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ABSTRACT
2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding 
RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protec
tion of mRNA against degradation by the decapping and exoribonuclease (DXO) protein, and the 
biogenesis and specificity of rRNA. Recent advancements in single-molecule sequencing techniques 
for long read RNA sequencing data offered by Oxford Nanopore technologies have enabled the direct 
detection of RNA modifications from sequencing data. In this study, we propose a bio-computational 
framework, Nm-Nano, for predicting the presence of Nm sites in direct RNA sequencing data generated 
from two human cell lines. The Nm-Nano framework integrates two supervised machine learning (ML) 
models for predicting Nm sites: Extreme Gradient Boosting (XGBoost) and Random Forest (RF) with K- 
mer embedding. Evaluation on benchmark datasets from direct RNA sequecing of HeLa and HEK293 cell 
lines, demonstrates high accuracy (99% with XGBoost and 92% with RF) in identifying Nm sites. 
Deploying Nm-Nano on HeLa and HEK293 cell lines reveals genes that are frequently modified with 
Nm. In HeLa cell lines, 125 genes are identified as frequently Nm-modified, showing enrichment in 30 
ontologies related to immune response and cellular processes. In HEK293 cell lines, 61 genes are 
identified as frequently Nm-modified, with enrichment in processes like glycolysis and protein localiza
tion. These findings underscore the diverse regulatory roles of Nm modifications in metabolic pathways, 
protein degradation, and cellular processes. The source code of Nm-Nano can be freely accessed at 
https://github.com/Janga-Lab/Nm-Nano.
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1. Introduction

2´-O-methylation (or Nm, where N denotes any nucleotide) is 
a or post-transcriptional modification of RNA, occurring 
when a methyl group (–CH3) is added to the 2´ hydroxyl (– 
OH) of the ribose moiety. This modification can occur on any 
nucleotide, regardless of the type of nitrogenous base. Nm is 
an abundant modification found frequently in mRNAs and at 
multiple locations in non-coding RNAs, such as transfer RNA 
(tRNA), ribosomal RNA (rRNA), small nuclear RNA 
(snRNA) and piwi-interacting RNA (piRNA) [1–4]. This 
abundance is due to the role that internal Nm modification 
of mRNA plays as a new mechanism of genetic regulatory 
control, with the ability to influence mRNA abundance and 
protein levels both in vitro and in vivo [5].

The Nm modification has a great contribution in many 
biological processes, such as the normal functioning of tRNA 
[6], protecting mRNA from degradation by the decapping and 
exoribonuclease (DXO) protein [7], and the biogenesis and 
specificity of rRNA [8,9]. Additionally, it has been found that 

Nm modification has been associated with many human diseases 
(e.g. cancer and autoimmune diseases) and has potential indirect 
links to some other biological defects [10].

Detecting Nm modifications in RNAs has been a great chal
lenge for many years, with various experimental methods pre
sented in the literature [10]. However, each of these methods has 
exhibited significant limitations. For example, RiboMethseq 
[11,12] was introduced as a sequencing-based method for map
ping and quantifying Nm modifications based on a simple chemi
cal principle – the considerable difference in nucleophilicity 
between a 2′-OH and a 2′-O-Me. This method uses a proprietary 
ligation protocol for direct ligation to 5′-OH and 3′-P ends, fol
lowed by alkaline fragmentation to prepare RNA for sequencing. 
The read-ends of library fragments are used for mapping with 
nucleotide resolution and calculation of the fraction of molecules 
methylated at the Nm sites. However, the relative inefficiency of 
the ligation protocol imposes substantial amounts of input RNA 
(>1 µg), which requires increasing the sequencing depth. Thus, to 
address this limitation, another chemical method called RibOxi- 
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seq was presented for detecting Nm modifications in RNAs [13]. 
Using this method, Nm sites can be mapped after the ligation of 
linkers to the Nm-modified nucleotide at the 3′-end. However, this 
method identified significantly fewer Nm modification sites com
pared to those reported by LC-MS/MS , a method to detect and 
quantify the relative abundance of RNA modifications [14,15]. 
Despite LC-MS/MS providing industry standard results, it is time- 
consuming and labour-intensive, requireing large amount of input 
RNA, although can detect low-abundant nucleotides [16]. 
Recently, Dai et al. introduced a sensitive high-throughput experi
mental method called Nm-seq, which can detect Nm sites at low 
stoichiometry, especially in mRNAs with single-base resolution, 
achieving outstanding detection of Nm modifications [17].

However, in general, the experimental methods are naturally 
costly due to the high labour effort involved. Therefore, there 
have been relatively few computational biology methods pro
posed in the literature to overcome the limitations of experi
mental methods for detecting RNA Nm modifications [18,19]. 
These computational methods mainly rely on developing 
machine/deep learning classification algorithms to identify 
Nm sites in RNA sequences based only on short read data 
and have not yet been applied to long reads. Long reads, 
which can sequence over 10 kb on average in a single read, 
offer an advantage by requiring fewer reads to cover the same 
gene. For instance, a support vector machine (SVM)-based 
method was presented in [18] to identify Nm sites in RNA 
short read sequences of the human genome by encoding RNA 
sequences using nucleotide chemical properties and nucleotide 
compositions. This model was validated by identifying Nm 
sites in Mus musculus and Saccharomyces cerevisiae genomes. 
Another research work presented in [19] proposed a deep 
learning-based method for identifying Nm sites in RNA short 
read sequences. In this approach, dna2vec – a biological 
sequence embedding method originally inspired by the word2
vec model of text analysis – was adopted to yield embedded 
representations of RNA sequences that may or may not contain 
Nm sites. These embedded representations were fed as features 
for a Convolutional Neural Network (CNN) to classify RNA 
sequences into those modified with Nm sites or those not 
modified. The method was trained using the data collected 
from Nm-seq experimental method. Another prediction 
model using RF to identify Nm sites in short read RNA 
sequences was presented in [20]. This model was trained with 
features extracted by multi-encoding scheme combination that 
combines the one-hot encoding with position-specific dinu
cleotide sequence profile and K-nucleotide frequency encoding.

Recently, third-generation sequencing technologies, such as 
the platforms provided by Oxford Nanopore Technologies 
(ONT), have been proposed as a new means to detect RNA 
modifications on long RNA sequence data [21]. However, to 
our knowledge, this technology has only been applied in two 
studies [22,23] for detecting Nm modifications. In [22], the 
main goal was to predict the stoichiometry of Nm-modified 
sites in yeast mitochondrial rRNA using 2-class (Nm-modified 
or unmodified) classification algorithms deployed in a tool 
called nanoRMS [22]. This tool used the characteristic base- 
calling ‘error’ signatures in the Nanopore data as features for 
training supervised or unsupervised learning models to identify 
the stoichiometry of Nm sites, using a threshold for base 

mismatch frequency in different types of RNAs in yeast. 
However, nanoRMS was not applied to predict Nm sites in 
the RNA sequences of human cell lines, which are larger and 
more complex than yeast. Additionally, the single read features 
used to train the predictors of nanoRMS were averaged before 
Nm prediction, making it infeasible to obtain the contribution 
of each feature in predicting Nm sites. Moreover, relying on 
base-calling errors for detecting RNA modifications, as in the 
nanoRMS implementation, might decrease with the advances 
of developing high-accuracy Nanopore base-calling algorithms. 
In [23], a dual-path framework called HybridNm was proposed 
to predict Nm subtypes in one human cell line (HEK293) based 
on features extracted from RNA short reads sequenced with 
Illumina and RNA long reads sequenced with ONT to improve 
the prediction of Nm sites. Therefore, this framework did not 
purely rely on ONT technology for predicting Nm sites in RNA 
sequences. Moreover, the base-calling errors were used as fea
tures to distinguish Nm from unmodified sites, which again 
might decrease the performance of accurately predicting Nm 
sites with the advances of developing high-accuracy Nanopore 
base-calling algorithms. To this end, our work aims to extend 
this research direction and address nanoRMS and HybridNm 
limitations by combining ML and ONT to identify Nm sites in 
long RNA sequence reads of human cell lines based on features 
extracted from raw Nanopore signals. We have developed 
a framework called Nm-Nano that integrates two different 
supervised ML models (predictors) to identify Nm sites in 
Nanopore direct RNA sequencing reads from HeLa and 
HEK293 cell lines, namely the XGBoost and RF with K-mer 
embedding models (Figure 1a,b). The developed predictors 
integrated in the Nm-Nano framework for identifying Nm 
sites have been trained and tested using a dataset of both Nm- 
modified and unmodified Nanopore signals. These signals were 
generated by passing both ‘modified’ RNA sequences contain
ing Nm sites at known positions (identified using the standard 
Nm-seq experimental method [17]) and ‘unmodified’ 
sequences through the ONT MinION device.

By deploying Nm-Nano to predict Nm sites in Nanopore 
direct RNA sequencing reads from HeLa and HEK293 cell 
lines, we performed various types of biological analysis 
(Figure 1c), such as identifying unique Nm genomic locations/ 
genes, identifying the most frequently modified RNA bases with 
Nm sites, and performing functional, and gene set enrichment 
analysis of identified Nm-genes in both cell lines.

2. Results

When evaluating the performance of Nm-Nano predictors, 
we used two validation methods: random-test splitting and 
integrated validation testing. In the former, the benchmark 
dataset of the HeLa cell line (see Subsection 4.2 in Methods 
section) is randomly divided into two folds: one for train
ing and another for testing. The test size parameter for this 
method was set to 0.2, which means 80% of the benchmark 
dataset is used for training the Nm-Nano ML model while 
20% of the dataset is reserved for testing. In the latter, 
a combination of two benchmark datasets for two different 
cell lines, HeLa and HEK293, was used, where 50% of this 
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combined dataset is used for training the Nm-Nano ML 
model and the remaining 50% is reserved for testing.

2.1. Performance evaluation with random-test splitting

Table 1 shows the performance of XGBoost and RF with 
K-mer embedding ML models implemented in the Nm- 
Nano framework, when applied to the HeLa benchmark 

dataset. As the table shows, both models perform very well 
in detecting Nm sites. However, the XGBoost model outper
forms the RF with K-mer embedding model in terms of 
accuracy, precision, recall and Area Under the Curve (AUC).

The learning (Figure 2a,d) and loss (Figure 2b,e) curves of 
XGBoost and RF with K-mer embedding, respectively, show 
that the performance of XGBoost, in terms of accuracy score 
and misclassification error, outperforms that of RF with 

Figure 1. The Nm-Nano framework for predicting Nm sites on (a) HeLa cell line using random 80/20 train/test split (b) 50% of the combination of HeLa and HEK293 
benchmark dataset using integrated validation testing with random 50/50 train/test split on this combination (c) analysis performed based on Nm-Nano predictions.

Table 1. The performance of Nm-Nano predictors on HeLa benchmark dataset with 
random-test splitting.

Classifier Accuracy% Precision Recall AUC

XGBoost 99 0.99 0.99 0.99
RF 92.39 0.9 0.96 0.92
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K-mer embedding. Additionally, the receiver operating char
acteristic (ROC) curves of XGBoost and RF with K-mer 
embedding (Figure 2c,f, respectively) show that the percen
tage of true positive rate to false-positive rate in the case of 
XGBoost model exceeds that of the RF with K-mer embed
ding model. Supplementary file 1_test_split_HEK293_results. 
docx and Figure 1_test_split_hek show the performance of 
XGBoost and RF with K-mer embedding ML models with 
random test split on HEK293 benchmark dataset.

Table 2 shows the performance of Nm-Nano ML models 
with random test-splitting on HeLa benchmark dataset in 
terms of accuracy with each of the extracted features (intro
duced later in Subsection 4.3) as well as the embedding 
features generated using word2vec embedding technique 
(introduced later in Subsection 4.4). Clearly, the position 
feature contributes more to the classifiers’ accuracy than the 
other extracted features used for training either the XGBoost 
or RF with embedding ML models. It is followed by the model 
mean, then K-mer match features in the case of XGboost and 
K-mer match then model mean features in case of RF with 
K-mer embedding. It was also observed that the event/signal 
standard deviation (Event_stdv) feature achieves the lowest 
contribution to the performances of XGBoost and RF with 
embedding models. Furthermore, Table 2 shows that the 

embedding features generated by the word2vec technique 
strongly contribute to the performance of RF, as these features 
follow the most contributing feature (i.e. position). Despite 
the success of these features in improving the performance of 
RF, they were not used to train the XGBoost model. This is 
because this model achieved high detection accuracy of Nm 
sites of 99% by tuning its parameters with grid search algo
rithm [24], which takes considerable time to obtain the best 
values for the parameters. Therefore, generating more features 
with word2vec embedding techniques and combining them 
with the other features used for training the grid-search 
XGBoost model will introduce additional processing over
head. This is due to the time required for the word2vec 
technique to generate embedding features, in addition to the 
time consumed by the grid search algorithm for hyperpara
meter tuning of XGBoost model. This would significantly 
slow down the performance of XGBoost when applied to the 
benchmark dataset of a given cell line. In other words, the 
slight improvement in XGBoost’s performance would not be 
proportional to the substantial increase in the processing time. 
Table 3 shows the performance of XGBoost (when the model 
is trained solely with the extracted features) compared to the 
performance of XGBoost with K-mer embedding (when the 

Figure 2. The learning, loss and ROC curves of Nm-nano predictors validated on HeLa benchmark dataset with random split testing, where 80% of data is used for 
training and the remaining 20% is kept for testing. (a, b, and c) XGBoost model and (d, e, and f) RF with K-mer embedding model.

Table 2. The performance of Nm-Nano predictors on HeLa benchmark dataset in terms of accuracy (%) with random test-splitting using single type of feature.

Classifier Posi-tion Event_mean Event_stdv Model_mean Model_stdv
K-mer_ 
match Mean_diff K-mer embed-ding

XGBoost 93.88 54.26 50.65 83.36 64.14 75.27 51.58 -
RF 89.83 54.7 51.44 72.65 64.14 75.27 51.58 84.87
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model is trained using a combination of the extracted features 
and the embedding reference K-mers features), along with 
corresponding execution time in seconds for each case.

2.2. Performance evaluation with integrated validation 
testing

Table 4 shows the performance of ML models with inte
grated validation testing, wherein Nm-Nano’s predictors are 
applied to 50% of the combined HeLa and HEK293 bench
mark datasets during the training phase and tested on the 
remaining 50% of this combination in the testing phase. As 
the results indicate, both models perform very well in pre
dicting Nm sites, although the XGBoost model outperforms 
the RF with K-mer embedding model. The learning 
(Figure 3A,D) and loss (Figure 3B,E) curves of XGBoost 
and RF with K-mer embedding, respectively, show that the 
performance of XGBoost, in terms of accuracy score and 
misclassification error, outperforms the performance of RF 
with K-mer embedding. Additionally, the receiver operating 

characteristic (ROC) curves of XGBoost and RF with 
embedding (Figure 3C,E, respectively) show that the per
centage of true positive rate to false-positive rate in the case 
of XGBoost model exceeds that of the RF with embedding 
model.

Table 5 shows the performance of ML models with inte
grated validation testing in terms of accuracy with a single 
type of feature. This was achieved by testing the performance 
of Nm-Nano predictors with each of the extracted features, as 
well as the embedded features generated using word2vec 
embedding technique. Clearly, the features generated using 
the word2vec embedding technique strongly contribute to the 
RF classifier accuracy, as these features follow the most con
tributing feature (i.e. position). However, they were not con
sidered for training the grid search XGBoost model. Again, 
this is due to the extra processing overhead resulting from 
combining the time taken for generating embedded features 
by word2vec technique and the time taken by grid search 
algorithm to obtain the best parameter values of XGBoost, 
as mentioned in subsection 2.1. Regarding the contribution of 
each of the seven extracted features, it was observed that the 
position feature achieved the best contribution to the perfor
mance of XGBoost or RF among all extracted features, fol
lowed by model mean feature, then the K-mer match feature 
in the case of XGBoost, and K-mer match feature, then model 
mean feature in the case of RF with K-mer embedding. Also, 
it was observed that the event/signal standard deviation (event 

Table 3. The performance of XGBoost versus the performance of the XGBoost with K-mer embedding model applied to HeLa benchmark dataset with 
random test-splitting.

Classifier Accuracy Precision Recall AUC Execution time (Secs)

XGBoost 99 0.99 0.99 0.99 43.81
XGBoost with K-mer embedding 99 0.99 1 0.994 608.2

Table 4. The performance of Nm-Nano predictors on a combination of HeLa & 
HEK293 benchmark datasets with 0.5 random-test splitting.

Classifier Accuracy% Precision Recall AUC

XGBoost 98.58 0.99 0.99 0.99
RF 91.63 0.89 0.96 0.92

Figure 3. The learning, loss and ROC curves of Nm-Nano predictors in integrated validation testing, where 50% of the combination of HeLa and HEK293 benchmark 
datasets was used for training and the remaining 50% was used for testing. (a,b, and c) XGBoost model and (d, e, and f) RF with K-mer embedding model.
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_stdv) and Mean_diff features have the lowest contribution to 
the performance of either XGBoost or RF with K-mer embed
ding models.

2.3. Abundance of Nm sites

To determine the abundance of Nm sites in the RNA 
sequences of either HeLa or HEK293 cell lines, we first run 
the XGBoost model (since it outperforms the RF with K-mer 
embedding model) on the complete RNA sequence reads of 
both cell lines. Next, we identify all samples with predicted 
Nm sites in those reads, followed by identifying the number of 
unique genomic locations of Nm corresponding to those Nm 
predictions, as well as their frequencies in both cell lines. We 
found that there are 11,651,518 Nanopore signal samples 
predicted as samples with Nm sites from a total of 
920,643,073 Nanopore signal samples that represent the com
plete HeLa cell line with 1,674,369 unique genomic locations 
of Nm (Supplementary 
Table 1_Nm_unique_genomic_locations _HeLa). Similarly, 
we found that there are 1,712,344 Nanopore signal samples 
predicted as samples with Nm sites from a total of 
275,056,668 samples that present the complete RNA sequence 
of HEK293 cell line with 291,382 unique genomic locations of 
Nm modification (Supplementary 
Table 2_Nm_unique_genomic_locations _hek). The reference 
K-mers corresponding to modified Nanopore signals with 
Nm predictions in HeLa and HEK293 cell lines can be identi
fied as strong K-mers compared to the reference K-mers 
corresponding to the unmodified/control Nanopore signals, 
which can be considered as weak contributors to the Nm 
prediction. The frequency of these strong reference K-mers 
provides an overview of their abundance and shows their 
contribution to Nm predictions in HeLa and HEK293 cell 
lines, available in Supplementary 
Tables 3_Nm_unique_reference_kmer_freq_HeLa and 
4_Nm_unique_reference_kmer_freq_hek, respectively. Also, 
SFigures 2_top_10-modified_bases_HeLa and 3_top_10- 
modified_bases_hek provide the sequence logo for the top 
ten modified bases corresponding to Nm prediction in HeLa 
and HEK293 cell lines, respectively.

We found that there are 105,678 modified genomic loca
tions shared between HeLa and HEK293 cell lines 
(Figure 4A). Additionally, we observed that there were 10 
genes shared across the top 1% of Nm-modified(Figure 4B). 
Clearly, we notice that the extent of Nm modifications (the 
number of Nanopore signal samples predicted as containing 
Nm sites over the total number of Nanopore signal samples) 
in RNA sequences from the HeLa cell line is higher than its 
counterpart in the HEK293 cell line (1.27% for HeLa versus 
0.62% for HEK293). Therefore, the distribution of Nm across 
normalized gene length for HeLa cell line is higher than its 

equivalent in HEK293 cell line (Figure 4C). Additionally, and 
as a primary observation of Figure 4C, we found that Nm 
modifications are likely to be more prevalent in the 3’ region 
compared to the 5’ region when observed at a transcriptomic 
level. This distribution reinforces our previous observation 
that RNA modifications, such as pseudouridine, tend to 
favour the 3’ region over the 5’ region [25].

Since Nm modifications can occur at any RNA base, we 
have also reported the percentage of unique Nm locations 
occurring for each of the four RNA bases in the two complete 
cell lines of HeLa and HEK293 (Table 6).

2.4. Functional enrichment analysis

A total of 61 genes from the HEK293 cell line and 125 genes 
from the HeLa cell line were identified as the top 1% of 
frequently modified Nm genes with the highest abundance 
of Nm modification. These short-listed genes from both cell 
lines were then plugged into the Cytoscape ClueGo [26] 
application to obtain enriched ontologies and pathways with 
high confidence (p < 0.05). Enrichment observations from this 
analysis are visualized in Figure 5A,B for HEK293 and HeLa 
cell lines, respectively.

From the functional enrichment analysis of the top 1% 
gene set from the HEK293 cell line (Figure 5A, and 
SFigure 4), we observed a wide range of functional processes, 
such as ‘glycolysis/gluconeogenesis’, ‘regulation of protein 
localization to cell surface’, and ‘aggrephagy’ being signifi
cantly enriched. This highlights the diverse regulatory role 
of Nm modifications, from their involvement in metabolic 
pathways to protein degradation and localization.

In the HeLa cell line, we observed several enriched ontol
ogies with high confidence (adjusted p-val <0.05) that were 
more representative of the Nm modification’s role in immune 
response and cellular processes (Figure 5B and SFigure 5), 
such as ‘C3HC4-type RING finger domain binding’, ‘antigen 
processing and presentation (class I MHC)’, and ‘cytoplasmic 
translational initiation’.

To investigate which cellular pathways were associated 
with Nm modifications, we ranked the complete human 
gene lists from both the HeLa and HEK293 cell lines based 
on the occurrence of Nm modification locations and per
formed gene set enrichment analysis (GSEA) [27] using 
WebGestalt [28]. Across both cell lines, we observed that 
genes associated with metabolic processes, protein binding, 
and biological regulation were enriched in these ranked lists, 
reinforcing the association between Nm modification and 
RNA–protein interaction, as previously observed in literature 
[29,30]. The Nm-modified gene sets from both cell lines 
exhibited enrichment (NES > 1.2) for pathways associated 
with autoimmune, signalling, and diabetes as highlighted in 
SFigure 6. Additionally, we observed enrichment of tissue- 

Table 5. The performance of nm-nano predictors with integrated validation testing in terms of accuracy (%) using a single type of feature.

Classifier Position Event_mean Event_stdv Model_mean Model_stdv
K-mer_ 
match Mean_diff K-mer embedding

XGBoost 94.62 53.41 51.31 81.22 62.24 75.14 51.69 -
RF 85.45 54.19 51.71 72.54 62.24 75.14 51.7 82.92

6 D. HASSAN ET AL.



specific/disease pathways, such as prion disease in HeLa cells 
and inflammatory bowel disease in HEK293 cells. These path
ways were enriched with high normalized enrichment scores 
(NES >1.2).

3. Discussion

We observed that Nm-Nano, compared to existing non- 
Nanopore tools for Nm site prediction in the literature 
[18,19], achieves higher accuracy. Specifically, the accuracies 
were 50.1% for [17], 81.91% for [18], 84.8% for [19], and 99% 
for XGBoost, the best Nm-nano ML model, using a 1:1 ratio 
of positive and negative test samples. However, we found that 
comparing Nm-Nano with these tools may not be meaningful 
in terms of implementation but is significant in terms of 
accuracy. This is because these tools were only applied to 

predict Nm sites in short reads of RNA sequences, whereas 
Nm-Nano can predict Nm sites in long reads of RNA 
sequences. Moreover, these tools were trained and tested on 
the same dataset, and they were not tested for predicting Nm 
sites in a combination of two benchmark datasets of RNA 
sequence data from two different cell lines.

When comparing the performance of Nm-Nano with 
nanoRMS [22], an existing Nanopore-based tool for predict
ing Nm modifications in direct RNA sequencing data, we 
found that nanoRMS was only tested on predicting Nm in 
direct RNA sequences of yeast; it was not tested for predicting 
the Nm sites in direct RNA sequencing data of human cell 
lines, which are more complex than lower eukaryotes like 
yeast. Hence, directly comparing the accuracy of nanoRMS 
on human cell-line data is not feasible. In addition, nanoRMS 
predicts Nm sites on individual single reads of direct RNA 
sequence data, where the single read features are used to train 
the predictors of nanoRMS. These features are averaged 
before Nm prediction, making it impossible to assess the 
contribution of each feature in predicting Nm sites. 
Moreover, nanoRMS only reports accuracy values for 

Figure 4. (a) The overlap between unique Nm locations in the complete dataset of HEK293 and HeLa cell lines (b) The overlap between most frequent (top 1%) 
modified Nm genes in HEK293 and HeLa cell lines (c) A density plot illustrating Nm modifications’ distribution across normalized gene length for HEK293 and HeLa 

cell lines.

Table 6. The percentage of unique nm locations occurring for each of the four 
RNA bases in the HeLa and HEK293 cell lines.

Cell line A base C base G base U base

HeLa 29.75% 21.54% 22.91% 25.81%
HEK293 26.18% 25.14% 26.12% 22.56%
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predicting the stoichiometry of Nm for each read, lacking 
other performance metrics like precision and recall. 
Therefore, we can only compare the average accuracy values 
of the k-nearest neighbour (KNN) predictor, the best super
vised classifier employed in nanoRMS, to the accuracy of the 
predictors integrated in Nm-Nano. Based on this comparison, 
each of the two ML models employed in Nm-Nano signifi
cantly outperforms the average accuracy of KNN predictor 
(66.17%). Regarding the implementation comparison between 
Nm-Nano and nano-RMS, we found that nano-RMS relies on 
base-calling ‘error’ signatures in the Nanopore data as features 
for detecting the Nm-modification. However, those base- 
calling errors might not be the same for each type of modified 
K-mer context resulting from base-calling as not all modified 

bases can be detected as base-calling errors. So, the generated 
benchmark dataset used in nanoRMS might be biased. 
Moreover, as Nanopore technology advances, base-callers 
are expected to become more accurate, potentially resulting 
in lower base-calling errors and smaller training datasets for 
tools like nanoRMS. This could lead to decreased perfor
mance of the ML models deployed in nanoRMS for predicting 
Nm sites. In other words, relying on the erroneous base- 
calling of Nanopore RNA sequencing for generating 
a training data on which ML models applied for detecting 
Nm modification is a challenge. This is either because not all 
the modified bases in K-mers contexts resulting from base- 
calling process would generate base-calling errors which 
might result in biased training or validation dataset, or 

Figure 5. Functional enrichment analysis of genes with the highest frequency of Nm modifications within a specific cell line, grouped based on the functional 
hierarchy of Gene Ontology (GO) terms using the Cytoscape ClueGO application. (a) HEK293 cell line and (b) HeLa cell line (visualizing high confidence (p-val <0.05) 
ontologies and pathways potentially associated with nm RNA modification. The size of the nodes is representative of the significance of association with respect to 
genes per GO-term.
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because of the high accuracy of base-calling might lead to 
generating limited-size of training data. In summary, relying 
solely on base-calling errors for detecting RNA modifications 
may become obsolete as base-callers approach 100% accuracy.

Finally, we compared the performance of Nm-Nano pre
dictors with that of HybirdNm, proposed in [23]. However, 
we found that the accuracies of HybirdNm for predicting 
Nm sites were not explicitly mentioned. Instead, we found 
that AUC was a common metric used to evaluate the per
formance of both Nm-Nano and HybirdNm, so we used this 
metric for comparison. The best AUC achieved by 
HybirdNm was 0.962 for predicting the Um subtype, with 
an average AUC of 0.917 for predicting all four subtypes. 
This is less than the AUC values obtained by either XGBoost 
(AUC of 0.991) or RF with K-mer embedding (AUC of 
0.957) within the Nm-Nano framework when applied to 
the HEK293 benchmark dataset with random test splitting 
(supplementary file 1_test_split_HEK293_results. docx). 
Additionally, the HybirdNm framework uses base-calling 
errors in the Nanopore data as a feature for predicting Nm 
subtypes, which may not be ideal once Nanopore base-callers 
reach optimal performance. Moreover, HybirdNm was 
trained and tested on the same benchmark dataset of the 
HEK293 cell line and was not tested for predicting Nm sites 
on a combination of two benchmark datasets of RNA 
sequence data for two different cell lines.

Thus, Nm-Nano offers significant advantages over existing 
computational tools for detecting Nm-sites, summarized as 
follows:

(1) Nm-Nano is designed to predict the presence of Nm 
sites in Nanopore direct RNA sequencing reads of 
human cell lines. This addresses the limitations of 
previous Nm predictors that only detected these 
sites in short reads of RNA sequencing data of cell 
lines from different species or long read sequencing 
data from non-human cell lines like yeast.

(2) Nm-Nano has advantages over other ONT frame
works for predicting Nm sites, namely nanoRMS 
and HybridNm. The former was applied to predict 
Nm sites in RNA sequences from yeast, neglecting 
human cell lines which are larger and more complex. 
The latter was proposed to only predict Nm subtypes 
in a single human cell line (HEK293) and was not 
tested on multiple cell lines.

(3) Nm-Nano was developed to rely solely on ONT- 
based single molecule direct RNA sequencing data 
to predict Nm-sites at individual read-level resolu
tion. This gives the tool a significant advantage over 
non-pure ONT frameworks like HybridNm, which 
was proposed as a dual-path framework to predict 
Nm subtypes in HEK293 human cell line based on 
features from RNA short reads sequenced with 
Illumina and RNA long read sequenced with ONT, 
to improve the prediction of Nm sites in single mole
cules of RNA transcripts.

(4) Nm-Nano investigates the contribution of each fea
ture, unlike nanoRMS in which single read features 
used to train its predictors are averaged before Nm 

prediction, making it not feasible to assess the con
tribution of each feature in predicting Nm sites.

(5) Nm-Nano does not rely on base-calling errors for 
Nm-site detection in RNA sequences. Therefore, its 
implementation will not be affected negatively from 
advancements in high-accuracy Nanopore base- 
calling algorithms, which would affect the implemen
tation of nanoRMS and HybridNm for detecting Nm 
sites in RNA sequences.

Supplementary file (Nm-nano_advantages.docx) tabulates the 
advantages of Nm-Nano over existing ONT methods for pre
dicting Nm modifications.

We also found that the position and sequence features used 
to train Nm-Nano models have been explored in other 
research by Zhang et al. [31] and Haung et al. [32] to enhance 
the performance of prediction of DNA sequencing depth and 
m6A RNA modifications, respectively. In the work of Zhang 
et al., they used local features, such as sequence and base 
probability, to predict DNA sequencing depth, which differs 
from our objective of predicting RNA modification sites. 
Nonetheless, similar to their approach, we have incorporated 
sequencing features in the form of K-mers context among the 
features used for predicting Nm-sites. However, we found that 
base probability is not a relevant feature for our main objec
tive, which focuses on detecting Nm-modified sites, but it was 
a relevant feature in Zhang et al. ‘s work to predict sequence 
depth by quantifying the frequency of a particular nucleotide 
being read during the sequencing process.

In Haung et al’.s work, the geographic representation of 
transcript as vectors (Geo2vec) scheme has exhibited strong 
interpretability and was applicable to m6A and N1- 
methyladenosine (m1A) but was not applied or tested on 
Nm modifications. Based on this, we found that Geo2vec 
and K-mer-embedding, used by the RF model in our 
approach, share similarities in terms of vector representation. 
However, while Geo2vec is a vector representation of the 
geographic presence on a transcript, K-mer embedding is 
vector representation of K-mer sequences. We also found 
that Geo2vec explored different strategies for encoding sub- 
molecular geographic information of ribonucleotides, captur
ing the position of the target ribonucleotide (or site) relative 
to transcript landmarks, like our approach, which also used 
the position as a feature for predicting Nm sites. Thus, our 
approach leads to a similar observation as Huang et al’.s work, 
where either the position feature or the encoding that captures 
it, contributes greatly to RNA modification detection.

It has also been shown that Nm-nano predictors exhibit high 
accuracy in both the random test-split applied on individual 
HeLa or HEK293 benchmark datasets and the integrated valida
tion test applied on combined HeLa and HEK293 benchmark 
datasets. However, a significant decrease in the performance of 
Nm-Nano predictors was observed during validation with an 
independent cell line, when one cell line is used for training the 
Nm-Nano predictor and another for testing it. For instance, RF 
and XGBoost achieved accuracies of 66% and 59%, respectively, 
in detecting Nm-sites on the HEK293 benchmark dataset after 
training on the HeLa benchmark dataset and achieved Nm 
detection accuracies of 57.26% and 56%, respectively in the 
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inverse cross validation. This clear decrease in cross validation 
and inverse cross-validation accuracies in detecting Nm sites is 
likely due to the small dataset size of the Nm-seq data [17] used 
to generate the benchmark training dataset for HeLa and 
HEK293. This small dataset size leads to increased specific 
differences between both cell lines, resulting in decreased Nm 
prediction accuracy when tested on an independent cell line. In 
addition, it is possible that not all cell line-specific features were 
captured when trained on individual cell-line datasets, further 
lowering cross-validation accuracies. This discrepancy was not 
observed in the integrated validation testing of Nm-Nano pre
dictors, which achieved high accuracy in detecting Nm sites by 
training on 50% of the combined benchmark datasets from HeLa 
and HEK293 and testing them on the remaining 50%.

It was also observed that employing Nm-Nano on direct RNA 
sequencing data of HeLa and HEK293 cell lines leads to identify
ing top frequently modified Nm genes associated with various 
biological processes. However, it may be unclear how the enrich
ment of specific functional families for only two considered 
human cell lines (HeLa and HEK293) would strengthen the 
confidence in the Nm-Nano’s predictions. To address this, we 
looked at publicly available direct RNA sequencing data for 
human cell lines on SRA and found data for multiple cell lines. 
However, this data is only available in fastq files, not fast5 files, 
which our algorithm needs for signal-level analysis. Thus, it is 
not possible at this point to run our algorithm on additional cell 
lines available in the public domain. However, studying the 
extent of Nm sites across multiple cell lines to understand 
common and unique sites is an exciting question, which we 
believe can be addressed as more cell line-based direct RNA 
sequencing datasets in the form of fast5 files with signal data 
are publicly available in the future. Finally, it is worth noting that 
the current study is limited to detecting the Nm modification in 
mRNA due to that the current protocol of Nanopore direct RNA 
sequencing, which is restricted to sequencing mRNA with polyA 
[33]. However, for other small RNAs to be captured by 
Nanopore sequencing, it is possible to attach polyA with 
a modified protocol of Nanopore RNA sequencing. Hence, 
mapping modifications on such small RNAs are beyond the 
scope of the current study, which focuses solely on mapping 
Nm modifications on mRNA. Nonetheless, we believe applying 
Nm-Nano predictors for detecting Nm sites in other small RNAs 
would be feasible with a modified and rigorously validated ver
sion of Nanopore RNA sequencing protocol capable of attaching 
other types of small RNAs to polyA.

4. Materials and methods

4.1. Computational pipeline

The complete pipeline of Nm-Nano framework for identifying 
Nm modifications in RNA sequence consists of several stages. 
The first stage begins with culturing the cell line by extracting it 
from an animal and letting it grow in an artificial environment. 
Next, the RNA is extracted from this cell during library prepara
tion and is put through the ONT device to generate Nanopore 
signal data. Specifically, the MinION Mk1B device with a FLO- 
MIN106 flowcell was used for direct RNA sequencing of HeLa 
and HEK293 cell lines. The raw electrical signals output by the 

ONT device for each cell line are stored in the fast5 files, which 
are then base-called via Guppy [34] to produce fastq files con
taining the base-called RNA sequence reads. These reads are 
subsequently aligned to a reference genome using the minimap2 
tool [35] to produce the SAM file, which are further processed to 
generate BAM and sorted BAM files using SAMtools [36], where 
the BAM file is a compressed version of the SAM file. Using the 
SAM file and a provided BED file [37], a coordinate file is 
generated. The BED file contains the Nm-modified locations 
across the whole genome that have been experimentally verified 
based on the research presented in [17]. This coordinate file is 
essential for labelling the Nanopore signal samples produced by 
the eventalign module as either modified or unmodified when 
training the two Nm-Nano predictors (the Supplementary Files 
2_HeLa.txt and 3_HEK293.txt show the coordinate files gener
ated for HeLa and HEK293, respectively). Next, the eventalign 
module from Nanopolish, a free software for Nanopore signal 
extraction and analysis [38–40], is utilized to extract Nanopore 
signals, which produces a dataset of Nanopore signal samples. 
While the structure of Nm-Nano’s pipeline is similar to that of 
other RNA modification prediction tools [25], it differs in three 
phases (Figure 1A,B): benchmark dataset generation, feature 
extraction, and ML model construction. The benchmark dataset 
generation phase in Nm-Nano’s pipeline is different because Nm 
modifications can occur at any RNA base. Therefore, all samples 
generated from the signal extraction process are used to identify 
the Nm sites using information from the coordinate file, where 
some of the samples are labelled as modified with Nm sites, while 
the remaining are control samples that are labelled as unmodi
fied. Similarly, the feature extraction phase in Nm-Nano’s pipe
line is different because it uses different features (e.g. position, 
signal/event_mean, signal/event_stdv, model_mean, mod
el_stdv, kmer_match, mean_diff, and word2vec embedding fea
tures of K-mers) extracted from the modified and unmodified 
signal samples to train the constructed ML models for predicting 
Nm sites. Finally, the ML model construction phase in Nm- 
Nano’s pipeline is unique because it employs two different ML 
models, XGBoost with tuned parameters and RF with K-mer 
embedding, for predicting Nm sites in long RNA sequence reads. 
Further details about the differences in benchmark dataset gen
eration, feature extraction and ML model construction will be 
discussed in the next subsections.

4.2. Benchmark dataset generation

Two different benchmark datasets were generated for the HeLa 
and HEK293 cell lines (Supplementary Tables 5_training_HeLa 
and 6_training_hek). Both datasets encompassed all Nanopore 
signals samples generated by passing the long RNA sequences of 
either HeLa or HEK293 through the ONT device, with signals 
extracted using the Nanopolish eventalign module. Initially, each 
dataset was labelled with Nm sites using a BED file containing 
Nm-modified locations on the whole genome that have been 
experimentally verified in literature based on the Nm-seq proto
col. Nm-seq reported Nm sites in two different cell lines, total
ling 699 Nm sites in HeLa and 2102 Nm sites in HEK293. To 
label each sample as Nm-modified or not, all samples generated 
from signal extraction were used as the target samples for 
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identifying Nm modification, since Nm modifications can occur 
at any RNA base. Next, the intersection between the position 
column in the reference genome and the coordinate file (gener
ated from the Nm BED file and SAM file for each cell line) 
determined the positive samples, with the remaining samples 
designated as negative. In total, the HEK293 cell line yielded 
52,582 samples: 26,291 positive and 26291 negative (after sam
pling the negative samples which are very huge in comparison 
with the positive ones). Similarly, the HeLa cell line yielded 
167,374 samples: 83,687 positive and 83687 negative. Analysis 
revealed a total of 507 and 1024 different reference K-mer 
combinations captured in the modified and unmodified signal 
datasets, respectively, for the HeLa training data (Supplementary 
Tables 7_training_modified_kmer_freq_HeLa and 8_ 
training_unmodified_kmer_freq_HeLa), and a total of 238 and 
1022 different reference K-mer combinations captured in the 
modified and unmodified signal datasets, respectively, for the 
HEK293 training data (Supplementary Tables 9_training_modi
fied_kmer_freq_hek and 10_training_unmodified_kmer_freq_
hek). Supplementary Figures 7_top_10-modified 
_bases_training_HeLa and 8_top_10-modified_bases_trainin
g_hek provide the sequence logo for the top ten modified 
bases corresponding to Nm prediction in the benchmark train
ing datasets of HeLa and HEK293 cell lines, respectively.

4.3. Feature extraction

Each generated benchmark dataset has seven columns repre
senting the features used to train the ML models integrated 
into the Nm-Nano framework. Those features are position, 
event_level_mean, event_stdv, model_mean, model_stdv, 
mean_diff, and K-mer_match. The first five features were 
directly extracted by selecting their corresponding columns 
from the eventalign’s output (Supplementary File 4.txt). The 
sixth feature is generated by calculating the difference 
between the mean of the signal (event_level_mean) and the 
mean of the simulated signal generated by the eventalign 
module (model_mean). The seventh feature is generated by 
comparing the reference_K-mer and model_K-mer columns 
in the eventalign’s output to determine if they match; the 
former represents the base-called K-mers inferred from the 
RNA sequence reads extracted from the Nanopore signals in 
the base-calling process, while the latter represents the base- 
called K-mers inferred from the RNA sequence reads from the 
simulated signals by eventalign. The value of reference and 
model K-mer match is 1 if they match and 0 otherwise. 
Additionally, it is important to note that the position feature 
simply refers to the genomic location of Nm modification and 
does not include information about the nature of nucleotide 
or neighbouring sequence. Therefore, training Nm-Nano pre
dictors with this feature will not cause predictions to be highly 
biased towards the same conserved sequence in other RNA.

4.4. Feature generation with word embedding

In addition to the extracted features, embedding features have 
been generated by applying the word2vec technique [41] to 
the corpus of reference K-mers obtained from aligning 
Nanopore signals to a reference genome using the eventalign 

module of the Nanopolish software. This technique outputs 
a set of one-dimensional vectors of fixed size that represent 
the embedding features of those reference K-mers. The vector 
size can be optionally set as a parameter when building the 
word2vec embedding model.

The idea of applying word2vec to reference K-mers was 
inspired by the research work in [42], where word2vec was 
applied to DNA K-mers to generate embedding features 
represented by vectors of real numbers as representations of 
those K-mers. This approach was introduced as an alternative 
to the hot-one technique for vector encoding of K-mers, 
which is subject to the curse of dimensionality problem. 
With one-hot encoding, as the length of RNA sequence 
increases, the binary feature representation grows exponen
tially, resulting in an excessing number of features being 
added to the dataset [43].

The embedding features generated by word2vec are com
bined with the other extracted features introduced in the 
previous section for training the RF classifier model developed 
to predict Nm sites in long RNA sequence reads. In other 
words, the combination of all extracted features and embed
ding features is used to train the RF model, enabling it to 
predict whether the signal is modified by the presence of Nm 
sites in the testing phase.

4.5. ML models construction

We have developed two machine learning models for predict
ing Nm sites in RNA sequence reads: XGBoost [44] with 
tuned parameters and RF [45] with K-mer embedding. The 
XGBoost model parameters were tuned using the grid-search 
hyperparameter tuning algorithm [24]. For RF, the seed num
ber parameter was set to 1234 and the number of trees para
meter was set to 30 to obtain the best performance of RF. The 
XGBoost model was implemented using the optimized dis
tributed gradient boosting Python library [46] and the RF 
model was implemented using scikit-learn toolkit [47], a free 
machine learning Python library.

4.5.1. XGBoost with grid search for hyper parameter 
tuning
Extreme Gradient Boosted trees (XGBoost) is a special imple
mentation of Gradient Boosting [48], a machine learning 
technique that produces a prediction model based on an 
ensemble of weak prediction models, utilizing decision trees 
in the case of XGBoost. This model is highly flexible and 
versatile, making it suitable for classification-based problems – 
the main goal of this study. The advantage that XGBoost has 
over other tree-based models is its faster training time and 
regularized boosting, which helps prevent overfitting – 
a scenario where the machine learning model becomes too 
accustomed to the training data, compromising its ability to 
generalize and predict the testing data accurately. 
Additionally, XGBoost, a tree-based model, does not require 
feature scaling, ensuring that feature scaling does not affect 
the split point value or the structure of the tree model. 
XGBoost can also cross-validate each iteration (round) of its 
training process, which can lead to higher results compared to 
models lacking this capability. The combination of decision 
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trees and gradient boosting provides advantages over both 
random forest and other gradient boosting models, causing 
XGBoost to typically have a much lower prediction error than 
regular gradient boosting or random forest.

The XGBoost machine learning model was created after 
data preprocessing, which involved removing null values and 
performing feature extraction. The model has several adjus
table parameters aimed at optimizing the performance. 
Hyperparameter tuning using the grid search algorithm was 
employed since it allows for the best and most accurate 
combination of parameters to be obtained. The parameters 
that were optimized for the XGBoost model were eta, gamma, 
max_depth, min_child_weight, and scale_pos_weight. 
Specifically, the optimized values obtained through grid 
search were 0.01, 0.1, 15, 3, and 1, respectively. Eta represents 
the learning rate of the XGBoost model, gamma represents 
how conservative the model is, max_depth represents how 
deep a decision tree can be built, and min_child_weight 
represents the minimum value needed to activate a node in 
the decision tree. Additionally, scale_pos_weight controls the 
balance between positive and negative weights and is asso
ciated with the min_child_weight. Once these optimal para
meters were obtained by fitting the grid search XGBoost 
model to the training data, they were applied to obtain its 
prediction results in the testing phase.

XGBoost is trained with the features set mentioned in 
section 4.3. These features are extracted from the raw signal 
obtained through direct RNA Nanopore sequencing, along 
with the corresponding base-called K-mers resulted from 
inferring the underlying RNA sequence during base-calling.

4.5.2. RF with K-mer embedding
We have developed a Random Forest (RF) ML model that has 
been trained using the same feature set as the XGBoost model, 
along with additional embedding features generated by apply
ing word2vec embedding technique to the reference K-mers 
from the extracted Nanopore signals. RF algorithm has been 
extensively used in the literature to address several problems 
in bioinformatics research [49]. It has been observed that the 
features generated by applying the word2vec embedding tech
nique to the reference K-mers greatly enhance the perfor
mance of the RF model, as mentioned in the results 
subsections 2.1 and 2.2.

The RF ML model was created after data processing, which 
involved removing null values, performing feature extraction, 
and integrating them with the generated K-mer embedding 
features. The K-mer embedding features were generated using 
genism [50], a free Python library that implements the word2
vec algorithm using highly optimized C routines, data stream
ing, and Pythonic interfaces. The word2vec algorithm has 
various parameters, including vector size, window size, and 
word count. The vector size is the dimensionality of the vector 
that represents each K-mer. The window size refers to the 
maximum distance between a target word/K-mer and words/ 
K-mers around the target word/K-mer. The word count refers 
to the minimum count of words to consider when training the 
model, with words occurring less than this count being 
ignored. The K-mer embedding features that lead to best 
performance of RF were generated by setting the vector size 

to 20, the minimum word count to 1, and the window size 
to 3.

4.6. Performance evaluation metrics

The accuracy (Acc), precision (P), recall (R), and the area 
under ROC curve (AUC) [51] have been used as metrics to 
evaluate the performance of Nm-Nano predictors. The math
ematical notions for the first three metrics are as follows:

Acc ¼
TP þ TN

TP þ FP þ FN þ TN
(1)  

P ¼
TP

TP þ FP
(2) 

R ¼
TP

TP þ FN
(3) 

Where:

● TP denotes true positive and refers to the number of 
correctly classified Nm sites.

● FP denotes false positive and refers to the number of 
non-Nm sites misclassified as Nm sites.

● FN denotes false negative and refers to the number of 
Nm sites misclassified as non-Nm sites.

● TN denotes true negative and refers to the number of 
correctly classified non-Nm sites.

As for the AUC metric, it measures the entire two- 
dimensional area under the ROC curve [52], which measures 
how accurately the model can distinguish between two con
ditions (e.g. determining if a base in the RNA sequence is an 
Nm site or not).

4.7. Environmental settings

Nm-Nano has been developed as tool for detecting Nm 
modifications in Nanopore RNA sequence data by integrat
ing two ML models: XGBoost with tuned parameters and RF 
with K-mer embedding to predict this type of RNA modifi
cation. XGBoost parameters were tuned to get the best per
formance using the grid search algorithm, which took 
around 6 h and 52 min to fit on the HEK293 training dataset 
and 9 h and 12 min to fit on the HeLa training dataset to 
obtain the best parameters that were applied to XGBoost 
model in the testing phase. The experiment was executed 
on a Windows 10 machine with an 8-core Ryzen 5900HS 
CPU and 16 GB RAM. It should be mentioned that although 
the grid search algorithm took considerable processing time 
to tune the XGBoost parameters, it significantly improved 
the model’s performance. The performance results of 
XGBoost versus XGBoost tuned with the grid search algo
rithm are shown in Supplementary file 5_xgboost_versus_
grid_search_xgboost_results.docx. Similarly, while using 
word2vec for generating embedding features when develop
ing RF with K-mer embedding model added extra processing 
time to the RF algorithm’s execution time, it also greatly 
improved RF performance. This is because combining the 
embedding features generated by word2vec with the 
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extracted features from Nanopore signals positively affects 
the performance of RF as presented in result subsections 2.1 
and 2.2. The performance results of RF versus RF with 
K-mer embedding are shown in Supplementary file 
6_RF_versus_RF_with_kmer_embedding_results.docx. 
Meanwhile, we considered improving the performance of 
grid search XGBoost model by applying K-mer embedding 
with word2vec to generate embedding features and combine 
them with the extracted features used for training this model. 
However, we found that this would make XGBoost very slow 
when applied to the benchmark dataset of a given cell line, 
with only a slight improvement in its performance that 
would not justify the considerable increase in the processing 
time of XGBoost, as presented in result subsection 2.1.

4.8. Implementation and usage of Nm-Nano

The ML models within the Nm-Nano framework are imple
mented in Python 3.x. To run the XGBoost model, the user 
must type the following command from the Nm-Nano main 
directory on their local machine after cloning the code from 
the Nm-Nano GitHub repository:

python test_xgboost.py
Similarly, to run the RF with K-mer embedding model, the 

user should use the following command from Nm-Nano main 
directory:

python RF_embedding.py
To allow the user to practice with Nm-Nano predictors, we 

have provided a small benchmark dataset sample for HeLa cell 
line in the Nm-Nano GitHub repository 
(Nm_benchmark_HeLa_sample.csv). However, the user is 
encouraged to generate a benchmark dataset for other cell 
lines by following the instructions outlined in the README 
file within the generate_benchmark folder of the Nm-Nano 
GitHub repository.

To generate a benchmark dataset for a specific cell line, the 
following command should be run in the command line of 
a Linux environment from the generate_benchmark folder in 
the Nm-Nano main directory:

python main.py -r ref.fa -f reads.fastq
Where main.py is a Python script file included in the 

generate_benchmark folder, implemented in Python 3.x, ref. 
fa is the reference genome file and reads.fastq is the fastq 
reads file. Both ref.fa and reads.fastq files should be placed 
in the same path as the main.py file.

Before running the main script, the user must ensure that 
the folder containing the fast5 files (fast5_files) from which 
the reads.fastq file was generated, is in the same directory as 
the main.py file. Once the user runs the main.py script, it will 
initiate the execution of several command lines for generating 
the eventalign output. These command lines are documented 
in the generate_eventalign_output.txt file located in the gen
erate_benchmark folder of the Nm-Nano GitHub repository. 
Additionally, the main.py script will call two other Python 
files. The first file, gen_coors_Nm.py, asks the user to enter 
the name of the BED file containing the Nm-modified geno
mic locations with the absolute path and extension to generate 
the coordinate file. The second file, extract_nm.py, takes as 

input the coordinate file and the eventalign output to extract 
features and generate the benchmark dataset.

To allow the user to practice with the Nm-Nano pipeline 
for benchmark dataset generation, we include the following in 
generate_benchmark folder on the Nm-Nano GitHub 
repository:

(1) A link to download a sample fast5 file for the 
HEK293 cell line, which should be placed in the 
fast5_files folder located in the same path as the 
main.py file.

(2) A sample of fastq files (reads.fastq) for HEK293 cor
responding to the fast5 files in step 1.

(3) A link to download a sample reference genome (ref. 
fa) that should also be placed in the same path as the 
main.py file.

(4) A sample BED file for the HEK293 cell line (hek.bed. 
txt)

It should also be mentioned that the Nm-Nano framework 
can be extended by integrating additional ML/deep learning 
models for predicting Nm sites. Moreover, the framework’s 
pipeline is generic and can be used to any direct RNA sequen
cing output from any ONT devices, such as MinION, 
GridION, and PromethION.

5. Conclusions

In this paper, we propose a new framework called Nm-Nano, 
which integrates two machine learning models: XGBoost with 
tuned parameters using the grid search algorithm and RF with 
K-mer embedding. Our results demonstrate the efficiency of 
the proposed framework for detecting Nm sites in RNA long 
reads from human cell lines. This approach addresses the 
limitations of existing Nm predictors presented in the litera
ture, which were only able to detect Nm sites in RNA short 
read sequences from cell lines of various species, or in RNA 
long read sequences from non-human cell lines like yeast, and 
a single human cell line (HEK293).

Employing Nm-Nano on direct RNA sequencing data from 
HeLa and HEK293 cell lines enabled the identification of the 
top frequently modified Nm genes associated with various 
biological processes. In HeLa, we observed several high con
fident (adjusted p-val <0.05) enriched ontologies that were 
more representative of the Nm modification’s role in immune 
response and cellular processes, such as ‘C3HC4-type RING 
finger domain binding’, ‘antigen processing and presentation 
(class I MHC)’, and ‘cytoplasmic translational initiation’. 
Similarly, in HEK293, we observed a wide range of functional 
processes, such as ‘glycolysis/gluconeogenesis’, ‘regulation of 
protein localization to cell surface’, and ‘aggrephagy’ being 
significantly enriched, highlighting the diverse regulatory 
role of Nm modifications across metabolic pathways, protein 
degradation and localization. Thus, Nm-Nano serves as 
a useful computational framework for accurate and interpre
table predictions of Nm sites in RNA sequences from human 
and other species’ cell lines, offering insights into various 
biological findings.
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