O 2 . The parental cell line was tested for mycoplasma. 

RISPR-Cas9 cloning 

he vector for CRISPR-cas9 pSpCas9(BB)-2A-GFP
PX458) (Addgene, #48138) was obtained from Ad-
dgene. Mouse Atrx sgRNAs were designed using Bench-
ling ( https:// www.benchling.com/ ). Target sequences:
sg5: 5 

′ TGGCCGTAAAAGTTCTGGGG-3 

′ , sg6: 5 

′ -
CTA CTGGA CTTGGTGA CTGC-3 

′ . The human ATRX
sgRNA was designed using Benchling; Target sequence: sg1:
5 

′ ACT A TGC AGAGCTTGCC AAA-3 

′ . The control group
was generated using an empty vector without sgRNA but car-
rying Cas9. The vector was digested by Bbsl (NEB, R0539S)
and dephosphorylated by calf intestinal alkaline phosphatase
(NEB, M0290). The oligos were annealed with T4 ligation
buffer (NEB, B0202S) with T4 PNK (NEB, M0201L) enzyme.
The ligation step was performed using Quickligation buffer
(NEB, B2200S) and Quick Ligase (NEB, M2200L). The
ligation products were expressed in Stbl3 competent cells
(Thermofisher, C737303). 

Transient transfection 

Two micrograms of plasmid products carrying sgRNAs
with Cas9 were transfected using Lipo2000 (Thermofisher,
11668019) into 0.7 × 10 

4 MPCs cells or 1 × 10 

5 UPS cells.
The transfection procedure was according to the manufac-
turer’s instructions. Cells were harvested 48 h after transfec-
tion for sorting and sorted into 96 well plates using BD FAC-
SAria II Cell Sorter based on GFP signal. 

Proliferation assay 

Fifty Atrx WT and Atrx KO cells were grown per well in 96-
well plates (Costar, 3917) for 5 days. Proliferation was evalu-
ated using the CellTiter-Glo Luminescent Cell Viability Assay
kit (Promega, G7572), following the manufacturer’s instruc-
tion. The luminescence was read immediately in 96-well plate
reader (BioTek, Synergy hybrid H4 Reader). 

Colony formation 

100 C3H / 10T1 / 2 cells (WT and KO clones) were seeded
in 10 cm dishes, cultured in α-MEM (Corning, 10-009-CV)
with 20% FBS (A TLANT A biologicals, S11150), with 1%
penicillin / streptomycin (Gibco, 15140–122). Cultures were
incubated at 37-degree Celsius with 5% CO 2 for 10–14 days.
When visible colonies formed, colonies were washed once
with PBS. Cells were stained with 0.5% crystal violet (SIGMA-
ALDRICH, C3886) in 4% formaldehyde (Fisher chemical,
F79-500) for 1 h at RT. After removing the staining buffer,
cells were washed with ddH 2 O for 3–5 min to remove the
background staining and then digitally imaged (Epson Perfec-
tion V800 photo). Colonies were manually counted. A group
of cells had to contain at least 50 cells to be considered a
colony. 

Adipogenic differentiation 

C3H / 10T1 / 2 were differentiated into mature adipocytes fol-
lowing treatment with insulin, dexamethasone, troglitazone,
and methylisobutylxanthine per an established protocol ( 30 ).
1 × 10 

5 C3H / 10T1 / 2 were seeded in 24-well plates such
they were fully confluent. Adipocyte differentiation medium
( 30 ) consisting of DMEM (Corning, 10-013-CV) with 10%
heat inactive FBS (A TLANT A biologicals, S11150), 0.5 mM
isobutyl methylxanthine (Sigma, I7018), 1 μM dexametha-
sone (sigma, D4902), 5 μg / ml insulin (Sigma, I9278), 5 μM
troglitazone (Sigma, T2573) was used to replace the media
the following day. After 2 days, the media was changed every

https://www.benchling.com/
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2 days with insulin and FBS the only additive to the DMEM.
Differentiation was assessed by Oil Red O after day 7. 

Oil Red O staining 

Oil Red O staining was performed as previously described
( 30 ). 0.5% w / v Oil Red O stock (Sigma, O0625) in 100%
isopropanol (Fisher chemical, A416SK-4) was prepared fresh.
A working solution was prepared by mixing contained 6 ml
of stock solution and 4 ml of H 2 O, followed by filtering (0.45
μM, Pall Corporation syringe filter, PN-4614) to remove pre-
cipitate. Cells were washed by PBS. Cells were fixed with 4%
formaldehyde in PBS for 2 min at room temperature, followed
by washing with H 2 O. Next, 220 μl Oil Red O working so-
lution was added to the wells and incubated cells for 1 h at
room temperature. Then cells were washed twice with 0.5%
isopropanol to remove background staining. Plates were dig-
itally imaged (Epson Perfection V800 photo) before the Oil
Red O was solubilized by adding 650 μl of 100% isopropanol
to the stained cells, which were incubated for 20 min on a
shaker. The eluate was transferred into a 96-well plate (Corn-
ing, 3361) and the absorbance measured at 500 nm with 96-
well plate reader (BioTek, Synergy hybrid H4 Reader). 

Chondrocyte differentiation 

C3H / 10T1 / 2 were differentiated into chondrocyte following
treatment with insulin, sodium selenite, transferrin, dexam-
ethasone and rhBMP-2 as previous described ( 27 ). 1 × 10 

5

C3H / 10T1 / 2 were seeded per well in 24-well plates such
that they were fully confluent. Chondrocyte differentiation
medium consisting of DMEM (Corning, 10-013-CV) with 1%
heat inactive FBS (A TLANT A biologicals, S11150), 10 μg / ml
insulin (Sigma, I9278), 0.03 μM Sodium Selenite (Sigma,
S5261), 0.01 mg / ml Transferrin (Sigma, T8158), 10 nM Dex-
amethasone (Sigma, D4902), 0.1 μg / ml rhBMP-2 (Peprotech,
120-02) was used to replace the media the following day. Af-
ter 2 days, the media was changed every 2 days. Alcian blue
staining was performed after 9 days of differentiation. 

Alcian blue staining 

Cells were washed by PBS twice and then fixed with 4%
formaldehyde for 2 min at room temperature. Formaldehyde
was removed and cells were washed with ddH 2 O. 1% Al-
cian blue 8GX (Sigma, 66011) was used to stain cells for 1h
at room temperature. After staining, cells were washed with
acetic acid twice and then quickly with ddH 2 O. The plate was
air dried and then digitally imaged (Epson Perfection V800
photo). For quantification, 1% SDS was added to the well and
the plate was placed on a shaker overnight at room tempera-
ture. One hundred microliters of the eluate was transferred to
a well of a 96-well plate (Corning, 3361) and the absorbance
was measured at 605 nm (BioTek, Synergy hybrid H4 Reader).

Immunofluorescence 

800 C3H / 10T1 / 2 cells were seeded per well in a 96 well
plate (glass bottom culture plates, MatTek, PBK96G-1.5-5-
F) and kept at 37-degree Celcius for 24 h. Cells were fixed
with 4% formaldehyde in PBS for 10 min at room temper-
ature. Cells were permeabilized with 0.2% digitonin (EMD
Millipore, 300410) in PBS (Corning, 21-040-CV) for 10 min
at room temperature. Next, the cells were incubated in 3%
BSA (in PBS, Sigma, #9418) for blocking for 1 h at room tem-
perature followed by incubation in primary antibody (ATRX,
Santa Cruz, sc-15408, 1:200) at 4 

◦C overnight, followed by 
secondary antibody (1:600, Invitrogen, A32754) incubation 

at room temperature for 1 h. Cells were washed three times 
with PBS for 5 min followed by DAPI staining (2 μg / ml in 

PBS, Sigma, D9564) for 5 min at room temperature. Mount- 
ing media (Vectashield, H-1000) was added immediately after 
DAPI staining. Cells were imaged using Widefield Microscope 
CellDiscoverer7 (CD7) automated widefield high-throughput 
system (Zeiss). Images were processed with ImageJ software 
( http:// rsb.info.nih.gov/ ij/ ). For the ATRX antibody, the Im- 
ageJ Brightness / Contrast was set as 30 / 112. For DAPI, the 
Brightness / Contrast was set as 37 / 123. All images were pro- 
cessed with the same parameter settings for each antibody. 

Protein isolation and western blot 

Cell pellets were lysed in lysis buffer NETN (20 mM Tris 
(pH 7.5), 1 mM EDTA, 150 mM NaCl, 0.5% NP-40, pro- 
tease inhibitor tablet (Roche), 0.5 mM DTT). Samples were 
incubated in the cold room for 30 min followed centrifu- 
gation at 4 

◦C with maximum speed for 10 min. The super- 
natant was collected and the concentration determined by 
BCA quantification (Pierce BCA protein Assay kit, Cat.23225,
Thermo scientific) to allow normalization between samples 
for western blotting. Samples were mixed with Laemmli Sam- 
ple Buffer (4 ×) (containing 1.0 M Tris-pH 6.8, 8% SDS, glyc- 
erol, β-mercaptoethanol (10%), bromophenol blue) for boil- 
ing at 100 

◦C for 10 min. The samples were then separated 

by SDS-PAGE and analyzed by standard immunoblotting us- 
ing running buffer from Invitrogen (NuPAGE™ Tris-acetate 
SDS running buffer (20 ×), LA0041) and transfer buffer from 

Thermofisher (NUPAGE transfer buffer, NP00061). The blot- 
ting processes was performed as previous described ( 27 ). An- 
tibodies used for Western blot are the following: ATRX (Santa 
Cruz, sc-15408, 1:800), F ABP4 (R&D , AF1443, 1:5000),
C / EBP α (CST , #2295, 1:1000), PPAR γ (CST , #2430), β-actin 

(Abcam, ab8224), GAPDH (Abcam, ab8245, 1:1000). 

Reverse transcriptase quantitative PCR (RT-qPCR) 

For RT-qPCR, RNA was prepared with RNeasy Mini 
kits (Qiagen, 74104). The RNAs concentration was deter- 
mined using a Nanodrop (Spectrophotometer, ND-1000).
cDNA was prepared published procedures ( 27 ). qPCRs 
were performed using SYBR green PCR master mix (Ap- 
plied Biosystems, 4367659). The detailed steps are fol- 
lowing previous described ( 27 ). The endogenous control 
gene was 18S. The sequences of primers are as following: 
mouse-Etv1: F:5 

′ -GTTTGTTCCA GA CT A TCAGGCTG- 
3 

′ , R: 5 

′ -GGGCTGTGGGGTTCTTTCTT-3 

′ . mouse- 
18s: F:5 

′ -GTAA CCCGTTGAA CCCCATT-3 

′ , R: 5 

′ - 
CC ATCC AATCGGTA GTA GCG-3 

′ . The statistical analysis 
was performed using a one-sample, two-sided t- test. 

UPS cell line drug treatment and dose–response 

calculations 

2000 UPS cells were seeded in each well of a 96-well plates 
(Costar, 3917) and grown for 24 h. The media was replaced 

with fresh media containing different concentrations of tega- 
vivint (Selleckchem, S0733) or vehicle (DMSO) and returned 

to the incubator for 72 h. Viability was then evaluated us- 
ing the CellTiter-Glo Luminescent Cell Viability Assay kit 
(Promega, G7572), following the manufacturer’s instruction.

http://rsb.info.nih.gov/ij/
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he luminescence was read immediately in a 96-well plate
eader (BioTek, Synergy hybrid H4 Reader). The IC 50 was
alculated by GraphPad Prism 8.4.2 using curve fitting for
og(inhibitor) versus response with variable slope (four pa-
ameters) with the bottom constraint set as 0. 

olyA-RNA-seq and data analysis 

pproximately 1 million C3H / 10T1 / 2 cells or UPS cells were
ollected from 10 cm dishes. RNA extraction, polyA selection,
ibrary preparation, and RNA sequencing were performed at
he MSKCC integrated Genomics Operation. An average of
0–40 million paired reads was generated per sample. We
sed the log 2 foldchange > 1 or < –1 with P adj < 0.05 as the
hreshold for significant changed genes. Quality control of
ASTQ files was performed using the Rfastp R Bioconduc-
or package (v0.1.2). For 10T cells, full genome sequence
nd transcript coordinates for the mm10 UCSC genomes
nd gene models were retrieved from the R Bioconduc-
or packages BSgenome.Mmusculus.UCSC.mm10 (v1.4.0)
nd TxDb.Mmusculus.UCSC.mm10.knownGene (v3.4.0),
hile for human UPS cells, the full genome sequence

nd transcript coordinates for the hg38 UCSC genomes
nd gene models were retrieved from the R Bioconduc-
or packages BSgenome.Hsapiens.UCSC.hg38 (v1.4.1) and
xDb.Hsapiens.UCSC.hg38.knownGene (v3.4.0).Transcript
bundance was determined from FASTQ files using Salmon
v0.8.1) ( 31 ), and transcript counts and TPM values were
mported into R with the tximport R Bioconductor package
v1.8.0) ( 32 ). Differential gene expression was performed with
he DESeq2 R Bioconductor package (v1.20.0) ( 33 ). For plots
omparing the read counts of genes between samples, counts
ere normalized by dividing the raw read counts by the size

actors for each sample as determined by DESeq2. To per-
orm differential expression of TEs in the human and pub-
ished mouse (GEO accession GSE167537) UPS poly-A se-
ected RNA-seq datasets, the SQuIRE pipeline was used for
lignment, counting, and calling of differential TE expression
v0.9.9.9a-beta: https:// github.com/ wyang17/ SQuIRE ). 

RNA-depletion RNA-seq and data analysis 

pproximately 1 million cells were collected from 10 cm
ishes. RNA extraction, rRNA depletion, library prepa-
ation, and RNA sequencing were performed by Novo-
ene. An average of 30 million paired reads was gener-
ted per sample. Quantification of rRNA-depleted RNAseq
eads over individual TE loci was performed using ei-
her the SQuIRE pipeline (v0.9.9.9a-beta: https://github.com/
yang17/SQuIRE ) ( 34 ) or TE local (v1.1.1: https://github.

om/ mhammell-laboratory/ TElocal ). The SQuIRE pipeline
as used for alignment, counting, and calling of differ-

ntial TEs. When using TElocal, reads were aligned with
TAR (v2.27.10a) setting the ‘—winAnchorMultimapNmax’
nd ‘—outFilterMultimapNmax’ arguments to 100 ( 35 ), fol-
owed by counting with the TElocal function and differ-
ntial abundance calculated with DESeq2 (v1.32.0). Reads
ere aligned to the mm10 genome sequence from the
Sgenome.Mmusculus.UCSC.mm10 R Bioconductor pack-
ge (v1.4.0). 

UT&RUN 

.5 million cells from each line were collected. The de-
ailed protocol for CUT&RUN for histone marks (H3K4me3,
H3K27ac, H3K9me3, H3K27me3) and H3.3 was followed
as previous described ( 36 ) with the following modifica-
tions: final concentration of digitonin: 0.05%. Antibod-
ies for CUT&RUN are following: H3.3 (Active Motif,
91191), H3K9me3 (Abcam, ab8898), H3K4me3 (Active Mo-
tif, 39159), H3K27me3 (Cell Signaling Technologies, #9733),
H3K27ac (Active Motif, 39133), Rabbit IgG (Diagenode,
C15410206). For ATRX CUT&RUN experiment, 1 million
cells were fixed using 0.1% PFA in PBS for 1 minute at room
temperature, followed by nuclei extraction with NE buffer
(20 mM HEPES (pH7.9), 10 mM KCl, 0.1% Triton X-100,
20% Glycerol, 1 mM MnCl2, 1 × cOmplete Mini-Tablet
(1 tablet), 0.5 mM spermidine) according to the protocol
from EpiCypher (v2.0, https:// www.epicypher.com/ resources/
protocols/cutana- cut- and- run- protocol/). The final concen-
tration of digitonin buffer for ATRX CUT&RUN was 0.01%.
For each sample, 2 μg ATRX antibody (Abcam, ab97508) was
added. Libraries were prepared using the NEB Ultra II DNA
library prep kit. Samples were PCR amplified for 14 cycles
and pooled libraries were sequenced in the genomics core at
the Rockefeller University. 

CUT&RUN alignment and differential peak analysis 

Quality control of FASTQ files was performed using
the Rfastp R Bioconductor package (v0.1.2). CUT&RUN
reads were aligned using the Rsubread R Bioconduc-
tor package (v1.30.6), and predicted fragment lengths
were calculated by the ChIPQC R Bioconductor pack-
age (v1.16.2) ( 37 ,38 ). For 10T cells, the full mm10
genome sequence was retrieved from the R Bioconduc-
tor package BSgenome.Mmusculus.UCSC.mm10 (v1.4.0),
and for the human UPS cells the full hg38 genome se-
quence was retrieved from the R Bioconductor pack-
age BSgenome.Hsapiens.UCSC.hg38 (v1.4.1). Normalized,
fragment-extended signal bigWigs were created using the
rtracklayer R Bioconductor package (v1.40.6) ( 39 ). Range-
based heatmaps showing signal over genomic regions were
generated using the profileplyr R Bioconductor package
(v1.8.1) ( 40 ). Any regions included in the ENCODE black-
listed regions of the genome were excluded from all region-
specific analyses ( 41 ). Bedgraph files generated with the deep-
Tools package (v3.5.1) ( 42 ) were used for peak calling with
SEACR (v1.3) ( 43 ). The SEACR ‘stringent’ mode was used for
H3K4me3, H3K27ac and ATRX and the ‘relaxed’ mode was
used for H3K9me3 and H3.3. For all CUT&RUN samples,
peaks were called using IgG as the control sample. 

Differential enrichment of signal within peaks was per-
formed by counting the overlap of reads over a high con-
fidence consensus peak set. This was obtained by reducing
all replicates within all conditions to one peak set, and then
keeping the peaks that overlap at least two out of the three
replicates for any condition. Reads overlapping these peaks
were counted for each replicate using the summarizeOver-
laps function from the GenomicAlignments R Bioconductor
package (v1.28.0) ( 44 ). Differential peak enrichment between
Atrx WT and Atrx KO replicates was then calculated using
the DESeq2 R Bioconductor package (v1.32.0). To find differ-
ential enrichment in broad genomic regions for the H3K9me3
samples, reads were counted in 20 kb bins across the entire
genome, and DESeq2 was used to find bins with enriched sig-
nal in the Atrx KO clones. Only bins in the top 10 percent in
terms of read count were used for this analysis. The union of

https://github.com/wyang17/SQuIRE
https://github.com/wyang17/SQuIRE
https://github.com/mhammell-laboratory/TElocal
https://www.epicypher.com/resources/protocols/cutana-cut-and-run-protocol/
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these differential bins and the differential SEACR peak regions
was determined and used for downstream analysis of regions
with enriched H3K9me3 signal in the Atrx KO clones. 

Quantification of CUT&RUN signal over repeats at the
individual locus and sub family level was performed with
SQuIRE. The counts were transformed with rlog from the DE-
Seq2 R Bioconductor package (v1.32.0), and these values were
plotted on a heatmap using the ComplexHeatmap R Biocon-
ductor package (v2.6.2) ( 45 ). To assess AR TX CUT&R UN
signal in telomeres, FASTQ files were aligned to a DNA se-
quence of 150 conserved telomere repeats (TTAGGG) us-
ing the R Bioconductor package Rbowtie2 (v1.12.0) ( 46 ,47 ).
The z-scores of the log2(reads per million) were plotted
on a heatmap using the ComplexHeatmap R Bioconductor
package. 

For quantification of ATRX CUT&RUN signal over
genes, genes were divided into groups based on their ex-
pression levels. TPM values from the Atrx WT RNAseq
dataset were calculated by Salmon and were split
into five quantiles. The genomic location of each gene
was then retrieved from the R Bioconductor package
TxDb.Mmusculus.UCSC.mm10.knownGene (v3.10.0). IgG
normalized bigwig signal for the ATRX CUT&RUN samples
was obtained using the deepTools (v3.5.1) ‘bigwigCompare’
function, with the ‘operation’ argument set to ‘log 2 ’. Signal
over the gene regions (separated by RNAseq quantile) was
computed with the deepTools computeMatrix function. The
signal was visualized with the ggplot2 R package (v3.3.6). 

Omni-A T AC-seq 

The samples were prepared according to the methods pre-
vious described ( 48–50 ) with minor modifications. 50 000
C3H / 10T1 / 2 cells or UPS cells were collected for Omni-
A T AC-seq. Amplification was performed with NEBNext
High-Fidelity 2 × PCR Master Mix (NEB, M0541s) and Nex-
tera PCR Primers (8 cycles). The sequences of PCR primers
with index adapters are listed in the Supplementary Table S38 .
The library pool was sequenced by Rockefeller University ge-
nomic core using a NextSeq High Output platform with 75 bp
paired-end reads in duplicates. An average of 30–40 million
paired reads was generated per sample. 

A T AC-seq alignment and differential peak analysis 

Quality control of FASTQ files was performed using the
Rfastp R Bioconductor package (v0.1.2). A T AC-seq FASTQs
were aligned to the mm10 (for 10T cells) or hg38 (human UPS
cells) genomes from the Bsgenome.Mmusculus.UCSC.mm10
(v1.4.0) or the BSgenome.Hsapiens.UCSC.hg38 (v1.4.1) Bio-
conductor packages, respectively, using Rsubread’s (v1.30.6)
align method in paired-end mode with fragments between 1
and 5000 bp considered properly paired ( 38 ). Normalized,
fragment signal bigWigs were created using the rtracklayer
R Bioconductor package (v1.40.6) ( 39 ). Peak calls for each
replicate were made with MACS2 software in BAMPE mode
( 51 ). 

Differential enrichment of signal within peaks was per-
formed by counting the overlap of reads over a high confi-
dence consensus peak set. This was obtained by reducing all
replicates in all conditions to one peak set, and then keeping all
peaks that overlap at least two out of the three replicates for
any condition. Reads overlapping these peaks were counted
for each replicate using the summarizeOverlaps function from
the GenomicAlignments R Bioconductor package (v1.28.0) 
( 44 ). Differential peak enrichment between Atrx WT and Atrx 

KO replicates was then calculated using the DESeq2 R Biocon- 
ductor package (v1.28.1). 

Motif analysis 

Motif analysis for A T AC-seq and ATRX CUT&RUN was per- 
formed with the ‘meme-chip’ function from the MEME suite 
(v5.4.1). The motif database was downloaded from MEME 

( https:// meme-suite.org/ meme/ doc/ download.html ) and the 
‘jolma2013.meme’, ‘JASPAR2022_CORE_vertebrates_non- 
redundant_v2.meme’, and ‘uniprobe_mouse.meme’ were used 

in the meme-chip function. The following parameters were 
also set: -ccut 200, -dna -order 2, -minw 6, -maxw 15, -meme- 
mod zoops, -meme-nmotifs 3, -meme-searchsize 100000,
-streme-pvt 0.05, -streme-totallength 4000000, -centrimo- 
score 5.0, and -centrimo-ethresh 10.0. 

Downstream peak analysis (CUT&RUN and 

A T AC-seq) 

Peaks for both CUT&RUN and A T AC-seq were annotated 

with nearby genes using the rGREAT R Bioconductor pack- 
age (v1.24.0) or with the closest gene and type of genomic 
region (e.g. promoter, intergenic, etc.) using the ChIPseeker 
R Bioconductor package (v1.28.3) ( 52–54 ). The closest gene 
is defined as the gene for which the transcription start site is 
closest to the peak, and rGREAT defines a regulatory region 

around each gene and then annotates any peak in that re- 
gion to that gene. For rGREAT annotation, the default settings 
were used to define regulatory regions of genes, which was 
5 kb upstream and 1 kb downstream of each gene, and then 

extended a maximum of 1 Mb to the regulatory region of the 
next gene. Gene ontology analysis of genes associated with dif- 
ferential peaks (using the Biological Processes gene lists) was 
performed with the clusterProfiler R Bioconductor package 
(v4.0.5) ( 55 ). Overlaps of differential peaks with other peak 

sets was done with the findOverlapsOfPeaks function from 

the ChIPpeakAnno R Bioconductor package (v3.26.4) ( 56 ).
Range heatmaps of CUT&RUN and A T AC-seq signal were 
made with the profileplyr R Bioconductor package ( 57 ). For 
overlap of signal and peaks with enhancers, a peak file with 

enhancers from 10T cells was downloaded from the Enhancer- 
Atlas 2.0 ( http:// www.enhanceratlas.org/ ). The downloaded 

peaks were converted from mm9 to mm10 using the ‘liftOver’ 
function from rtracklayer R Bioconductor package and the 
‘mm9ToMm10.over.chain’ file downloaded from UCSC. 

ChromHMM analysis 

Genome-wide ChromHMM (v1.23) models were gener- 
ated using CUT&RUN signal for H3K4me3, H3K27ac,
H3K27me3, H3K9me3, with IgG samples used as controls.
Only the CUT&RUN samples from the Atrx WT cells were 
used to generate the models. Specifically, the BinarizeBam 

function was performed with default settings (mm10 genome),
and this output was used in the LearnModel function. To de- 
termine the optimal number of states, we employed a previ- 
ously published method to calculate the ratio of the ‘between 

sum of squares’ over the ‘total sum of squares’ of kmeans 
clustered emissions probabilities from all states of all mod- 
els, considering 2–16 states ( 58 ). The value of K at which the 
sum of squares ratio crossed 95% of the maximum was the 10 

State model. To determine overlap of ChromHMM states with 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://meme-suite.org/meme/doc/download.html
http://www.enhanceratlas.org/
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epeats, repeats from RepeatMasker were downloaded from
CSC (downloaded on 4 February 2022). To compare levels
f overlap between states, the number of repeats that over-
ap a state was divided by the total number of regions in that
tate. A z -score of this value across all states was then plot-
ed in a heatmap using the ComplexHeatmap R Bioconduc-
or package (v2.6.2). A similar strategy was employed to mea-
ure ATRX peak overlap with ChromHMM states. H3K9me3
ignal in specific states was quantified and visualized with
 ranged heatmap using the profileplyr R Bioconductor
ackage. 

tatistics 

tatistical analysis for proliferation, colony formation and
PCR were performed as indicated in the figure legends us-
ng paired or unpaired, two-tailed t-test, or one-way ANOVA .
he analysis was not blinded. 

esults 

oss of ATRX dysregulates transcriptional 
rograms in mesenchymal progenitors 

t is well established that the chromatin landscape has a
ey role in establishing patterns of gene expression, and
ince ATRX acts as chromatin regulator we hypothesized
hat ATRX deficiency would lead to changes in transcription.
iven that ATRX loss frequently occurs in mesenchymal ma-

ignancies, we established Atrx KO lines using C3H / 10T1 / 2
ells, a mesenchymal progenitor cell line, using CRISPR-
as9 with two independent sgRNAs targeting the Atrx gene
 Supplementary Figure S1 A). One clone from each guide and
n isogenic WT control were selected for further study (Fig-
re 1 A, Supplementary Figure S1 B). ATRX deletion was con-
rmed by immunofluorescence and immunoblotting (Figure
 A, Supplementary Figure S1 C). Under normal culture condi-
ions without differentiation cues, transcriptomic profiling of
trx KO versus WT cells was performed using bulk RNA-

eq. Compared to Atrx WT, the Atrx KO MPC lines dis-
layed a marked transcriptional dysregulation, with signif-

cant gains and losses of gene expression ( Supplementary 
igure S2 A,B). Focusing on genes that significantly change ex-
ression ( p adj < 0.05) by an absolute magnitude of at least 2-
old in both Atrx KO clones when compared to WT, we iden-
ified 328 upregulated and 929 downregulated genes (Figure
 B, C, Supplementary Table S1 , S2 ). Given the role of ATRX
n establishing and maintaining transcriptionally silenced re-
ions of heterochromatin, we focused on the upregulated gene
et. Gene ontology (GO) analysis of the upregulated genes
howed an enrichment of gene sets associated with develop-
ent and differentiation programs, including mesenchymal
rograms (Figure 1 D, Supplementary Table S3 ). 
In the significantly upregulated gene sets, we found

hat the expression of key adipogenic pathway regula-
ors were increased with Atrx deficiency, including the adi-
ogenic transcription factors Ppar γ and Cebpa and the
ineage-specific marker Fabp4 . All three were significantly
log 2 foldchange > 1 & P adj < 0.05) upregulated in Atrx KO

PCs (Figure 1 E, Supplementary Table S4 ), even in the ab-
ence of adipogenic differentiation factors. Under the same
onditions, we observed significantly decreased expression of
esenchymal stemness markers, Etv1 ( 27 ) and Cd34 ( 59 ),

n both Atrx KO lines ( Supplementary Figure S2 C). The
GO terms associated with downregulated genes were not en-
riched for pathways relevant for cell lineage differentiation
and development ( Supplementary Figure S2 D, Supplementary 
Table S5 ). 

ATRX deficiency promotes mesenchymal lineage 

differentiation and attenuates progenitor properties 

The de-repression of developmental and differentiation path-
ways in Atrx KO cells suggests that ATRX may have an im-
portant role in restricting differentiation in MPCs. Given the
marked upregulation of adipogenic transcription factors and
lineage markers in Atrx KO lines, we hypothesized that ATRX
loss would sensitize MPCs to adipogenic differentiation cues.
Atrx WT and KO MPCs were treated with adipogenic media
to induce differentiation and the degree of differentiation was
quantified by staining by Oil Red O (ORO) ( 30 ). Compared
to WT MPCs, the Atrx KO lines nearly doubled ORO stain-
ing intensity after 7 days ( P < 0.05), indicating that ATRX
loss promotes adipogenic differentiation (Figure 2 A). Over
the course of the 7-day differentiation treatment, we mea-
sured protein expression of PPAR γ, C / EBP α and FABP4 (Fig-
ure 2 B). The levels of C / EBP and PPAR γ were more highly
induced beginning on day 1 of treatment in Atrx KO lines
compared to WT control whereas the FABP4, a marker for
late differentiation, was equally and strongly induced in both
settings beginning on day 3. To investigate if the regulatory
role of ATRX in mesenchymal differentiation is specific to the
adipocyte lineage, we also tested the differentiation of Atrx
KO versus WT MPCs following treatment with a chondro-
cyte differentiation cocktail. The H3K36M oncohistone mu-
tation was used as a negative control ( 27 ). Compared to WT
MPCs, the H3K36M-expressing negative control led to im-
paired differentiation ( Supplementary Figure S3 ). In addition,
both ATRX deficient clones demonstrated reduced differentia-
tion into chondrocytes ( Supplementary Figure S3 ). These data
suggest that ATRX loss perturbs the lineage commitment of
mesenchymal progenitor cells resulting in selective linage pro-
motion or impairment. 

To assess if Atrx KO reduced the stemness properties of
mesenchymal progenitors, we performed assays for colony
formation (Figure 2 C) and proliferation (Figure 2 D). The two
Atrx KO lines had reduced colony formation capacity and
proliferation compared to Atrx WT ( P < 0.05). We also com-
pared mRNA levels of Etv1 , a mesenchymal stemness marker,
between Atrx KO and WT MPCs (Figure 2 E, F). The two
knock out lines expressed lower levels of Etv1 during the dif-
ferentiation time course, including at Day 0, which is consis-
tent with the RNA-seq findings, suggesting that Etv1 is sup-
pressed at baseline in Atrx KO MPCs. These results demon-
strate that Atrx KO reduces the stem-like properties of mes-
enchymal progenitors. 

Atrx KO reduces H3K9me3-marked 

heterochromatin associated with transcriptionally 

repressed linage commitment genes 

Histone post-translational modifications contribute to defin-
ing the chromatin states, which in turn impact gene expression
( 60 ,61 ). Given that histone post-translational modifications
are regulated in part by ATRX, we investigated how ATRX de-
ficiency impacted chromatin states in the MPC model. ATRX,
together with DAXX, deposits the histone variant H3.3 at spe-
cific genomic regions including telomeres ( 6 , 7 , 62 ). To confirm

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
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Figure 1. ATRX deficiency alters the transcriptome. ( A ) Immunoblot demonstrating ATRX protein loss in MPC lines. β-ACTIN acts as loading control. ( B ) 
The intersection of significantly upregulated genes (log 2 foldchange > 1, P adj < 0.05) in both Atrx KO clones based on polyA-RNA-seq datasets. ( C ) The 
intersection of significantly downregulated genes (log 2 foldchange < –1, P adj value < 0.05) in both Atrx KO clones based on polyA-RNA seq datasets. ( D ) 
Dot plot of gene ontology (GO) (biological process) analy sis f or significant upregulated genes from (B). The size of nodes indicates the numbers of genes. 
The color gradient indicates the P adj v alue. B old type indicates gene ontology terms which are associated with de v elopment. ( E ) B o xplot depicting mRNA 

le v els from the RNA-seq dataset. The y-axis indicates RNA-seq read counts normalized by DESeq2. The P value ( P < 0.05) was determined by DESeq2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loss of ATRX epigenetic function in the knockout cell lines,
we performed CUT&RUN (Cleavage Under Targets & Re-
lease Using Nuclease) ( 36 ) for the histone variant H3.3 in or-
der to compare H3.3 deposition in Atrx KO versus WT MPCs.
Analysis of three biologic replicates indicated that there were
consistent changes in H3.3 localization with gains at some ge-
nomic loci and losses at others ( Supplementary Figure S4 A)
including significant depletion at telomeres ( Supplementary 
Figure S4 B), which is consistent with the previous reports ( 63 ).
Notably, H3.3 localization is also known to change over the
course of development ( 7 ). 

Another known function of ATRX is to establish and
maintain locus-specific heterochromatin though recruitment
of H3K9 methyltransferases ( 5 ). Using CUT&RUN, we next
analyzed how the heterochromatin-associated histone mark,
H3K9me3, was altered in Atrx KO MPCs. H3K9me3 was sig-
nificantly changed at specific regions with 4272 gained peaks
and 4738 lost peaks, demonstrating that the ATRX deficiency
has effects on heterochromatin in our model ( Supplementary 
Figure S4 C). Applying GO analysis to genes that are near
H3K9me3 differential peaks, we found that many of the
top enriched gene sets for regions that had increased or de-
creased H3K9me3 signal in both Atrx KO lines were related to
development ( Supplementary Figure S4 D,E; Supplementary 
Table S6 , S7 ). 
To further characterize the regions in which H3K9me3 

was lost, we first used ChromHMM to annotate chromatin 

states across the whole genome using CUT&RUN-derived 

data for H3K4me3, H3K27ac, H3K9me3 and H3K27me3 in 

Atrx WT MPCs (Figure 3 A, Supplementary Figures S4 F, S5 ) 
( 64 ). We found that H3K9me3 was enriched in a state marked 

by H3K9me3 alone (State 4, Supplementary Table S9 ), an- 
notated as heterochromatin, as well as in a small subset 
of regions marked by H3K27me3 and H3K9me3 (State 3,
Supplementary Table S8 ), annotated as repressed chromatin 

(Figure 3 A). We then compared H3K9me3 CUT&RUN sig- 
nal within the regions that make up the states contain- 
ing H3K9me3 in Atrx KO and WT MPCs and found that 
H3K9me3 was reduced in the Atrx KO MPCs at these sites 
(Figure 3 B, C). Genes associated with lost H3K9me3 are no- 
tably related to cell development and differentiation. 

Next, to better understand the consequences of this obser- 
vation on gene regulation, we examined the connection be- 
tween H3K9me3 loss and changes in gene expression. Of the 
328 significantly upregulated genes in Atrx KO MPCs, 19.5% 

(64 / 328) were associated with peaks that had significantly 
less H3K9me3 signal in the ATRX deficient line (Figure 3 D).
GO pathway analysis of these genes revealed enrichment of 
gene sets related to adipocyte differentiation, including lipid 

localization, fat cell differentiation, and brown fat cell differ- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
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Figure 2. ATRX deficiency promotes differentiation. ( A ) Oil Red O (ORO) staining in adipogenic differentiation experiments. adipo diff: adipogenic media 
treatment. normal: normal culture media treatment. The y-axis shows the optical density (OD) of the solubilized ORO after adipocyte-specific staining 
minus the OD value from the normal media control (clt). Data from three biological replicates are plotted with each point representing individual value 
from each replicate. The p. adj value was calculated by a post hoc comparison following a paired one-way ANO V A analysis ( B ) Western blot of adipocyte 
mark ers. T he ‘control’ indicates cells gro wn in the normal media culture at the end of the e xperiment (Da y 7). Da y s 1, 3 and 7 indicate the duration of 
adipogenic media treatment. The red arrows indicate the protein bands of interest. Two isoforms of C / EBP α are shown. ( C ) Colony formation assays. 
The bar plot shows the colony formation from three biological replicates normalized to WT. Cell groups with at least 50 cells were classified as a colony. 
For each replicate, the percentage of colony formation was normalized to the WT group. The error bars were calculated from three biological replicates. 
The P value was determined by paired one-way ANO V A (WT versus sg5, WT versus sg6). ( D ) MPC proliferation assay. Relative numbers of viable cells 
were determined using an ATPase assay on day 1, day 3 and day 5 after seeding cells. The OD value of luminescence was normalized with day 1 for 
each group. Three biological replicates were performed. P value was calculated by paired t-test (t wo-t ailed) for day 5 data. ( E , F ) RT-qPCR experiments 
for Etv1 gene expression in two knockout lines Corresponding to the data in panel (B). P value was calculated using one-sample, two-sided t- test to 
compare the mean values for sgRNA samples and WT. The error bars indicate the standard variance. 
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ntiation ( Supplementary Table S10 ). These genes included
ey adipogenic regulators and markers such as Fabp4 and
par γ , which are part of the fat cell differentiation GO gene
et ( Supplementary Table S10 ). In addition, another gene in
he same gene set, Lpl , has roles in adipogenic metabolism by
ediating hydrolysis of circulating lipoprotein particles ( 65 ).
xamination of integrated genomic viewer (IGV) tracks in a
utative Fabp4 regulatory element demonstrates H3K9me3
epletion in Atrx KO cells ( Supplementary Figure S4 G). 
These observations indicate that ATRX deficiency reduced

he heterochromatic histone mark H3K9me3 at genomic re-
ions that were associated with genes relevant to linage-
pecific differentiation and development. These data sug-
est that H3K9me3 loss may contribute to gene expression
hanges in ATRX deficient MPCs, leading to their enhanced
apacity for adipogenic differentiation. 

trx KO reduces H3K9me3 at ERV repetitive regions

 TRX and the A TRX-associated H3K9 methyltransferase,
ETDB1, promote H3K9me3 deposition and silencing at
repetitive elements ( 5 ). These sequences include transpos-
able elements (TEs) such as endogenous retroviral elements
(ERVs), which are a type of long terminal repeat derived
from integrated retroviral elements ( 66 ). De-repression of
ERVs can lead to formation of dsRNA, which is detected
by sensors that in turn stimulate innate immune signaling,
which has been implicated as a mediator of antitumor im-
mune response ( 67–70 ). Separately, ERVs can act as gene
regulatory elements with enhancer-like features and as tran-
scription factors binding sites to regulate gene expression
( 71–73 ). Given that H3K9me3 is depleted in heterochro-
matin regions in Atrx KO MPCs, we sought to determine
how this affected ERV expression and gene regulation in this
system. 

We compared H3K9me3 enrichment at repetitive elements
between Atrx KO and WT MPCs. We found that H3K9me3
signal was reduced by deletion of ATRX on multiple types
of TEs, including ERV family members (ERV1, ERVK), Alu ,
ID and B2 (Figure 3 E). To further define the relationship be-
tween H3K9me3 loss at repetitive elements and differentia-
tion phenotypes in Atrx KO lines, we mapped the repetitive

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
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Figure 3. ATRX deficiency reduces H3K9me3 near de v elopmental genes and ERVs in mesenchymal progenitor cells. ( A ) Chromatin states defined by 
enrichment of histone modifications (H3K4me3, H3K9me3, H3K27ac and H3K27me3) using ChromHMM. The heatmap shows the emission 
probabilities of histone modifications in chromatin states. The ten different states. ( B ) The range-based heatmap shows the H3K9me3 signal in 
repressed regions (State 3) (left) and ( C ) heterochromatin regions (State 4) (left). All peaks are similarly scaled, where ‘start’ and ‘end’ indicate the start 
and end of the scaled peak. The bar plots show the GO analysis (biological process) of genes associated with H3K9me3 in each chromatin state (right). 
( D ) Percentage of H3K9me3 lost peaks ( P < 0.05) associated genes (closest gene to peak) that do (‘yes’) or do not (‘no’) o v erlap with up-regulated genes 
(log 2 foldchange > 1 & P adj < 0.05). ( E ) Heatmap of H3K9me3 signal at repetitive regions in Atrx WT versus KO MPCs derived by SQuIRE analysis of 
three biologic replicates. Bold indicates elements of interest (see main text). ( F ) IGV tracks show a representative H3K9me3 differential peak at an 
IAPEzint ERV element. The yellow bar indicates a differential H3K9me3 peak. The green bar shows the mouse IAPEz-int element. Within each sample 
genotype, each track represents an independent biologic replicate. ( G ) Percentages of each family of TE up-regulated in Atrx KO vs WT MPCs based on 
an rRNA-depletion sequencing dataset. The up-regulated transposable elements were mapped at an individual locus level. ( H ) Percentage of 
up-regulated genes in polyA-RNA-seq data that annotated by up-regulated TEs (TE method by locus). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elements onto the previously defined chromatin states (Fig-
ure 3 A). While most of repetitive elements were in quies-
cent (State 6) regions devoid of detectable chromatin marks
( Supplementary Figure S6 A), outside of these regions ERV1
and ERVK elements preferentially mapped to heterochro-
matin regions where H3K9me3 was reduced in Atrx K O ver -
sus WT MPCs (State 4) ( Supplementary Figure S6 B). 

To identify specific subfamilies of ERVs where H3K9me3
is depleted in Atrx KO MPCs, we analyzed the H3K9me3
differential peaks by adapting SQuIRE analysis, a RNA-
seq analysis pipeline that provides a quantitative and locus-
specific information on TE expression ( 34 ). The top reduced
regions of H3K9me3 in both Atrx KO lines is an IAP ele-
ment ( Supplementary Figure S7 A, B, Supplementary Tables 
S11 , S12 ), which is a member of the ERVK family. Loss of
H3K9me3 in Atrx KO versus WT at a representative region
containing an ERVK (IAPEzint) element can be appreciated 

by review of IGV tracks (Figure 3 F). 
To determine if TEs are transcriptionally de-repressed in 

the setting of ATRX-dependent H3K9me3 reduction, we per- 
formed RNA-sequencing following rRNA-depletion and an- 
alyzed locus-specific repetitive element differential expression 

between Atrx KO and WT MPCs using SQuIRE. We identi- 
fied 116 significant ( P adj < 0.05) upregulated TEs in common 

between both Atrx KO clones ( Supplementary Table S13 ).
Among these upregulated TEs, 42 (36.2%) belong to the ERV 

superfamily (Figure 3 G), which is the largest subset of upreg- 
ulated TEs. 

To investigate whether de-repressed TEs correlated with 

nearby gene expression, we analyzed the intersection of up- 
regulated TEs with significantly upregulated genes. We found 

that the 116 significant upregulated TEs were annotated 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
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y 136 genes (using the TE transcript by locus method,
upplementary Table S14 ). Among those genes, 29 genes
21.3%) were significantly upregulated as measured by RNA-
eq (Figure 3 H). The adipocytic lineage transcription factor,
parg , was observed in this gene set, raising the possibility

hat the associated TE could serve as a regulatory element
or Pparg . In addition, we observed 445 significantly down-
egulated TEs near 163 genes, of which 30 genes were also
ownregulated ( Supplementary Figure S7 C, Supplementary 
able S15 ). These results demonstrate that Atrx KO leads
o reduction of H3K9me3 on specific TEs including those
n regions which potentially regulate an adipogenesis master
egulator. 

oss of ATRX promotes chromatin accessibility and 

nrichment of active histone modifications at 
evelopmental genes 

TRX regulates euchromatin as well as heterochromatin ( 74 ),
eading us to investigate whether the dysregulation of devel-
pmental transcriptional programs in MPCs that we see in
trx KO was connected to changes in active histone mod-

fications, such as H3K4me3 and H3K27ac. We hypothe-
ized that loss of ATRX leads to gain of H3K4me3 in spe-
ific promoters and H3K27ac in enhancer-like regions. First,
e investigated the distribution of H3K4me3 and H3K27ac

n Atrx WT and KO MPCs and identified genomic features
f differential peaks of H3K4me3 and H3K27ac in Atrx
 O . As expected, H3K4me3 gained peaks in Atrx KO clones
re highly represented at promoters ( Supplementary Figure 
8 A, Supplementary Table S16 ). Enrichment of H3K27ac was
ainly in introns, distal intergenic regions and promoters in
trx KO lines ( Supplementary Figure S8 B, C, Supplementary 
able S17 ). 
Next, we examined the relationship between distribution of
3K4me3 at promoter regions and transcriptional profiles of

hose genes. Interestingly, less than half of genes upregulated
n Atrx KO cells gain H3K4me3 at their promoters (Figure
 A) suggesting that other factors may mediate the increased
xpression in the group where H3K4me3 does not change. Fo-
using specifically on genes that gain H3K4me3 and are upreg-
lated in an ATRX-dependent fashion, GO pathway analysis
evealed genes related to angiogenesis and hormone secretion,
he latter of which includes the adipogenesis master regulator,
parg (Figure 4 B, Supplementary Table S18 ). 
We also examined the distribution of H3K27ac, focusing

n H3K27-gained regions near upregulated genes (Figure 4 C).
enes in these regions were enriched in pathways that asso-

iated with cell development and fatty acid transport (Fig-
re 4 D, Supplementary Table S19 ). Our data suggests that
trx KO in MPCs leads to changes in both the heterochro-
atic histone mark H3K9me3 and the euchromatic marks
3K4me3 and H43K27ac. Given the connection of these
osttranslational modifications with chromatin compaction,
e speculated that ATRX deficiency would lead to a shift in

hromatin accessibility. To test this, we performed A T AC-seq,
hich demonstrated increased accessibility in Atrx KO cells
t genes associated with mesenchymal development and dif-
erentiation (Figure 4 E, Supplementary Table S20 ) ( 75–77 ). To
nvestigate the connection of increased chromatin accessibil-
ty driven by ATRX deficiency and gene expression changes in
trx KO clones, we separated A T AC-seq peaks at promoters
of significantly upregulated genes ( Supplementary Table S21 )
from those at non-promoter regions near or in the same genes
( Supplementary Table S22 ) (Figure 4 F). Similar to H3K4me3,
while a minority of the upregulated genes showed increased
accessibility at their promoters (Figure 4 F), these genes were
associated with development. The observation that a group
of genes increased expression but did not gain chromatin ac-
cessibility suggests, as is in the analogous case of upregu-
lated genes that did not gain H3K4me3, that indirect mech-
anisms may account for transcriptional changes upon dele-
tion of ATRX. In addition, we performed motif analysis for
regions with increased chromatin accessibility in Atrx KO
MPCs. The top motifs include binding sites for a zinc fin-
ger protein (ZNF384), AP-1 family members (Jun, FOS), and
Sox family transcription factors, which have a role in mes-
enchymal development ( 78–80 ) ( Supplementary Figure S9 A,
Supplementary Table S23 ). 

To understand the relationship between heterochromatin
changes and increased chromatin accessibility in ATRX de-
ficient MPCs, we intersected the A T AC-seq gained peaks
(8750 peaks) that overlapped with regions showing de-
creased H3K9me3 (5074 peaks) and identified 162 overlap-
ping regions ( Supplementary Figure S9 B). Despite this small
number of overlapping peaks, GO analysis suggested that
this subset was highly representative of programs related
to development including in along the mesenchymal lineage
( Supplementary Figure S9 C, Supplementary Table S24 ). These
results demonstrate that the increased chromatin accessibil-
ity coupled with a reduction in H3K9me3 at specific genes in
Atrx KO MPCs is associated with altered gene expression and
a pro-differentiation phenotype in Atrx KO MPCs. 

ATRX deficiency induces an active chromatin state 

at the promoter and putative regulatory element of 
the adipogenic transcription factor Pparg 

ATRX loss leads to an aberrant increase in expression of
Pparg (Figure 1 E), which is an important adipogenic tran-
scription factor ( 81 ). In addition, in functional assays for
adipocytic differentiation, PPAR γ protein levels are markedly
induced in Atrx KO MPCs immediately after induction of adi-
pogenic differentiation (Figure 2 B). In order to understand
how these phenotypes are functionally linked to the epigenetic
changes driven by ATRX deficiency, we investigated ATRX-
dependent changes in the chromatin state near the Pparg gene.
In Atrx KO MPCs the promoter of Ppar γ showed increased
accessibility and increased H3K4me3 and H3K27ac, suggest-
ing a more active chromatin state (Figure 4 G). Notably, previ-
ous work has identified a Pparg enhancer element in this same
region ( 82 ) (Figure 4 G, Supplementary Table S25 ), suggesting
multiple mechanisms by which these chromatin changes could
enhance Pparg expression. In addition, we observed a loss of
H3K9me3 and increased accessibility at an ERVL element 20
kb upstream from the Pparg promoter, raising the possibility
that it functions as an ATRX-dependent gene regulatory ele-
ment for Pparg . 

ATRX associates with accessible and active 

chromatin in MPCs 

To understand whether direct ATRX binding could influ-
ence the gene expression and chromatin changes observed
in Atrx KO MPCs, we mapped ATRX binding sites using

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae160#supplementary-data
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Figure 4. Loss of ATRX alters active chromatin marks and perturbs chromatin accessibility to induce expression of a key adipogenic regulator. ( A ) 
H3K4me3 signal around promoters of significantly upregulated genes grouped by whether H3K4me3 is gained (black bar) or unchanged (red bar) ( B ) GO 

terms (biological process) associated with H3K4me3 gained regions. ( C ) H3K27ac signal ±3 kb around the center of H3K27ac peaks near upregulated 
genes where H3K27ac is gained (black bar) or unchanged (red bar) ( D ) GO analysis (biological process) of H3K27ac significantly increased regions. ( E ) 
Network plot of gene programs associated with increased accessibility in Atrx KO lines. The terms labeled with bold black font indicate those related to 
the mesenchymal lineage. ( F ) Signal of A T AC-seq ±3 kb around the transcription start site (TSS) of genes that have significantly increased expression in 
Atrx KO MPCs and ha v e an A T AC-seq peak in the TSS region. The regions are grouped based on whether the overlapping A T AC peak has significantly 
increased signal (black bar) or is unchanged (red bar). The dot plot shows the GO terms associated with upregulated genes. ( G ) IGV tracks of CUT&RUN 

and A T AC-seq replicates showing a region near the promoter of the Pparg gene. Enhancer annot ation is from EnhancerAtlas 2.0 dat abase 
( http:// www.enhanceratlas.org/ ) ( 82 ) and con v erted to the mouse mm10 genome. 

http://www.enhanceratlas.org/
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UT&RUN. At telomeric regions, where ATRX is known
o function with DAXX to deposit H3.3 and bind to
-quadruplex structures ( 6 ), ATRX signal was decreased

n both knockout clones compared to WT ( P < 0.05)
 Supplementary Figure S10 A). As an additional control,
e detected ATRX peaks at zinc finger gene clusters

 Supplementary Figure S10 B), where ATRX is known to bind
 83 ) that were lost in the ATRX KO MPC. 

ATRX enrichment at the sites of active transcription start
ites (TSS) was recently reported in lymphoblastoid cell lines,
uggesting that ATRX has an important role in euchro-
atin where it regulates gene expression in addition to its
ore established role at heterochromatin ( 74 ). This is con-

istent with MPC ATRX peaks identified here ( n = 114;
 adj < 0.05) ( Supplementary Figure S10 C, Supplementary 
ables S26 , S27 ), where we observed that of the 114 ATRX
inding sites, 33.3% were located at promoter regions, and
8.6% were in distal intergenic regions (Figure 5 A). The
emainder associated with 5 

′ UTRs (5.3%), exons (7.9%),
 

′ UTRs (2.6%) and introns (12.3%). Mapping ATRX binding
ites onto the ChromHMM-defined chromatin states revealed
n association with active transcription start sites (TSS, State
) (Figure 5 B). Comparing the ATRX binding sites to Atrx WT
 T AC-seq peaks, we found that 87.7% (100 / 114) of ATRX
inding sites overlapped with chromatin accessible regions
Figure 5 C, Supplementary Table S28 ). ATRX binding cor-
esponded to H3K27ac enriched regions in 56.1% (64 / 114)
f cases ( Supplementary Figure S10 D, Supplementary Table 
29 ). Interestingly, in the intersection of H3K27ac occupied
egions with ATRX binding sites, 70.3% (45 / 64) were in non-
romoter regions, suggesting a potential role for a subset of
TRX at active enhancers in MPCs ( Supplementary Figure 
10 E, Supplementary Table S30 ). 

Given that ATRX peaks were often localized to open chro-
atin and active promoters, we explored the relationship be-

ween ATRX binding and gene expression. Genes were binned
ased on expression and ATRX signal was quantified around
he TSS of genes in each group (Figure 5 D). The most highly
xpressed genes had the greatest ATRX signal, whereas non-
xpressed genes had no ATRX enrichment at the TSS. For
xample, Fam46a , which is known to downregulated in dif-
erentiating adipocytes ( 84 ) and was significantly downreg-
lated in Atrx KO MPCs ( Supplementary Figure S10 F) has
n ATRX binding site at its promoter region (Figure 5 E).
his association of ATRX with active genes is similar to a
ecent report in a hematopoietic lineage ( 74 ) and suggests
hat ATRX may play a role in maintaining and potentially
stablishing gene expression in the mesenchymal cells. How-
ver, given that only a subset of ATRX binding sites cor-
elate with changes in gene expression in Atrx KO MPCs
 Supplementary Table S27 ), there are likely other mecha-
isms by which ATRX regulates transcription. One possibil-
ty may be an indirect mechanism via binding and chromatin-
ediated regulation of transposable elements which in turn

nfluence transcription. In support of this possibility, we ob-
erved that ATRX binds several families of repetitive elements,
ncluding SINEs ( Alu , ID , B2, MIR) and Satellite DNAs (Fig-
re 5 F), a finding that was confirmed by a second analysis
ethod ( Supplementary Figure S10 G). In addition, the ATRX
inding sites were enriched for binding motifs of specific tran-
criptional regulators, such as REST ( 85 ), PBX3 ( 86 ), and
FYC / A ( 87 ,88 ) ( Supplementary Figure S10 H). 
 

ATRX loss in undifferentiated pleomorphic sarcoma
leads to epigenetic changes and de-repression of 
TEs 

To investigate the epigenetic consequences of ATRX deficiency
in a human mesenchymal malignancy, we used a patient-
derived undifferentiated pleomorphic sarcoma (UPS) cell line
( 29 ) to establish ATRX KO clones and a WT isogenic control
(Figure 6 A, Supplementary Figure S11 A). UPS are deficient for
ATRX in up to third of cases ( 8–10 ), making UPS a clinically
relevant context to study ATRX loss in cancer. The parental
UPS line is p53 deficient with retained RB1 at the protein level,
which reflects one of several UPS genotypes ( 8 ,29 ). 

To understand the epigenetic role for ATRX in sarcomas,
we performed an analysis of H3.3, H3K9me3 and H3K27ac
landscapes in two UPS ATRX KO clones and a WT control
and determined chromatin accessibility by A T AC-seq. As in
the MPC model, ATRX loss resulted in an expected significant
depletion of H3.3 signal at telomeres ( Supplementary Figure 
S11 B). H3K9me3 peaks were significantly lost and gained in
the ATRX KO clones and were enriched near genes in path-
ways relevant for development (Figure 6 B, Supplementary 
Figure S11 C, Supplementary Tables S31 , S32 ), which is similar
to our observation in ATRX deficient mesenchymal progeni-
tor cells ( Supplementary Figure S4 D, E). Notably, we observed
more pathways specific for mesenchymal development in the
UPS lines, perhaps reflecting the degree of lineage commitment
in the UPS cell of origin, which is yet to be defined. 

The active chromatin mark, H3K27ac, was significantly
gained in the ATRX KO UPS in regions associated with de-
velopment, particularly in mesenchymal pathways (Figure 6 C,
Supplementary Table S33 ), which also similar to MPCs (Fig-
ure 4 D). This includes the Wnt pathway, which is an impor-
tant regulator of mesenchymal differentiation ( 89 ) and which
gained accessible chromatin upon ATRX loss in the MPC con-
text (Figure 4 E). To explore the functional consequence of this
epigenetic change, we treated ATRX deficient versus retained
UPS with tegavitint, a β-Catenin antagonist, to disrupt Wnt
signaling. The ATRX KO UPS clones had 3.5- to 5-fold lower
IC 50 s (9.9 and 6.9 nM) compared to the WT control (35 nM)
suggesting a differential dependency on Wnt signaling based
on ATRX status (Figure 6 D). Notably, tegavivint is being in-
vestigated in a therapeutic trial in mesenchymal malignancies
(NCT04851119). 

In UPS, loss of ATRX led to increased chromatin accessibil-
ity, including at genes related to development ( Supplementary 
Figure S11 D, Supplementary Table S34 ). A motif analysis of
these newly accessible chromatin regions demonstrated puta-
tive binding sites for AP-1 and zinc finger family transcrip-
tion factors among the most significant predictions (Figure
6 E). This is concordant with the most significant predicted
binding sites newly accessible regions in MPCs with ATRX
loss ( Supplementary Figure S9 A), suggesting a similar role for
ATRX in both contexts. The gained accessibility at AP-1 sites
in both the UPS and MPC contexts was particularly notable
since deficiency of SETDB1, an H3K9 methyltransferase that
interacts with ATRX, leads to opening of chromatin in multi-
ple cell lines at AP-1 motifs at TEs ( 90 ). 

Transcriptionally, ATRX deficiency in UPS resulted in the
significant upregulation of 539 genes and downregulation of
566 downregulated genes in common between the two clones
compared to wildtype ( Supplementary Figure S12 A, B). Gene
set enrichment analysis highlighted pathways involved in cell
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cycle regulation and mitosis among upregulated genes and
in genes involved in immune response among downregulated
genes ( Supplementary Figure S12 C, Supplementary Table 
S35 ). Notably, similar pathways were downregulated in an
ATRX deficient (versus Atrx WT) mouse model of UPS ( 91 )
suggesting that while ATRX has an important role in regu-
lating transcription in both MPC and UPS, the specific con-
sequences of ATRX deficiency may depend on context, po-
tentially including concurrent p53 loss of function, an event
shared in both the human cell lines ( 29 ) and mouse UPS ( 91 ).

In MPCs, ATRX loss was associated with upregulation of
TE expression leading us to additionally focus on TE expres-
sion in the mesenchymal malignancy context. In ATRX KO
UPS compared WT, there were 935 significantly upregulated
TE transcripts present in common between clones, which in-
clude 168 ERVs (Figure 6 F, G, Supplementary Table S36 ).
These results were similar observations in MPCs (Figure 3 E–
G). To additionally validate the association of ATRX loss and
TE de-repression in the UPS context, we analyzed RNA-seq
data from a study reporting a mouse model of ATRX defi-
cient versus retained UPS ( 91 ). TEs were upregulated in the
Atrx KO tumors, with the ERV superfamily, including ERV1,
ER VL and ER VK, predominating ( Supplementary Figure 
S12 D, Supplementary Table S37 ). Together, these data support
an important role for ATRX in maintaining the repression of 
TEs in both the mesenchymal progenitor and mesenchymal 
malignancy contexts. 

Discussion 

The mesenchymal lineage gives rise to connective tissues. Sar- 
comas, which are cancers of connective tissues, have recurrent 
loss of ATRX in up to 30% of specific subtypes, suggesting the 
potential importance of ATRX deficiency in sarcoma biology 
and possibilities for precision medicine approaches to treat- 
ment ( 8 ). However, while ATRX loss is known to contribute 
to the alternative lengthening of telomere phenotype in sar- 
comas, the functions of ATRX in the epigenetic regulation of 
gene expression and downstream processes in the mesenchy- 
mal context is less understood. 

Given the important role for ATRX regulating epigenetic 
states and the intersection of epigenetics with development,
we hypothesized that loss of ATRX would affect cell commit- 
ment in mesenchymal progenitor cells. We demonstrated that 
the Atrx KO MPCs were sensitive to differentiation induction 

and exhibited reduced progenitor properties. At the transcrip- 
tional level, ATRX loss increased expression of adipogenesis 
regulators and markers, including Pparg , which is an early 
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and direct master regulator of adipogenesis ( 81 ). We then in-
vestigated ATRX mediation of these phenotypes through epi-
genetic changes, with a focus on several potential and non-
exclusive mechanisms (Figure 7 ). 

First, ATRX deficiency promotes chromatin accessibil-
ity and increased transcription at genes associated with
mesenchymal differentiation including Ppar γ and Fabp4 .
Whether ATRX regulates chromatin accessibility directly or
indirectly remains an interesting question to be addressed in
future work. Second, the loss of ATRX leads to changes in hi-
stone posttranslational modifications at specific loci, includ-
ing the heterochromatin mark H3K9me3 and active chro-
matin marks, H3K4me3 and H3K27ac. The genes associated
with H3K9me3-depleted heterochromatin regions in ATRX-
deficient cells are relevant for differentiation and develop-
ment. This suggests that loss of this repressive mark may cre-
ate a chromatin environment permissive to signals that acti-
vate these programs, which is consistent with the accelerated
and increased differentiation phenotype observed in Atrx KO
MPCs following simulation with adipogenic media. 

In addition, ATRX deficiency leads to the loss of H3K9me3
at ERVs, which could represent another potential mecha-
nism for the transcriptional changes induced by ATRX loss
given that ERVs can serve as cis- regulatory elements and have
also been shown to change expression during development
( 92 ,93 ). Finally, histone marks associated with active tran-
scription were also altered upon A TRX loss. W e observed
increased H3K4me3 at promoters and H3K27ac enrichment 
near significantly upregulated genes. This suggests that in- 
creased H3K4me3 and H3K27ac may also contribute to the 
induction of mesenchymal development programs 

Third, ATRX may regulate gene expression through direct 
interactions with active chromatin. Recent reports in lym- 
phoblastoid cell lines shows that 38% of ATRX binding sites 
are localized to promoters ( 74 ), which is consistent with our 
results demonstrating that approximately one-third of ATRX 

binding sites in MPCs occur at promoters. In contrast, ATRX 

binding sites in murine embryonic stem cells are mainly re- 
stricted to distal intergenic regions and gene bodies, with only 
1% on promoters ( 94 ). While in murine neuroepithelial pro- 
genitors, 17% of ATRX binding sites were located in promot- 
ers ( 94 ). Therefore, ATRX binding sites differ depending on 

the cell and developmental contexts with a trend towards in- 
creased association with promoters in lineage specific progen- 
itors compared to less differentiated stem cells. Our findings 
demonstrate that ATRX is not only required for maintaining 
heterochromatin, but that it may also regulate gene expres- 
sion through binding to active chromatin regions, consistent 
with this recently discovered role for ATRX. In our system,
ATRX binding was associated with increased gene expression.
However, whether ATRX occupancy directly drives transcrip- 
tional upregulation is unclear since only a subset of genes near 
ATRX binding sites are downregulated following ATRX loss.
We speculate that ATRX binding might regulate gene expres- 
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ion changes through a distal enhancer mechanism in the case
f ATRX binding sites that do not influence expression of
earby genes. In support of this, ATRX signal was decreased
t several types of SINEs in Atrx KO MPCs, including Alu ,
2 , B4 , ID and MIR, which act as transcription factor bind-

ng sites ( Alu ( 95 ), MIR ( 96 )) or harbor promoter-like ( B2 )
 97 ) or enhancer-like features ( B4) ( 98 ), respectively. 

Our findings demonstrate that ATRX restricts differentia-
ion in mesenchymal progenitor cells. Deletion of ATRX leads
o aberrant de-repression of the lineage-restricted transcrip-
ome, accompanied by changes in chromatin accessibility and
istone post-translation modifications near transposable ele-
ents and at specific genes associated with differentiation. We
bserved similar changes in histone modifications and chro-
atin accessibility in a patient-derived UPS cell in which we
nocked out ATRX. At the transcriptional level, ATRX defi-
ient UPS cells upregulated TEs, including ERVs, a finding we
lso observed in a re-analysis of datasets from a mouse model
f ATRX deficient UPS ( 91 ). In addition, epigenetic changes in
TRX deficient UPS led us to uncover a selective sensitivity of
TRX deficient UPS cell to Wnt pathway inhibition by tega-
ivint. This warrants further preclinical investigation in UPS,
articularly since tegavivint is being evaluated in clinical trials
or patients with mesenchymal tumors. While we would not
xpect full concordance between the sequelae of ATRX loss in
he mesenchymal progenitor and the transformed mesenchy-
al malignancy context, the overall effects on epigenetic dys-

egulation and de-repression of TEs was similarly observed in
oth settings. 
Our findings raise several questions including whether the

hanges observed in active histone marks, chromatin ac-
essibility, and de-repression of ERVs after Atrx KO occur
hrough direct or indirect mechanisms and how these epige-
etic changes contribute to the pathogenesis or may invoke
herapeutic opportunities in sarcomas in which ATRX loss is
ommon (e.g., UPS and leiomyosarcoma). One intriguing pos-
ibility is that ATRX loss creates a permissive chromatin and
ranscriptional context in which mesenchymal progenitors are
usceptible to subsequent sarcomagenic events such as loss of
P53 and RB1 ( 8 ) or the aberrant expression of specific tran-
cription factors. Overall, results presented herein expand our
nderstanding of the epigenetic consequences of ATRX func-
ion in in the mesenchymal context. 

ata availability 

ll genomic and transcriptional data of MPCs and human
PS cells were deposited in the Gene Expression Omnibus

GEO) repository under accession number GSE240030. Code
s available in Zenodo at https:// zenodo.org/ doi/ 10.5281/
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