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Introduction
Arhinia, a congenital anomaly characterized by the total 
absence of the nose, is an exceedingly rare malformation 
with fewer than 100 cases reported to date [1]. This mal-
formation can manifest as an isolated condition or may 
be accompanied by ocular defects and hypogonadotropic 
hypogonadism, which together form a potentially life-
threatening triad known as Bosma arhinia microphthal-
mia syndrome (BAMS; MIM603457) [2]. BAMS is a rare 
genetic disorder, predominantly autosomal dominant. 
Arhinia is believed to arise from the failure of fusion 
between the maxillary and lateral nasal processes and the 
associated abnormal fusion of the cribriform plate during 
embryonic development [3]. Although the pathogenesis 
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Abstract
Background  Bosma arhinia microphthalmia syndrome (BAMS; MIM603457) is a rare genetic disorder, predominantly 
autosomal dominant. It is a multi-system developmental disorder characterized by severe hypoplasia of the nose 
and eyes, and reproductive system defects. BAMS is extremely rare in the world and no cases have been reported in 
Chinese population so far. Pathogenic variants in the SMCHD1 gene (MIM614982) cause BAMS, while the underlying 
molecular mechanisms requires further investigation.

Case presentation  In this study, a Chinese girl who has suffered from congenital absence of nose and 
microphthalmia was enrolled and subsequently submitted to a comprehensive clinical and genetic evaluation. 
Whole-exome sequencing (WES) was employed to identify the genetic entity of thisgirl. A heterozygous pathogenic 
variant, NM_015295, c.1025G > C; p. (Trp342Ser) of SMCHD1 was identified. By performing very detailed physical and 
genetic examinations, the patient was diagnosed as BAMS.

Conclusion  This report is the first description of a variant in SMCHD1 in a Chinese patient affected with BAMS.Our 
study not only furnished valuable genetic data for counseling of BAMS, but also confirmed the diagnosis of BAMS, 
which may help the management and prognosis for this patient.
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of this condition is presumed to be genetic, the etiology 
of this severe abnormality remains unknown.

Structural Maintenance of Chromosomes Flexible 
Hinge Domain Containing 1 (SMCHD1, MIM614982), 
located in chromosome 18p11.32, encodes a 2005 
amino acid protein. SMCHD1 is an atypical member of 
the SMC protein family, containing a C-terminal SMC 
hinge domain and an N-terminal ATPase domain [4–6]. 
SMCHD1 was previously shown to act as an epigenetic 
regulator of autosomal and X-linked genes that plays crit-
ical roles during development [7, 8]. In situ hybridization 
data has indicated regional expression of Smchd1 in the 
nasal cavity in E14.5 mice, and transcriptional profiling 
of mouse postnatal olfactory epithelium has revealed that 
Smchd1 is specifically expressed in immature olfactory 
sensory neurons [9, 10].

SMCHD1 function is highly relevant to human dis-
ease, including BAMS and facioscapulohumeral mus-
cular dystrophy type 2 (FSHD2; MIM158901) [11]. 
Through a combination of whole-exome, whole-genome 
and targeted sequencing in an international cohort of 
40 arhinia patients, Shaw et al. discovered a high preva-
lence (84%) of missense variants in the gene SMCHD1 [1, 
10]. Notably, truncation variants of SMCHD1 have been 
found to be common in FSHD2, a rare, oligogenic form 

of muscular dystrophy [1, 12]. Nevertheless, little is cur-
rently known about the genes responsible for causing 
BAMS or the molecular mechanisms by which SMCHD1 
achieves its various functions.

Here, we reported the first case with BAMS in Chinese 
population. WES and Sanger sequencing were applied to 
identify the pathogenic genes of this girl.

Case presentation
Clinical manifestations
The patient, a 9-year-old girl, was born with congeni-
tal arhinia and raised at Guangzhou City Social Welfare 
Institute. Her physical and intellectual development was 
similar to that of normal peers but was too young to be 
sure of hypogonadotropic hypogonadism (Table 1). How-
ever, the combination of congenital nasal deformities 
and microphthalmia in this patient suggested a diagno-
sis of BAMS (Fig.  1A). Moreover, by performing a very 
detailed physical examination, it was determined that her 
visual refraction muscle strength and tone were all func-
tioning normally. Unfortunately, we could not exclude a 
later onset of a muscle phenotype as first signs of FSHD 
are usually only visible at the end of the second decade 
of life. However, an MRI examination was not conducted 
due to the patient’s preferences. Considering that the 

Table 1  Phenotypic Features of the patient with BAMS
Gen-
der

Age Consanguinity Nose Eyes Reproductive system Growth Psychomotor development

Fe-
male

9 Y Unknown Complete arhinia Microphthalmia; Normal eyesight Normal Normal Normal

Fig. 1  The clinical and sequencing data of this patient. (A) Clinical features of this patient, including complete absence of nose and microphthalmia. 
Consent was obtained to publish patient images. (B) Sanger DNA sequencing chromatogram detected a heterozygous missense variant (NM_015295, 
c.1025G > C; p.Trp342Ser) of SMCHD1 gene in the patient
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patient had no signs of muscular dystrophy, the diagno-
sis of FSHD2 was ruled out for now. Based on these find-
ings, it was concluded that the patient was suffering from 
BAMS.

Genetic analysis
Genomic DNA was extracted from the patient by 
QIAamp DNA Blood Mini Kit (250) (Qiagen, Valencia, 
CA, U.S.A). However, parental DNA of the patient were 
not available due to the unknown parentage. The WES 
analysis was mainly conducted in the Novogene Bioinfor-
matics Institute (Beijing, China). All variants were format-
ted under HGVS nomenclature [13]. After data filtration 
(supplementary material), a pathogenic heterozygous 
variant of SMCHD1, NC_000018.10:g.2694678G > C, 
NM_015295.3:c.1025G > C, NP_056110.2:p.(Trp342Ser), 
was identified. Sanger sequencing was further performed 
to validate this variant (Fig. 1B). This variant results in a 
change in the amino acid sequence of the ATPase active 
structural domain of the SMCHD1 protein, which may 
lead to altered ATPase activity and hence affect the char-
acteristics of the resulting protein. It was predicted to 
be “disease causing” by MutationTaster, SIFT and Poly-
Phen2, and also was not found in the 1,000 Genome 
Browser, The ExAC Browser, the Exome Variant Server 
and GnomAD. According to ACMG standards and 
guidelines [14], this variant was categorized as patho-
genic (PM1, PM2, PS3, PP3, PP5) (Table 2). Although this 
variant was reported in a previous research, the patho-
genic analysis was absent [10]. We further performed 
bioinformatics analysis of the variant. Alignment of 
SMCHD1 amino acid sequences was highly conserved 
across species (Fig.  2B). Also, ConSurfServer software 
predicted that the affected amino acid was slightly con-
served (Fig. 2C). Furthermore, there reveals a difference 
between the normal and mutant protein models con-
structed with SWISS-MODEL software, which affect 
highly conserved residues and hence affect the SMCHD1 
protein features (Fig.  2D). Considering the clinical phe-
notypes and genetic results, the patient was diagnosed as 
BAMS.

Discussion
In this study, we reported a Chinese girl who has suf-
fered from congenital arhinia and microphthalmia. The 
patient was adopted by Guangzhou City Social Welfare 
Institute so that the genomic information of her parents 

is unknown. WES was conducted to identify the caus-
ative genes of this patient. A pathigenic heterozygous 
missense variant of SMCHD1, NM_015295: c.1025G > C: 
p. (Trp342Ser) was identified in the patient. Sanger 
sequencing subsequently confirmed this variant. Thus, 
the patient was further diagnosed as BAMS. Our study 
further confirms that variants of SMCHD1 are associated 
with BAMS.

Consistent with prior researches, the p.(Trp342Ser) 
variant identified in this study is located in the ATPase 
activity domain of SMCHD1 protein. As shown in the 
Fig. 2A, variations in the affected residue of the SMCHD1 
protein may lead to different alterations and subsequently 
impact its function. Although the underlying pathogen-
esis necessitates further investigation, a detailed func-
tional analysis such as testing of the methylation level 
of the D4Z4 repeat as done for other BAMS-associated 
mutations, of the SMCHD1 protein with this heterozy-
gous missense variant is recommended. Such an analy-
sis may provide additional insights into the pathogenic 
mechanism of BAMS.

There is a lack of clarity on the cause of the differ-
ent clinical outcomes of pathogenic SMCHD1 variants. 
Although previous studies have highlighted the involve-
ment of these pathogenic SMCHD1 variants in FSHD2, 
recent reports have also implicated them in the patho-
genesis of BAMS [1, 10]. To the best of our knowledge, 
no individual afflicted with BAMS has yet to exhibit 
clinical characteristics reminiscent of FSHD2. It has 
been reported that missense variants in SMCHD1 were 
considerably prevalent in BAMS cases, while loss of 
function variants have been more frequently associ-
ated with the manifestation of FSHD2. As reported in 
published literature, all BAMS-related variants were 
missense alleles, localized to exons 3–13 of SMCHD1, 
which encodes the ATPase domain of SMCHD1 [1, 10, 
15]. And yet in FSHD2, missense, nonsense, and deletion 
variants spanned the entire SMCHD1 coding region [1, 
11, 16]. Therefore, despite the overwhelming evidence 
that BAMS is caused by gain-of-function variants in 
SMCHD1, the loss-of-function versus gain-of-function 
dichotomy between FSHD2 and BAMS appears to be 
one-sided. It is more likely that both BAMS and FSHD2 
are triggered by complex oligogenic or multifactorial 
mechanisms that only partially intersect at the level of 
SMCHD1 [16, 17]. This highlights the need to probe the 
molecular mechanisms underlying how variations within 

Table 2  The SMCHD1 variant identified by WES for the affected individual
Gene CHR RefSeq ID AA 

Alteration
Genotype Function Database MutationTaster CADD ACMG

SMCHD1 18p11.32 NM_015295 c.1025G > C; 
p.Trp342Ser

Het Missense Unknown 
variant

Disease causing 6.708873,
32

PM1 + PM2 + PS3 + PP3 + PP5 
(Pathogenic)

CHR Chromosome, AA Amino Acids, Het Heterozygous, PVS Pathogenicity very strong, PM Pathogenicity moderate. The database included 1000G, ExAC and Exome 
Variant Server
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the same gene can give rise to distinct phenotypic mani-
festations. Furthermore, A previous study has proposed 
that the localisation of missense variants within the 
ATPase structural domain of SMCHD1 may account for 
the disparate phenotypic outcomes observed in BAMS 
and FSHD2 cases [18]. However, to fully decipher the 
impact of SMCHD1 variants on its function, further 
studies incorporating structural and biochemical charac-
terizations are warranted.

BAMS is a clinically heterogeneous disease, with a phe-
notypic spectrum spanning from the absence of cranio-
facial features to nasal hypoplasia and complete arhinia, 
rendering clinical diagnosis a challenging task. The find-
ings in Xenopus model indicated that variants implicated 
in BAMS are associated with a reduced eye diameter, 
and in severe cases, anophthalmia may ensue [10, 15]. 
By identifying the relevant cell type (cranial placode) and 
mechanism of cell death (DUX4), Kaoru et al. proposed 

Fig. 2  The bioinformatics analysis of this variant. (A) The positions of this missense variant in SMCHD1 identified in the patient. Domains in SMCHD1 are 
indicated with different colored squares. (B) Alignment of multiple SMCHD1 protein sequences across species. Letters in red show the W342 site is evolu-
tionarily conserved. (C) The conservation analysis of the W342 site amino acids was predicted by ConSurf Server software. (D) Structure prediction of wild 
type and mutant SMCHD1 protein. The wild type SMCHD1 (SMCHD1-WT) protein structure and the p.Trp342Ser mutant SMCHD1 (SMCHD1-p.Trp342Ser) 
protein structure were predicted by SWISS-MODEL online software
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that in patients with arhinia and related nasal phenotypes 
(e.g., anosmia and nasal hypoplasia), nasal morphogen-
esis is completely or partially arrested when SMCHD1 
missense mutations unleash DUX4 toxicity in cranial 
placode cells, leading to cell death [19]. Those findings 
suggested that SMCHD1 plays an important role in the 
development of craniofacial organs.

In conclusion, we used WES to explore the genetic 
entity in a Chinese girl who has suffered from congeni-
tal absence of nose and microphthalmia. A heterozy-
gous missense variant, NM_015295:c.1025G > C:p.
(Trp342Ser), of SMCHD1 was identified in the patient 
with BAMS. Here we reported the first case with BAMS 
in Chinese population. Our investigation not only offers 
crucial genetic counseling data to the affected individual, 
but also furnishes characteristic clinical images of BAMS, 
which can aid in the accurate diagnosis of the disease in 
conjunction with genetic analyses.
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