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Abstract

Purpose: Digital twins are virtual replicas of real-world objects and processes, and they have 

potential applications in the field of surgical procedures, such as enhancing situational awareness. 

We introduce Twin-S, a digital twin framework designed specifically for skull base surgeries.

Methods: Twin-S is a novel framework that combines high-precision optical tracking and real-

time simulation, making it possible to integrate it into image-guided interventions. To guarantee 

accurate representation, Twin-S employs calibration routines to ensure that the virtual model 

precisely reflects all real-world processes. Twin-S models and tracks key elements of skull base 

surgery, including surgical tools, patient anatomy, and surgical cameras. Importantly, Twin-S 

mirrors real-world drilling and updates the virtual model at frame rate of 28.

Results: Our evaluation of Twin-S demonstrates its accuracy, with an average error of 1.39 mm 

during the drilling process. Our study also highlights the benefits of Twin-S, such as its ability 

to provide augmented surgical views derived from the continuously updated virtual model, thus 

offering additional situational awareness to the surgeon.

Conclusion: We present Twin-S, a digital twin environment for skull base surgery. Twin-S 

captures the real-world surgical progresses and updates the virtual model in real time through the 

use of modern tracking technologies. Future research that integrates vision-based techniques could 

further increase the accuracy of Twin-S.
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Introduction

Digital twins are virtual counterparts of real-world processes, modeling dynamics 

and properties in real time [1]. Receiving continuous measurements from sensor-rich 

environments, digital twins can conversely provide computational feedback. Digital twins 

have been adopted in areas of manufacturing, farming, and product design [2]. In biomedical 

sciences, digital twins are used in cardiovascular diagnostics [3], insulin pump control [4], 

etc. Digital twins are also envisioned to aid personalized medication [5] and predict human 

immune system responses [6].

In surgical scenarios, digital twins can potentially offer advantages across all surgical stages 

(Fig. 1). Prior work has explored the use of digital twins in pre-operative planning and 

immersive training [7]. When used intra-operatively, digital twins can further provide real-

time guidance to surgeons for complementary situational awareness and, in turn, facilitate 

surgical decision making [8–10]. Lastly, digital twins can fully digitize surgical procedures 

for record-keeping, post-operative evaluation, surgical training, and dataset generation for 

machine learning algorithm development.

Some of the earliest works related to the concept of digital twins for surgical assistance 

date back to 1994. RobotDoc [11,12], a robotic system for orthopedic surgeries, visualized 

CT pre-operative scans and highlighted drilled tissues for guidance. Subsequently, many 

solutions have been presented with more advanced model updating techniques and 

visualizations. For example, Chalasani et al. [13] and Yasin et al. [14] propose to estimate 

organ shape and stiffness based on force sensing and subsequently provide feedback to the 

control system. Concurrent to our work, Shi et al. [15] use the digital twins paradigm in 

liver tumor surgery, where a virtual model is used to predict the motion of the liver for 

respiratory compensation. Several other works have used the digital twins framework to 

realize telesurgery [16,17].

Augmented reality (AR) and virtual reality (VR) also closely relate to digital twins systems 

and have been widely adopted for surgical applications [18]. Most prior AR systems overlay 

the pre-operative scans or plans on the patient anatomy for intra-operative guidance [19]. 

However, these systems do not update the patient model intra-operatively, limiting their 

applications [20]. VR systems, on the other hand, mainly focus on simulations for surgical 

training [21]. These VR systems do not receive measurements from the real world and thus 

fail to mimic the behaviors of the physical entities in real time [22,23].

We present a digital twins framework for skull base surgeries, named Twin-S, which 

can be integrated within various image-guided interventions. We specifically consider 

mastoidectomy [24], a surgical approach in the lateral skull base whereby bone is 

removed with surgical drills to obtain access to the middle and inner ear. Given the 

complex arrangement of cortical bone, nerves, vasculature, and end organs, surgical stereo 

microscopes are used to navigate in the small operating field. Twin-S combines high-

precision optical tracking and real-time simulation [22,23]. We rely on calibration routines 

to ensure that the virtual representation precisely mimics all real-world processes. Twin-S 

models and tracks the critical components of skull base surgery, including the surgical tool, 
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patient anatomy, and surgical camera. Twin-S updates the virtual patient anatomy model to 

account for the real-world tool-to-tissue interactions at a frame rate of 28 FPS.

We conduct experiments to evaluate the accuracy of each component of Twin-S. We further 

derive numerical analysis to provide maximum bounds on tracking error and the contribution 

to the final error from different stages. Finally, we illustrate one use case of Twin-S in a 

mixed reality setup. The contributions of our work can be summarized as follows:

• We present a digital twin framework for skull base surgery named Twin-S. It 

models, tracks, and updates all critical components of skull base surgeries in 

real-time to mimic real-world processes.

• We conduct evaluations on tracking accuracy and simulation fidelity of Twin-S. 

We present numerical analysis for the worst-case error bounds.

• We showcase one application of Twin-S in downstream mixed reality task to 

provide surgical guidance and context situational awareness.

System components

Building a digital twin system for skull base surgery requires precise modeling, tracking, 

and updating of the patient’s anatomy, the surgeon’s tool(s), and the surgical camera. In our 

setup, the system includes a surgical phantom to simulate the patient’s anatomy, a surgical 

drill as the ablation tool, and a stereo surgical microscope. Twin-S acquires 3D poses of each 

component via an optical tracker (Fusion-Track 500, Atracsys1). The pose measurements are 

streamed into a physics-based real-time virtual environment built upon AMBF [22,23]. The 

virtual environment provides computational analysis as feedback to the real-world processes. 

An overview is shown in Fig. 2.

Modeling of the surgical drill

The 3D model of the surgical tool is obtained from its manufacturer (ANSPACH, Johnson & 

Johnson2). In Twin-S, we assign the drill coordinate frame to the drill tip center. We mount 

the optical tracking markers at the tail of the drill shaft, defining the base coordinate of the 

drill. To find the transformation Fd
db  between the base coordinate and the drill coordinate, 

we calibrate the rotational Rd
db  and the translational tddb  components.

The translational component tddb  is obtained by pivot calibration [25]. For the rotational 

component Rd
db , it is only necessary to calibrate two degrees of freedom as the drill is 

symmetrical along its shaft. The calibration reduces to aligning two linear line segments

—the shaft axis in the drill coordinate (denoted as P) and the optical tracker coordinate 

(denoted as Q). Using the Kabsch algorithm [26], the rotation can be recovered as:

Rddb = HTH
1
2H−1, whereH = PTQ.

1https://www.atracsys-measurement.com/products/fusiontrack-500/.
2https://www.jnjmedtech.com/en-EMEA/product/anspach-eg1-electric-system.
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(1)

The shaft axis in the drill coordinate P  is defined to be along the Z-axis and thus is known. 

To recover the shaft axis in optical tracker coordinate Q, we fix the drill on a robot arm end 

effector, where the drill holder is by design aligns the drill shaft with the Z-axis of the robot 

to sufficient accuracy [27]. Therefore, by commanding the robot to move along its Z-axis, 

we recover the direction of motion Q in the optical tracker coordinate. Given P  and Q, Rd
db

can be recovered.

Modeling of the surgical phantom

We obtain the 3D structure of the surgical phantom using a CT scanner. The phantom 

is modeled as a binary volume of occupancy, where voxels corresponding to the bony 

tissues are marked as occupied and voxels representing air are marked as free space. To 

track the surgical phantom, we rigidly mount the phantom on a polycarbonate board with 

optical tracking markers, defining the base coordinate of the phantom. To calibrate the 

transformation from phantom base to phantom Fp
pb , we directly compute the transformation 

between the virtual model and the physical phantom via the point-to-plane ICP registration 

[28]. We sample 380 points on the physical phantom surface using a tracked pointer tool for 

the purpose of calibration.

Modeling tool-to-tissue interaction

When surgeons perform drilling in the real world, we update the surgical phantom in real 

time. We approximate the drill tip as a sphere. Twin-S detects collisions between the surgical 

phantom and the drill burr given the tracked positions. The voxels that collide with the drill 

tip sphere are moved and set to free space to simulate the tissue removal process. More 

details of the drilling algorithm can be found in prior work [22].

Modeling of the surgical camera

We obtain the intrinsic parameters and distortion coefficients of the stereo camera using 

a ChArUco pattern. Rectification is then performed to obtain a projective camera model 

[29]. To track the surgical camera, optical tracking markers are mounted on the handle of 

the camera, defining the base coordinate frame. A hand-eye calibration routine [30,31] is 

used to obtain Fc
cb . Given the tracked camera, Twin-S generates per-pixel segmentation 

mask and depth maps based on the object information [22], which can be used for different 

downstream applications.

Experiments and results

In the following sections, we conduct experiments and numerical analysis on Twin-S to 

characterize its accuracy.

Optical tracking accuracy

We conduct experiments to evaluate the accuracy of the optical tracker, as its accuracy 

directly impacts the results of Twin-S. Throughout the experiment, we put the optical tracker 
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at a fixed location. We mount the optical markers on a three-axis micrometer stage (Fig. 

3a). For each experiment trial, we individually move 5 mm along the x-, y-, and z-axis in 

the micrometer stage local coordinate. We conduct three trials in total, each with a new 

orientation w.r.t. the optical tracker (Fig. 3b). The histogram of error is plotted in Fig. 3c. 

The mean error is 0.02 mm, with a standard deviation of 0.02 mm and a maximum error 

of 0.08 mm. We find the sub-millimeter accuracy of the optical tracker sufficient for our 

purpose.

Camera calibration accuracy

We assess the accuracy of camera calibration as it is critical to downstream applications such 

as mixed reality. To perform a quantitative evaluation of hand-eye calibration, we record 

a video sequence of a moving camera observing a static ChArUco pattern. We take the 

first video frame as the reference frame. The reference frame is transformed and projected 

into subsequent video frames. We then evaluate the alignment of the projected pattern and 

observed pattern. We report the re-projection error (RPE) among all frames of size 1080 × 

1920 of a video sequence.

The hand-eye calibration method has a 16-pixel mean RPE. We further convert the RPE 

to calibration errors by using the projective relationship between the pixel and Cartesian 

coordinate. The ratio between the camera-to-ChArUco distance tuc  in mm and surgical 

camera focal length fpx in pixels is equal to the ratio between the calibration error ϵuc  in mm 

and mean RPE in pixels. In other words, we have tuc /fpx = ϵuc /RPE. Given the estimate of tuc

from physical setup and the calibrated camera focal length fpx, the hand-eye calibration error 

converts approximately to 1.9 mm.

Drilling simulation accuracy

One of the key features of Twin-S is real-time updating of the anatomic model as the 

patient anatomy is ablated. We conduct an experiment to evaluate the accuracy of the drilling 

process. A surgical expert is invited to drill the surgical phantom similar to in vivo surgery, 

emulating the tissue removal during mastoidectomy.

We compare the updated phantom model of our digital twins after drilling with the 3D 

structure obtained by a CT scanner (Loop-X, Brainlab3). Point clouds are generated from 

both the virtual phantom model and the segmentation of the phantom in the CT scan and 

aligned using ICP. We visualize the mismatch between the virtual estimate of the tissue 

ablation and the true state of the phantom after the surgery as a heat map in Fig. 4. As 

the goal is to evaluate the model update accuracy of Twin-S, we report the error in drilled 

regions only instead of the entire model. The mean error of our virtual model in region 

A is 1.18 mm with a standard deviation of 0.24 mm, and the mean error in region B is 

1.61 mm with the standard deviation of 0.49 mm. The average error of all drilled regions 

is 1.39 mm with a standard deviation of 0.62 mm. Errors are mostly located around sharp 

edges, which are affected to some extent by the limited spatial resolution of the CT scan. We 

3https://www.brainlab.com/loop-x.
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further examine if there is correlation between the drilling depth and error, with qualitative 

results shown in Fig. 5. We do not observe strong correlations between the two variables 

qualitatively, and the p-value of 1 from our Chi-square test confirms that the variables are 

indeed statistically independent.

Overall, the results indicate that Twin-S can update the anatomical model with a precision 

comparable to conventional optical navigation systems [32], which is expected since spatial 

tracking in our digital twins largely relies on those systems. However, the average drilling 

depth of 1.57 mm is shallower than clinical practices [33]. The line-of-sight issues of the 

optical tracking system currently prohibit us from drilling deeper. It is our future work to 

optimize the spatial arrangement of the optical tracking markers to resolve the line-of-sight 

issue and expand our evaluation in deeper regions.

Numerically analyzing tracking performance

We analyze the tracking error to shed insight onto sources of error in the tracking 

performance. We denote the measured transformation as F*, which contains error ΔF  and 

deviates from the actual transformation F :

F* = F ⋅ ΔF , whereΔF = I + sk( α ), ε
0, 1

.

(2)

The α is the rotational error using axis-angle notation, and sk ⋅  is the skew-symmetric 

matrix. The ε  is the translation error.

We present an analysis of the relative pose error between phantom and drill, which is critical 

for modeling tool-to-tissue interactions. The measured phantom-to-drill transformation is 

expressed as:

Fp*d = Fd
*−1o ⋅ Fp*o ,

= Fdb*o ⋅ Fd*db −1⋅ Fpb*o ⋅ Fp*pb .

(3)

In the following content, we use the rotational component as an example to illustrate our 

derivation and analysis. We expand the error terms of the rotation part and obtain:
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Rp*d

= Rd
* − 1db ⋅ Rdb

* − 1o ⋅ Rpb*o ⋅ Rp*pb ,

Rpd ⋅ I + sk α p
d

= Rddb ⋅ I + sk α d
db −1

⋅

Rdbo ⋅ I + sk α db
o −1

⋅

Rpbo ⋅ I + sk α pb
o

⋅ Rppb ⋅ I + sk α p
pb .

(4)

With re-arrangement, we can obtain four independent components contributing to the 

rotational error:

α p
d = β1 ⋅ α p

pb + β2, ⋅ α pb
o + β3 ⋅ α db

o + β4 ⋅ α d
db ,

(5)

where β1 = I, β2 = Rp
−1pb , β3 = − Rp

−1pb ⋅ Rpb
−1o ⋅ Rdb

o , and β4 = − Rp
−1d . Intuitively, the norm 

of βi represents how much each measurement error contributes to the final inaccuracy.

To derive the numerical upper bound on tracking error, we use the worst-case tracking 

accuracy of 0.08 mm for each optical marker obtained from “opticalspstracking” Section. 

We also assume a worst-case rotation error of 1° for ICP as it is not directly obtainable. We 

obtain the estimated worst-case error norm as:

α p
d

2 ≤ β1 ⋅ α p
pb

2 + β2, ⋅o α pb 2 + β3 ⋅o α db 2

+ β4 ⋅ α d
db

2,

≤ 1.0 + 0.3 + 0.4 + 1.0 = 2.7∘ .

(6)

The rotational error α p
d  is up to 2.7° and dominated by α p

pb  and α d
db , which are the 

calibration inaccuracies. A similar analysis can be done on the translation error ε p
d , with 

the worst error bound of 8.6 mm. The estimated numerical upper bounds of the tracking 

error represent the worst-case scenario that Twin-S may produce. In practice, we observe 

the actual drilling error of 1.39 mm (“Drilling simulation accuracy“ section) is much smaller 

than the estimated upper bounds. Details of the translation error analysis are given in 

appendix.
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Segmentation mask evaluation

As mentioned in “Modeling of the surgical camera“ section, Twin-S can generate per-pixel 

segmentation mask from the virtual models for downstream applications. Therefore, we 

evaluate the accuracy of virtually generated segmentation masks and report the Dice 

scores, where higher Dicer scores indicate better accuracy [34]. To obtain ground truth, 

we manually label a sequence of 100 frames of size 480 × 640. The Dice score for the drill 

is computed as 0.725, and the Dice score for the phantom is 0.956. The lower Dice score of 

the drill in comparison with the phantom is due to the thin shape of the drill, where slight 

offsets will lead to much lower Dice scores.

Computation evaluation

We present computation analysis of Twin-S as the real-time update is important for intra-

operative uses. The calibration step is a requirement prior to launching the digital twins 

system such that the virtual models are aligned with the physical objects. Therefore, the 

calibration process does not impact the run-time performance of Twin-S. The time spent for 

calibration is approximately 10 min. We conduct a computation evaluation of Twin-S on a 

laptop of Ubuntu 20.04 equipped with Nvidia 3060 Laptop Graphic card and Intel i5 CPU. 

The breakdown of the computation time is presented in Table 1. The data synchronization 

step is the most time-consuming process of 20.5 ms, which aligns the timestamps and pairs 

the incoming tracking poses from the optical tracker and stereo images from the surgical 

camera. The overall run time of Twin-S is 35.7 ms (28 FPS).

Use case in mixed reality

We explore a mixed reality use case for providing complementary situational awareness 

using contextually updated virtual content. We consider the scenario where a pre-operative 

plan is available for the desired bone ablation in the temporal bone. We present a temporally 

adaptive overlay to encode the distance between the current drilled surface and the deeper-

seated target. In doing so, we offer depth information that may be difficult for surgeons 

to observe due to bone dust, blood, etc. To demonstrate this idea with Twin-S, we reverse 

the drilling process and use the final drilled shape as the “pre-planned target” to mimic the 

targeted application and display the drilling status in previous video frames. Specifically, 

Twin-S displays a warmer color when the surface is far from the target, and a cooler color 

as the revealed anatomy is closer to the target. Qualitative visualizations are shown in Fig. 6. 

Such an experiment conceptually demonstrates how Twin-S can be applied to intra-operative 

guidance, albeit the simple human–computer interaction paradigm. It is our future work to 

build a fully functional mixed reality system with more effective graphics interfaces.

Conclusion

We present Twin-S, a digital twin framework for skull based surgery. Twin-S models, tracks, 

and updates virtual counterparts of physical entities in real time with high accuracy. We 

present thorough analysis on the tracking performance and illustrate how Twin-S can be 

used for downstream applications.
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In future work, we plan to integrate vision-based tracking algorithms [35] to further improve 

the accuracy of Twin-S rather than relying solely on optical trackers. We also plan to 

conduct ex vivo studies to evaluate our system. Moreover, Twin-S can generate large volume 

of paired data, where microscopic images of the surgical scene are paired with virtually 

generated labels. Through this pairing, we are able to reduce the cost of dataset labeling 

and avoid the sim-to-real transfer issue commonly faced by synthetic data [36,37]. It is our 

future work to demonstrate the application of Twin-S in dataset generation. Lastly, Twin-S 

enables model-based control [38] applications of varying anatomies, thus improving surgical 

safety and patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of our Twin-S digital twin concept and associated applications. Measurements are 

collected from various sensors deployed in the operating room and sent to the virtual model 

continuously. The feedback from the computation analysis of the virtual model is provided 

to the physical entity, which can be used in many downstream applications
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Fig. 2. 
Overview of Twin-S for skull base surgery. Twin-S models, tracks, and updates the surgical 

drill d , phantom p , and camera c  to emulate the clinical setting. An optical tracker 

o  provides measurements of object base coordinates ( Fxb
o ), where x is one of d, p, c . 

By performing calibration, Twin-S recovers the transformation Fx
xb  between the base 

coordinate and the model coordinate for each object. The real and virtual entities are aligned 

via transformation Fx
o = Fxb

o ⋅ Fx
xb
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Fig. 3. 
a Optical tracker evaluation setup, four optical tracking markers are fixed on a three-axis 

micrometer stage. b Relative orientations of the micrometer stage w.r.t the optical tracker. c 
Histogram of tracking errors
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Fig. 4. 
Evaluation of misalignment between ground-truth CT scan and a phantom point cloud from 

the virtual model. The lower error indicates better agreement between the CT scan and the 

virtually updated model from Twin-S
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Fig. 5. 
Scatter and density plots of depth and simulation error. We have not found statistically 

significant correlation between drilling depth and error (p-value = 1)
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Fig. 6. 
An illustration of using Twin-S for mixed reality intra-operative guidance. The color 

overlays generated from the virtual model encode the distance to the deep-seated target
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Table 1

Computation evaluation of Twin-S

Time proportions of Twin-S Mean computational time (ms)

Data synchronization 20.5

Pose update 0.2

Simulator volume rendering 12

Collision simulation 3

Overall execution time 35.7
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