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Abstract

It is well-known that the Tucker decomposition of a multi-dimensional tensor is not unique, 

because its factors are subject to rotation ambiguities similar to matrix factorization models. 

Inspired by the recent success in the identifiability of nonnegative matrix factorization, the goal 

of this work is to achieve similar results for nonnegative Tucker decomposition (NTD). We 

propose to add a matrix volume regularization as the identifiability criterion, and show that NTD 

is indeed identifiable if all of the Tucker factors satisfy the sufficiently scattered condition. We 

then derive an algorithm to solve the modified formulation of NTD that minimizes the generalized 

Kullback-Leibler divergence of the approximation plus the proposed matrix volume regularization. 

Numerical experiments show the effectiveness of the proposed method.

1. INTRODUCTION

Tensors are multi-dimensional extensions of matrices [1, 2]. The Tucker decomposition 

[3] of a multiway tensor is perhaps the most natural generalization of the celebrated 

matrix principal component analysis (PCA) due to its close relationship with the higher-

order singular value decomposition (HOSVD) [4, 5]. However, it also inherits the biggest 

shortcomings of PCA, namely the latent factors are not identifiable due to the inherent 

rotation ambiguity (without additional constraints on the latent factors). For this reason, the 

Tucker decomposition is most commonly used as a compression technique rather than an 

unsupervised factor analysis approach or blind source separation method, unlike most other 

tensor decomposition models such as the canonical polyadic decomposition [6–10].

Inspired by the success of nonnegative matrix factorization (NMF) [11], there have been 

nonnegative variants of Tucker decomposition as well [12–15]. Although general matrix 

factorization is not unique, NMF has been observed to be able to (sometimes, not always) 

correctly identify the latent factors by simply adding nonnegativity constraints. The most 

general result to date is that NMF is unique when the latent factors satisfy the ‘sufficiently 

scattered’ condition [16]. Furthermore, one could enforce the factors to be sufficiently 

scattered by optimizing a matrix volume criterion [17]. An overview on identifiability and 

applications of NMF can be found in [18].
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In this paper, we make the first ever attempt to extend such identifiability results to 

nonnegative tensor decomposition (NTD). We will show that NTD is identifiable, up to 

scaling and permutation ambiguity, if all the factor matrices are sufficiently scattered. 

Identifiability of NTD is accomplished by optimizing a novel volume criterion imposed 

on the core tensor. When noise is present, this naturally leads to a volume-regularized NTF 

model that jointly fits the data and also uniquely identifies the latent factors. Experiments on 

synthetic and real data validates the effectiveness of our model.

1.1. Tensors and notations

We denote the input N-way tensor, of size I1 × I2 × ⋯ × IN, as X. In general, we denote 

tensors by boldface Euler script capital letters, e.g., X and Y, while matrices and vectors are 

denoted by boldface italic capital letters (e.g., X and Y ) and boldface italic lowercase letters 

(e.g., x and y ), respectively. The Euclidean norm of a tensor X is denoted as ∥ X ∥, which is 

defined as

∥ X ∥ = ∑
i1 = 1

I1
⋯ ∑

iN = 1

IN
X i1, …, iN

2 .

Unfolding.—A tensor can be unfolded, or matricized, along any of its mode into a matrix. 

The tensor unfolding along the nth mode is denoted X n ∈ ℝIn × ∏v ≠ n Iv. More simply, the nth 

mode of X forms the rows of X n  and the remaining modes form the columns.

Tensor-matrix product.—The n-mode tensor-matrix product multiplies a tensor with a 

matrix along the nth mode. Suppose B is a K × In matrix, the n-mode tensor-matrix product, 

denoted as X ×n B, outputs a tensor of size I1 × ⋯ × In − 1 × K × In + 1 × ⋯ × IN. Elementwise,

X ×n B i1, …, in − 1, k, in + 1, …, iN =
in = 1

IN

B k, in X i1, …, iN .

Using mode-n unfolding, it can be equivalently written as

X ×n B n = BX n .

Note that the resulting tensor is in general dense regardless of the sparsity pattern of X.

A common task is to multiply a tensor by a set of matrices. This operation is called the 

tensor-times-matrix chain (TTMc). When multiplication is performed with all N modes, it 

is denoted as X × B , where B  is the set of N matrices B 1 , …, B N . Sometimes the 

multiplication is performed with all modes except one. This is denoted as X×−n B , where n
is the mode not being multiplied:

X ×−n B = X ×1 B 1 ⋯ ×n − 1 B n − 1 ×n + 1 B n + 1 ⋯ ×N B N .
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Kronecker product.—The Kroneckder product (KP) of A ∈ ℝℓ × m and B ∈ ℝp × q, 

denoted as A ⊗ B, is an ℓ p × mq matrix defined as

A ⊗ B =
A 1,1 B ⋯ A 1, m B

⋮ ⋱ ⋮
A ℓ , 1 B ⋯ A ℓ , m B

.

Mathematically, the n-mode TTMc can be equivalently written as the product of mode-n
unfolding times a chain of Kronecker products:

X×−n B n = X n B 1 ⊗ ⋯ ⊗ B n − 1 ⊗ B n + 1 ⊗ ⋯ ⊗ B N ⊤ .

(1)

More notations are shown in Table 1.

1.2. Nonnegative Tucker decomposition (NTD)

The goal of Tucker decomposition is to approximate a data tensor X ∈ ℝI1 × ⋯ × IN

with the product of a core tensor G ∈ ℝK1 × ⋯ × KN and a set of N factor matrices 

U n ∈ ℝIn × Kn, n = 1, …, N, i.e., X ≈ G × U . An illustration of Tucker decomposition for 

3-way tensors is shown in Figure 1. To find the Tucker decomposition of a given tensor 

X ∈ ℝI1 × ⋯ × IN with a target reduced dimension K1 × ⋯ × KN, one formulates the following 

problem:

minimize
G ∈ ℝK1 × ⋯ × KN

U n ∈ ℝIn × Kn
n = 1

N

∥ X − G × U ∥2 .

(2)

Similar to matrix factorization models, the Tucker decomposition suffers from rotation 

ambiguities: if each factor matrix U n  is multiplied by a nonsingular matrix A n  from the 

left A n U n , the oblique rotation can be ‘absorbed’ into the core tensor G as G × A−1 , 

which will not affect the overall product

G × U = G × A−1 × UA .

(3)

For this reason, it is often without loss of generality assumed that the factor matrices 

all have orthonormal columns. With this constraint, one can eliminate variable G since it 

should be equal to G = X × U⊤ , and equivalently maximize ∥ X × U⊤ ∥2
. A well-known 

algorithmic framework to approximately optimize it is the higher-order orthogonal iteration 

(HOOI) [5], which cyclically updates the factors as the Kn leading left singular vectors of 
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Y n , obtained by taking the n-mode unfolding of the tensor Y ≜ X ×−n U⊤ . More recently, 

a novel higher-order QR iteration (HOQRI) was proposed to update the factors as an 

orthonormal basis of the columns of Y n G n
⊤ , where G n  is the mode-n unfolding of the 

core tensor G; the orthonormal basis is usually obtained from the QR factorization [19]. 

Compared to HOOI, HOQRI avoids the intermediate memory explosion when dealing with 

large and sparse data tensors (by defining a special kernel to directly calculate Y n G n
⊤ , and is 

the first Tucker algorithm that is shown to converge to a stationary point.

Nonnegative variants of Tucker decomposition have been proposed in recent years [12] by 

constraining the variables in (2) to be element-wise nonnegative. However, most of them 

focus on algorithm designs and not model correctness of why it is beneficial to impose the 

latent constraints [13, 14]; this question was briefly discussed in [13] and the conclusion was 

that the latent factors can be uniquely recovered, up to scaling and permutation ambiguity, 

if they satisfy the separability assumption [20], which is not very realistic in practice. In 

this paper, we will present a new identifiability result based on the much more practical 

sufficiently scattered condition [16,21], and also propose a new algorithm based on Frank-

Wolfe.

2. VOLUME REGULARIZED NTD

In this section, we introduce a novel volume criterion into the nonnegative Tucker 

decomposition, and show that it is able to guarantee unique recovery of the ground-

truth latent factors if they satisfy the sufficiently scattered condition, up to scaling 

and permutation ambiguity. Then we introduce a Frank-Wolfe algorithm based on the 

formulation of fitting an NTD model with the proposed volume criterion as a regularization.

2.1. Identifiability in the noiseless case

We start by assuming the data tensor X is generated exactly, without noise, from the Tucker 

model G × U  with nonnegative factors U n ≥ 0 for n = 1, …, N. Like all latent variable 

models, there exist inherent (and inconsequential) scaling and permutation ambiguity 

regarding the identifiability of the latent factors. Therefore, we define the identifiability 

of the Tucker factors as follows:

Definition 1 (Identifiability). Consider a data tensor generated from the Tucker model 

X = G♮ × U♮ , where U♮
n ≥ 0, n = 1, …, N are the ground-truth factors. Let G⋆ and U⋆  be 

optimal for an identification criterion q

G⋆, U⋆ = argmin
X = G × U

q G, U .

If G♮ and/or U♮  satisfy some condition such that, for any G⋆, U⋆ , there exist permutation 

matrices Π 1 , …, Π N  and diagonal matrices D 1 , …, D N  such that

U♮
n = U⋆

n D n Π n , n = 1, …, N, and G♮ = G⋆ × Π⊤D−1 ,
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then we say that the NTD model is identifiable under that condition.

Due to the scaling ambiguity and the fact that factor matrices are element-wise nonnegative, 

it is without loss of generality to assume that each column sums to one, i.e., I⊤U n = I⊤, for 

n = 1, …, N. Obviously, this is far from enough to guarantee uniqueness of NTD. Inspired by 

the recent success of identifiability-guaranteed NMF with a volume regularization [17, 21], 

we propose to seek for, among all admissible NTDs, the one that maximizes the volume of 

each Tucker factor, leading to the following identifiability criterion

maximize
G ∈ ℝK1 × ⋯ × KN

U n ∈ ℝIn × Kn
n = 1

N

∑
n = 1

N
log det U n ⊤ U n

subject to U n ≥ 0, 1⊤U n = 1⊤, n = 1, …, N,
X = G × U .

(4)

The determinant of the Gram matrix of a general rectangular matrix is called the volume of 

a matrix [22]; in this case this is the identification criterion q mentioned in Definition 1. One 

may notice that, as a new formulation for NTD, (4) does not even include a nonnegativity 

constrain on the core tensor G. As we will show soon, after removing the nonnegativity 

constraint, the matrix volume criterion is enough to guarantee identifiability, which makes 

the decomposition more general by allowing the core tensor to include negative values; if it 

turns out the core tensor is indeed element-wise nonnegative, identifiability guarantees that 

it would be exactly recovered (up to permutation and scaling along each mode) even without 

enforcing the nonnegativity constraint on the core tensor.

The condition that guarantees identifiability of NTD is the sufficiently scattered condition 

that first appeared in [16] and was further studied in [17, 21] and many others:

Assumption 1 (Sufficiently scattered). Let C denote the hyperbolic cone 

x ∈ ℝK ∣ K − 1 ∥ x ∥ ≤ 1⊤ x  and cone H  denote the conic hull of the rows of 

H : H⊤θ ∣ θ ≥ 0 . A nonnegative matrix H is sufficiently scattered if:

1. C ⊆ cone H ;

2. ∂C ∩ ∂cone H = α 1 − ek ∣ α ≥ 0, k = 1, …, K , where ∂ denotes the boundary of 

the set.

A geometric illustration of a matrix that satisfies the sufficiently scattered condition is 

shown in Figure 2b, where rows of the matrix are depicted as dots. As we can see, 

C is a subset of the nonnegative orthant ℝ+
K, but touches the boundary of ℝ+

K at lines 

α 1 − ek , k = 1, …, K. If a matrix H is sufficiently scattered, cone H  contains C as a subset 

and, as a second requirement, C touches the boundary of cone H  only at those points too.

One can also see from Figure 2a that the separability assumption, considered in [20] and 

in the context of NTD [13], is a very special case of sufficiently scattered. It requires that 
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all the coordinate vectors be included in rows of H♮, which makes cone H♮ = ℝ+
K, while 

the sufficiently scattered condition is allowed to grossly violate separability. In fact, it has 

been empirically observed that a nonnegative sparse matrix satisfies the sufficiently scattered 

condition with very high probability [18].

Our main result on the identifiability of NTD is presented as follows:

Theorem 1. Assume that X = G♮ × U♮ , where all the ground-truth nonnegative Tucker 

factors U♮
n  are sufficiently scattered (Assumption 1). Let G⋆, U⋆  be an optimal solution of 

(4), then there exist permutation matrices Π 1 , …, Π N  and diagonal matrices D 1 , …, D N

such that

U♮
n = U⋆

n D n Π n , n = 1, …, N, and G♮ = G⋆ × Π⊤D−1 .

In other words, NTD is identifiable (Definition 1) if all the Tucker factors are sufficiently 
scattered.

Due to space limitation, the proof is relegated to the journal version.

2.2. Algorithm

In practice, the data tensor most likely does not admit an exact NTD X = G × U . 

Therefore, when designing an algorithm for identifiability guaranteed NTD, one has to 

balance the identification criterion, the volumes of the Tucker factors in this case, and data 

fidelity. We propose to formulate the problem as

minimize
G ∈ ℝK1 × ⋯ × KN

U n ∈ ℝIn × Kn
n = 1

N

D X ∥ G × U − λ ∑
n = 1

N
log det U n ⊤ U n

subject to G ≥ 0, U n ≥ 0, 1⊤U n = 1⊤, n = 1, …, N,

(5)

where λ is the regularization parameter that controls the balance between data fidelity 

and the identification criterion, and D ⋅ ∥ ⋅  is the generalized Kullback-Leibler (GKL) 

divergence defined as

D X ∥ G × U =
i1, …, iN

X i1, …, iN log X i1, …, iN

G × ui1
1 , …, uiN

N −X i1, …, iN + G × ui1
1 , …, uiN

N .

Ignoring terms that do not depend on the variables, and using the fact that columns of U n

all sum to one, the GKL divergence is equivalent to (up to a constant difference)

∑ G − ∑ X*log G × U ,
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(6)

where we overload the notation ∑ to denote summation over all elements of the tensor, *
denote element-wise multiplication, and the log of a tensor is also taken element-wise.

Since Problem 5 is non-convex, we propose to approximately solve it using successive 

convex approximation (SCA) [23]. At iteration t when the updates are Gt and Ut , we define

Πt i1, …, iN, k1, …, kN = Gt k1, …, kN Ut
1 i1, k1 ⋯Ut

N iN, kN

∑k1, …, kN Gt k1, …, kN Ut
1 i1, k1 ⋯Ut

N iN, kN
.

Obviously ∑k1, …, kN Πt i1, …, iN, k1, …, kN = 1 and Πt i1, …, iN, k1, …, kN ≥ 0, which defines a 

probability mass function for each i1, …, iN . Using Jensen’s inequality, we have that

−X i1, …, iN log ∑
k1, …, kN

G k1, …, kN U 1 i1, k1 ⋯U N iN, kN ≤ − ∑
k1, …, kN

X i1, …, iN Πt

i1, …, iN, k1, …, kN × logG k1, …, kN + logU 1 i1, k1 + ⋯ + logU N iN, kN −logΠt i1, …, iN, k1, …, kN ,

which defines a convex and locally tight upperbound for the first term in the loss function of 

(5). Regarding the second term, we propose to simply take the linear approximation

log det U n ⊤U n ≈ log det Ut
n ⊤Ut

n + 2Tr Ut
n † U n − Ut

n ,

where 2 Ut
n † ⊤ is the gradient of logdet Ut

n ⊤Ut
n .

Now that we have derived a convex approximation to the objective of (5), which is separable 

down to each scalar variable, we can obtain the SCA updates without much difficulty. 

Due to space limitations, we skip some of the tedious steps and directly present the SCA 

algorithm as in (1). We would like to make two comments: 1) the operation performed in 

line 5 is mathematically represented as matrix multiplication of the n-mode matricization 

of X ×−n U⊤  and the transpose of that of G; if the data tensor is large and sparse, this 

operation can be done efficiently via the TTMcTC (stands for tensor times matrix chain 

times core) kernel without instantiating the large and dense intermediate tensors [19]; and 2) 

the scalar α in line 13 corresponds to the Lagrange multiplier of the constraint 1⊤u = 1; even 

though it is the solution of a nonlinear equation that cannot be solved analytically, it can be 

efficiently computed via bi-section.
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Regarding initialization, we propose to start by applying any algorithm for Tucker 

decomposition with orthonormal constraints, such as HOOI [5] or HOQRI [19], then apply 

the algorithm in [21] on each factor to obtain an initialization of U n ; the oblique rotations 

are then absorbed into the core tensor, followed by setting all negative values as zeros as 

initialization of G.

3. NUMERICAL VALIDATION

We conclude the paper by providing some numerical validation to the proposed theoretical 

analysis. We focus on 3-way tensors of dimension I1 = I2 = I3 = 100 and multilinear ranks 

K1 = K2 = K3 = 10. Since the focus of this paper is identifiability, we will synthetically 

generate the ground-truth Tucker factors U♮
1 , U♮

n , U♮
3  and the core tensor G♮, multiply them 

to get the data tensor X = G ×1 U♮
1 ×2 U♮

n ×3 U♮
3 , possibly contaminated with some noise. All 

the positive elements in the ground-truth factors are generated from independent exponential 

distributions. A portion of randomly selected elements in the ground-truth factors are set to 

zeros, since it has been observed that a sparse latent factor satisfies the sufficiently scattered 

condition with very high probability [18]. To resolve the scaling ambiguity, all columns of 

U♮
n  are rescaled to sum to one, leaving only permutation ambiguity to be resolved in the end.

In our first numerical experiment, we vary the level of sparsity of the latent factors and 

check how it affects identifiability. It has been shown in [16] that if a In × Kn matrix is 

sufficiently scattered, then each columns of it contains at least Kn − 1 zeros. This gives a 

rule-of-thumb of how sparse the latent factors should be in order to guarantee identifiability. 

Since we fix In = 100 and Kn = 10, we could expect the model to be identifiable when the 

density, meaning the percentage of elements being nonzero, is lower than 90%. We vary 

the latent density from 50% to 95%, and check the probability of exact recovery. In each 

case, we generate 100 random instances of the ground-truth factors and the core tensor, 

multiply them to get the data tensor, and apply the initialization strategy of Algorithm 1. 

After resolving the permutation matrix via the Hungarian algorithm, we declare success 

if the estimation errors of all of the latent factors are less than 10−5. As we can see, the 
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probability of success remains close to 1 even when the latent density is at the marginal 

90%, but quickly goes to zero once it becomes higher.

Finally, we demonstrate the convergence behavior of the proposed Algorithm 1. In this 

case the data tensor X is no longer noiseless. Since Algorithm 1 tries to solve Problem 

(5) with the generalized KL divergence, it makes sense to generate the elements of X
from independent Poisson distributions parameterized by the corresponding values in the 

Tucker product of the ground-truth factors. As we can see in Fig. 4, the algorithm does 

monotonically decrease the loss value. Due to the Poisson noise, the loss is not close to zero. 

However, as we will elaborate in the journal paper, the introduced volume-regularization still 

helps reduce the estimation errors of the latent factors.
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Fig. 1: 
Tucker decomposition of a 3-way tensor
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Fig. 2: 
A geometric illustration of the sufficiently scattered condition (middle), a special case 

that is separable (left), and a case that is not identifiable (right). The triangle denotes the 

nonnegative orthant, the circle denotes the hyperbolic cone C defined in Assumption 1, solid 

dots represent rows of H, and the shaded regions represent cone H .
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Fig. 3: 
Probability of exact recovery of the latent factors as we vary the density of the latent factors.
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Fig. 4: 
An instance of the convergence of Algorithm 1.
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Table 1:

List of notations

Symbol Definition

N number of modes

N-way data tensor of size I1 × I2 × … × IN

(i1, …, iN) (i1, …, iN)-th entry of 

X(n) mode-n matrix unfolding of 

I n dimension of the nth mode of 

K n multilinear rank of the nth mode

core tensor of the Tucker model ∈ ℝK1 × … × KN

U (n) mode-n factor of the Tucker model ∈ ℝIn × Kn

{U} set of all factors {U(1), …U(N)}

×n n-mode tensor-matrix product

×−n chain of mode products except the nth one
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