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Abstract
Background: Immune checkpoint blockade (ICB) has revolutionized the treat-
ment of various cancer types. Despite significant preclinical advancements
in understanding mechanisms, identifying the molecular basis and predictive
biomarkers for clinical ICB responses remains challenging. Recent evidence,
both preclinical and clinical, underscores the pivotal role of the extracellular
matrix (ECM) in modulating immune cell infiltration and behaviors. This study
aimed to create an innovative classifier that leverages ECM characteristics to
enhance the effectiveness of ICB therapy.
Methods:We analyzed transcriptomic collagen activity and immune signatures
in 649 patients with cancer undergoing ICB therapy. This analysis led to the
identification of three distinct immuno-collagenic subtypes predictive of ICB
responses. We validated these subtypes using the transcriptome data from 9,363
cancer patients from The Cancer Genome Atlas (TCGA) dataset and 1,084 in-
house samples. Additionally, novel therapeutic targets were identified based on
these established immuno-collagenic subtypes.
Results: Our categorization divided tumors into three subtypes: “soft & hot”
(low collagen activity and high immune infiltration), “armored & cold” (high
collagen activity and low immune infiltration), and “quiescent” (low collagen
activity and immune infiltration). Notably, “soft & hot” tumors exhibited the
most robust response to ICB therapy across various cancer types. Mechanisti-
cally, inhibiting collagen augmented the response to ICB in preclinical models.
Furthermore, these subtypes demonstrated associations with immune activity
and prognostic predictive potential across multiple cancer types. Additionally,
an unbiased approach identified B7 homolog 3 (B7-H3), an available drug target,
as strongly expressed in “armored & cold” tumors, relating with poor prognosis.
Conclusion: This study introduces histopathology-based universal immuno-
collagenic subtypes capable of predicting ICB responses across diverse cancer
types. These findings offer insights that could contribute to tailoring personalized
immunotherapeutic strategies for patients with cancer.

KEYWORDS
collagen deposition, immune infiltration, immunotherapy, pan-cancer, tumor microenviron-
ment
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1 BACKGROUND

Cancer continues to pose a significant global health chal-
lenge, accounting for nearly 20 million new cases and 10
million cancer-related deaths annually [1]. Genetic muta-
tions in tumor cells lead to the production of tumor
antigens, such asmelanoma-associated antigen,which can
trigger recognition by the immune system due to the insta-
bility in these cells [2]. The immune system’s role in both
surveillance against tumors and inhibiting their growth is
well recognized and has been translated into clinical ther-
apies, notably immune checkpoint blockade (ICB). This
approach targets immune inhibitory molecules such as
programmed cell death 1 (PD-1), programmed cell death-
ligand 1 (PD-L1), or cytotoxic T-lymphocyte-associated
antigen 4 (CTLA4). Despite significant progresses in vari-
ous cancer treatments, the clinical application of ICB faces
challenges such as limited response rates, unclear under-
lying mechanisms, and immune-related adverse events [3,
4]. Extensive efforts have been undertaken to identify fac-
tors aiding patient selection for ICB. PD-L1 expression has
been a focus in numerous clinical trials [5–7], but conflict-
ing studies showed that even patients with negative PD-L1
expression could benefit from ICB [8, 9]. An accurate,
reliable, and user-friendly predictive biomarker remains
elusive in this field.
Recent knowledge emphasizes the significance of

immune cell types, density, function, and distribution
within the tumor microenvironment (TME) for patient
classification. Histopathology-based immune status sur-
passes the classical tumor-node-metastasis staging in
accurately defining cancer’s immune status and its respon-
siveness to ICB [10, 11]. For instance, the cytotoxic T
cell-based immunoscore [12, 13] has been widely utilized
to categorize tumors as “hot” or “cold”, representing T
cell inflamed and non-inflamed tumors. While these clas-
sifications are widely adopted in clinical settings, further
enhancements are crucial to better stratify patients and
guide treatment selection. Besides the cytotoxic T cell land-
scape, numerous biomarkers such as B cell infiltration [14],
interferon-driven signaling [15], tumor mutational burden
(TMB) [16], specific chemokines and adhesion molecules
[17], angiogenesis [18], and the combination of biomarkers
[19], have been proposed for their ICB response predic-
tive potential. Nevertheless, the quest for reliable clinical
biomarkers remains challenging, constrained by tumor
types and patient sample sizes.
Solid tumors possess an extracellular matrix (ECM)

markedly different from healthy tissues, characterized by
its abundance, high density, and stiffness. The tumoral
ECM, predominantly composed of collagens, is produced
by both tumor cells and cancer-associated fibroblasts
(CAFs) [20]. These collagens form a barrier around tumor

cell clusters, shielding them from nutrients, therapeu-
tic agents, or cytotoxic immune cells [21, 22]. Growing
evidence suggests that these collagens impede T cell infil-
tration and dictate the distribution of immune cells in
various cancer types [23, 24]. Despite the close association
between the ECMand immune cells in the TME, its contri-
bution to patient stratification and ICB response prediction
remains poorly understood.
This study aimed to evaluate the interaction of colla-

gen deposition and the tumor immune microenvironment
(TIME) and its clinical implications. Data of 649 patients
with cancer receiving ICB from public cohorts, 9,363
patients from The Cancer Genome Atlas (TCGA) dataset,
and 1,084 in-house patients were collected and analyzed.
A novel subtyping strategy was developed and validated
according to collagen deposition and immune activity in
large-scale cohorts. By combining analyses of large-scale
public and in-house cohorts, we hope our exploration pro-
vides some insights into the collagen-immune interaction
in the TME and clinically reliable pan-cancer biomarkers
for predicting the ICB response.

2 MATERIALS ANDMETHODS

2.1 Overall study design

In this study, we aimed to evaluate the interaction of col-
lagen deposition and the TIME and its clinical value. We
collected data from 649 cancer patients receiving ICB,
9,363 patients from the TCGA dataset, and 1,084 in-house
patients. We developed and validated a novel subtyping
strategy according to collagen deposition and immune
activity in the above large-scale cohorts. In addition, based
on the mutually exclusive pattern between collagen depo-
sition and immune cell infiltration, we also proposed
that anti-collagen deposition was a significant strategy to
sensitize immunotherapy (Figure 1).

2.2 Transcriptome data from public
portals

Transcriptome datasets and clinical annotations of 9,363
cancer patients for 31 solid tumor types in the TCGA
dataset were acquired through the University of Califor-
nia Santa Cruz Xena platform (https://xenabrowser.net/
datapages/). Samples with available overall survival (OS)
data were specifically chosen for further analysis. In cer-
tain cancer types, somatic mutation data were sourced
from the TCGA database (http://cancergenome.nih.gov/)
and used to compute the TMB using the R package

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
http://cancergenome.nih.gov/
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F IGURE 1 Schematic overview in this study. Clinical cohorts: Immunotherapy cohorts representing 6 cancer types and 649 patients,
The Cancer Genome Atlas cohorts representing 31 cancer types and 9,363 patients, and in-house cohorts representing 10 cancer types and
1,084 patients. Methods: Assessing the transcriptional profile and the histopathologic status in the above clinical cohorts to develop and
validate novel immuno-collagenic subtypes. Clinical outcomes: Patients were categorized into three subtypes with distinct features: soft & hot
(low collagen activity and high immune infiltration), armored & cold (high collagen activity and low immune infiltration), and quiescent (low
collagen activity and immune infiltration). Clinical effects: Predicting the immunotherapeutic responses and proposing targets highly
expressed in armored & cold tumors. Abbreviations: CAF, cancer-associated fibroblast; HE, hematoxylin and eosin; PD-L1, programmed cell
death 1 ligand 1; TCGA, The Cancer Genome Atlas; TIIC, tumor-infiltrating immune cells; TMA, tumor microarray.

“maftools” [25]. For the stomach adenocarcinoma (STAD)
dataset, we referenced the latest four published molecular
classifications of STAD samples [26].
For mouse tumor analysis, we obtained the GSE168846

dataset [27] containing transcriptomic data from tumors of

diverse syngeneic mousemodels (such asmelanoma CM3,
colorectal cancer CT26, melanoma B16F10, urothelial car-
cinoma MB49, colorectal cancer MC38, bladder cancer
MBT2, lung cancer LL2, renal cell carcinoma RENCA,
breast cancer EMT6, and breast cancer 4T1) subjected to



558 MEI et al.

ICB treatment from the Gene Expression Omnibus (GEO)
database (http://www.ncbi.nlm.nih.gov/geo/).

2.3 Transcriptome data from cancer
patients receiving ICB

A panel of public immunotherapy datasets, including
the GSE173839 dataset [28], the GSE194040 dataset
[29], the PRJEB25780 dataset [30], the PRJEB23709
dataset [31], the GSE126044 dataset [32], the GSE135222
dataset [33], comprising transcriptome data from can-
cer patients receiving ICB were downloaded from
the GEO or the Tumor Immune Dysfunction and
Exclusion databases (http://tide.dfci.harvard.edu/).
The MEDI4736 dataset was obtained from Dr. Lajos
Pusztai in Yale University School of Medicine (New
Haven, CT, USA) [34]. The transcriptome data and
clinical information of the IMvigor210 cohort [35] were
obtained from the corresponding website (http://research-
pub.gene.com/IMvigor210CoreBiologies/). By combining
these datasets, we created cohorts with 6 tumor types. For
each tumor type, the “removeBatchEffect” function in the
“limma” package [36] was applied to remove batch effects
of datasets with various data formats. The case number
and characteristics of these cohorts are summarized in
Supplementary Table S1.

2.4 Enrichment analysis of ICB
response-related genes

To further describe the biological progresses of ICB
response-related genes, “limma” package [36] was uti-
lized to identify ICB response-related genes firstly. Sub-
sequently, the enrichment analysis was performed by the
“gene sets enrichment analysis (GSEA)” function in the
“clusterProfiler” package [37] in terms of the “REAC-
TOME” analysis [38].

2.5 Definition of immune signature and
collagen signature

Gene markers of various immune signature and collagen
signature were collected from various studies (Sup-
plementary Table S2). The enrichment scores of these
signatures were estimated using the GSEA algorithm by
the “gene set variation analysis (GSVA)” R package [39].
Immune score and collagen score were assessed based
on the average values of immune signature and collagen
signature.

2.6 Transcriptomic patient
stratification

To examine immuno-collagenic heterogeneity, we utilized
consensus clustering (employing the “ConsensusCluster-
Plus” package [40] in R software; 1,000 iterations, 80%
resampling) to categorize subtypes based on the abun-
dance of immune and collagen signatures. Across each
transcriptome dataset, patients were stratified into three
subtypes, each characterized by distinct features: “soft &
hot” (low collagen activity and high immune infiltration),
“armored & cold” (high collagen activity and low immune
infiltration), and “quiescent” (low collagen activity and
immune infiltration).

2.7 Clinical samples

Two cohorts comprising a total of 62 patients with non-
small cell lung cancer (NSCLC) who received ICB between
January 2019 and December 2021 were retrospectively col-
lected. These cohorts were obtained from The Affiliated
Wuxi People’s Hospital of Nanjing Medical University
(Wuxi, Jiangsu, China) and Xuzhou Central Hospital
(Xuzhou, Jiangsu, China), following ethical approval from
TheClinical ResearchEthics Committees atNanjingMedi-
cal University (No. 2022-383) and Xuzhou Central Hospital
(No. XZXY-LK-20230610-086). Tumor tissue samples were
obtained via biopsy before immunotherapy. The therapeu-
tic response was evaluated using RECIST 1.1 criteria [41],
which include complete response, partial response, stable
disease, and progressive disease.
Additionally, paraffin-embedded cancer tissue microar-

rays (TMA) consisting of 1,012 cases for 10 cancer types
used in some experimentswere obtained from theNational
Engineering Center for Biochip (Outdo Biotech, Shang-
hai, China) with approval from the Outdo Biotech Clinical
Research Ethics Committee. Due to the minority of sam-
ples losses during multiple staining procedures, the 1,012
samples are the total number of cases after excluding
the losing samples. Detailed clinicopathological and sur-
vival data for these in-house cohorts are summarized in
Supplementary Table S3.

2.8 RNA-sequencing (RNA-seq) for
paraffin-embedded tumor tissues

A total of 10 paraffin-embedded triple-negative breast
cancer (TNBC) samples were collected from Wuxi Mater-
nal and Child Health Hospital (Wuxi, Jiangsu, China)
under the ethical approval of The Clinical Research Ethics

http://www.ncbi.nlm.nih.gov/geo/
http://tide.dfci.harvard.edu/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
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Committees at Wuxi Maternal and Child Health Hospital
(No. 2021-01-0927-28) and submitted to Shanghai Biotech-
nology Corporation (Shanghai, China) for RNA-seq using
the Illumina NovaSeq 6000 sequenator (model: PE150).
RNA-seq data was standardized to Fragments Per Kilobase
of exon model per Million mapped reads (FPKM) format
[42]. The cohort was used to check correlations between
transcriptome-based scores and histology-based scores.

2.9 Histochemistry and
immunohistochemistry analyses

Human and mouse paraffin-embedded tissues were sec-
tioned into 4-µm-thick sections. These tissue slides under-
went staining with Masson staining, hematoxylin and
eosin (HE) staining, and anti-PD-L1 staining. The blad-
der urothelial carcinoma (BLCA) TMA (HBlaU079Su01)
was also stainedwith anti-B7 homolog 3 (B7-H3). Standard
operating procedures were employed for immunohisto-
chemistry and HE staining. Primary antibodies, includ-
ing a ready-to-use anti-PD-L1 antibody (1:1, GT2280,
GeneTech, Shanghai, China) and an anti-B7-H3 antibody
(1:20,000, ab219648, Abcam, Cambridge, UK), were uti-
lized. Samples were visualized using EnVision™ FLEX+
(K8009, Dako, Copenhagen, Denmark). Masson staining
was conducted using the Trichrome Stain Kit (FH115100,
FreeThinking, Nanjing, Jiangsu, China) following the
manufacturer’s instructions. Sections were captured using
a slide scanner (Aperio GT 450 DX, Leica, Wetzlar, Ger-
many).
Assessment of tumor-infiltrating immune cells (TIICs)

was conducted by two senior pathologists using the cri-
teria established by TCGA Network [43]. Pathological
parameters for each case included TIIC distribution (0,
no TIICs; 1, <25% tissue involvement; 2, 25%-50% tissue
involvement; 3, >50% tissue involvement) and TIIC den-
sity (0 = absent, 1 = mild, 2 = moderate, 3 = severe). The
TIIC score, the sum of distribution and density scores (0-
6), was calculated per case. Masson staining evaluation
involved determining positively stained area percentages
using the HALO software (v3.4.2986, Indica Labs, Albu-
querque, NM, USA). Two experienced pathologists scored
PD-L1 and B7-H3 staining. PD-L1 staining was quantita-
tively assessed based on the combined positive score (CPS),
while B7-H3 expression used a modified CPS criterion: B7-
H3 CPS = (membrane-positive tumor cells, immune cells,
fibroblasts, and endothelial cells) / (total tumor cells) ×
100 [44]. The TIIC score’s cutoff value referred to previous
research [43]. The collagen area’s cut-off value was deter-
mined by averaging across all samples, approximating 10%.
Tumor samples were categorized based on TIIC score and
collagen area: soft & hot tumors (TIIC score ≥ 3 and col-

lagen area < 10%), armored & cold tumors (TIIC score ≤

2 and collagen area ≥ 10%), and quiescent tumors (TIIC
score ≤ 2 and collagen area < 10%).

2.10 Animals, cell culture,
tumor-bearing mouse model, and drug
treatment

Female BALB/c mice (5-6 weeks old) from the Shanghai
Laboratory Animal Center (Shanghai, China) were housed
in specific pathogen-free facilities at 20-24◦C under 12-
hour light/dark cycles. All mouse studies were approved
by the Laboratory Animal Ethics Committee of Nanjing
Medical University (IACUC-2305039). The murine breast
cancer cell line 4T1 (KG338, KeyGEN Biotech, Nanjing,
Jiangsu, China) was cultured in Dulbecco’s minimum
essential medium (KGM12800N-500, KeyGEN Biotech)
supplemented with 10% fetal bovine serum (10099141C,
Gibco, Waltham, MA, USA) at 37◦C with 5% CO2. All
cell lines were free from mycoplasma and authenticated
recently by short tandem repeat profiling. The mouse
breast cancer model was established by subcutaneously
injecting approximately 5 × 106 cells into each BALB/c
mouse. Tumor size was monitored every 2-3 days using
calipers, and tumor volume (V) was calculated using the
formula V = (length × width2) / 2.
Upon tumors reaching an average size of approximately

100 mm3, tumor-bearing mice were randomly assigned
to groups. The control group received oral administra-
tion of phosphate belanced solution (PBS). The talabostat
group received daily oral administration of talabostat
(HY-13233A, MedChemExpress, Shanghai, China) at 20
µg/mouse. The anti-PD-1 group was injected intraperi-
toneally with the neutralizing antibody InVivoMAb anti-
mouse PD-1 (BE0273, BioXCell, Lebanon, NH, USA) at
200 µg/mouse three times a week. The combination group
received daily oral talabostat at 20 µg/mouse and intraperi-
toneal injections of the anti-PD-1 antibody at 200 µg/mouse
three times a week. The tumors were removed from
the unconscious animals at day 21 after the initiation of
the treatment, which was subsequently documented and
weighed.

2.11 Flow cytometry

Flow cytometry was performed following previously out-
lined procedures [45]. In summary, freshly dissected
mouse tumor tissues underwent digestion and labeling
using anti-CD3 (1 µg/test, 100203, Biolegend, San Diego,
CA, USA), anti-CD8 (0.25 µg/test, 100711, Biolegend),
anti-lymphocyte antigen 6 complex, locus G/C (Ly6g/c,
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GR1; 0.25 µg/test, 108427, Biolegend), and anti-CD11b
antibodies (0.25 µg/test, 101207, Biolegend). A CytoFLEX
flow cytometer (Beckman Coulter, Brea, CA, USA) was
employed for analysis, and FlowJo (v7.6.5, https://www.
flowjo.com/) was used for data interpretation.

2.12 Cellular reprogramming after
anti-B7-H3 therapy

To investigate cellular reprogramming post anti-B7-H3
treatment, single-cell RNA-sequencing (scRNA-seq)
datasets from 4-nitroquinoline N-oxide (4NQO)-induced
mice following anti-B7-H3 therapy were obtained from
the GSE164817 dataset [46]. Cells were excluded based on
mitochondrial gene expression exceeding 10% or if they
displayed fewer than 300 or more than 5,000 detected
genes. Subsequently, 15,931 cells were analyzed (control:
9,561 cells; anti-B7-H3: 6,370 cells). The “RunHarmony”
function [47] was utilized tomitigate batch effects between
the two samples. Principal component analysis was con-
ducted on the top 4,000 variable genes, using the first
40 principal components to reduce dimensionality. Cells
were annotated into five major cell types based on estab-
lished markers such as epithelial cell adhesion molecule
for tumor cells and decorin for fibroblasts. Recognizing
the significance of cell-cell communications mediated by
ligand-receptor complexes in diverse biological processes,
the “CellPhoneDB” tool was used to describe interactions
among cell types in both control and anti-B7-H3 samples.
Ligand-receptor pairs with a P value < 0.05 were retained
to assess relationships among different cell clusters.
Furthermore, to evaluate the status of CD8+ T cells, the
“AddModuleScore” function was employed to calculate
the cytotoxic and exhausted scores of CD8+ T cells from
both control and anti-B7-H3 samples.

2.13 Statistical analysis

Statistical analyses and figure presentations were con-
ducted using R language 4.0.2 and GraphPad Prism 6.0
(https://www.graphpad-prism.cn/). All R packages uti-
lized in this study are summarized in Supplementary Table
S4. Group differences were assessed using the Student
t-test or Mann-Whitney test for two groups, while one-
way analysis of variance or the Kruskal-Wallis test with
multiple comparisons was utilized for multiple groups.
Categorical variables were assessed using the chi-square
test or Fisher exact probability test. Pearson’s or Spear-
man’s correlation tests were employed to evaluate correla-
tions between variables. Receiver-operating characteristic
(ROC) curve analysis was utilized to determine the speci-

ficity and sensitivity of candidate indicators, generating
the area under the ROC curve for diagnostic biomarkers.
Prognostic values of categorical variables were assessed via
log-rank test and Cox regression analysis. A P value of <
0.05was considered statistically significant for all analyses.

3 RESULTS

3.1 Immuno-collagenic subtypes were
associated with ICB response in NSCLC

NSCLC is one of the most progressive cancer types, and
NSCLC patients exhibit a notable enhancement in sur-
vival and quality of life through the application of ICB
[48–50]. In our pursuit to comprehend the molecular
mechanism identifying patients who derive the greatest
benefits from ICB, we consolidated a combined NSCLC
cohort treated with anti-PD-1/PD-L1 immunotherapy [32,
33]. A comprehensive transcriptome analysis encompass-
ing 43 patients with NSCLC was conducted, focusing on
biological pathway analysis employing the peer-reviewed
REACTOME database [38]. This examination scrutinized
pathways involving classical intermediary metabolism,
signaling, and apoptosis. Notably, a connection was estab-
lished between ICB responses and anti-tumor immu-
nity pathways. Intriguingly, inadequate responses to ICB
were linked with pathways related to collagen deposition
(Figure 2A). These prominent biological processes associ-
ated with ICB responses captivated our interest and thus
we underwent further investigation.
To delineate the role of collagen deposition and the

TIME in NSCLC, we compiled 8 functional modules rep-
resenting collagen signatures. These encompassed all col-
lagen genes, CAF signatures [20], stimulatory signals for
CAFs such as transforming growth factor-β signaling [51],
and signals stimulating collagen, such as discoidin domain
receptor tyrosine kinase 1 (DDR1) [23] (Supplementary
Table S3). Additionally, 13 functional modules represent-
ing immune signatures, inclusive of common markers
for tumor-infiltrating immune cells [52], immunomod-
ulators such as PD-1 signaling, major histocompatibility
complex molecules, and chemokine signaling [53], were
compiled (Supplementary Table S3). The correlation
matrix illustrated an inverse relationship between these
anti-tumor immune signature modules and collagen
modules (Supplementary Figure S1). We next evaluated
the combined utility of these two factors in predicting ICB
response in patients with NSCLC. A correlation matrix
was established based on the distribution of gene modules
across samples, revealing three distinct subtypes charac-
terized by immuno-collagenic scores (Figure 2B-C). These
subtypes were closely linked to ICB response (Figure 2D).

https://www.flowjo.com/
https://www.flowjo.com/
https://www.graphpad-prism.cn/
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These findings suggest a novel stratification of ICB-treated
patients with NSCLC based on transcriptome analysis.
The high cost associated with transcriptome analysis

has limited the practical application of immuno-collagenic
subtypes. Consequently,we explored an affordable, simple,
and convenient alternative to transcriptomic stratifica-
tion. To achieve this, we gathered 10 TNBC samples
and subjected them to RNA-seq analysis. Additionally,
paraffin-embedded sections underwent HE and Masson
staining. We then compared the correlations between the
collagen expression score obtained fromRNA-seq data and
the collagen levels assessed by Masson staining, as well as
between the TIIC score derived from RNA-seq data and
the TIIC score determined through HE staining. Positive
correlations were observed between the transcriptome-
based scores and histology-based scores (Supplementary
Figure S2). This user-friendly approach holds promise for
significantly broadening the scope of the newly defined
immuno-collagenic subtypes.
In an effort to assess whether this simplified method is

adequate for predicting ICB response, we conducted Mas-
son and HE staining on NSCLC tissues from 62 patients
with different ICB responses (Figure 2E).We used anti-PD-
L1 staining as a validation for ICB biomarkers (Figure 2F).
The results showed that samples with both high PD-L1 and
collagen were accounted for only 6.45%, which were very
limited (Figure 2F). Notably, soft & hot tumors, armored
& cold tumors, and quiescent tumors demonstrated asso-
ciations with ICB responses (Figure 2G). Particularly,
the soft & hot subtype exhibited high PD-L1 expression
(Figure 2H). These subtypes displayed enhanced sensitiv-
ity and specificity compared to conventional PD-L1 expres-
sion (Supplementary Figure S3), indicating the potential of
these subtypes as clinical biomarkers.

3.2 Conserved immuno-collagenic
subtypes predicted ICB response

To investigate the applicability of these subtypes in addi-
tion to NSCLC, we aggregated several publicly avail-
able cohorts, creating 5 cohorts encompassing patients
with melanoma, BLCA, non-TNBC (NTNBC), TNBC,
and STAD, who exhibited various ICB responses, with
some cohorts providing survival data. Intriguingly, ICB
responses were associated with anti-tumor immunity in
melanoma, NTNBC, TNBC, and STAD, while poor ICB
responses were linked to collagen deposition in BLCA,
TNBC, and STAD (Supplementary Tables S5-S9). Across
all 5 cancer types, anti-tumor immunity modules con-
sistently displayed an inverse correlation with collagen
modules (Supplementary Figure S4). By integrating infor-
mation on anti-tumor immunity and collagen deposition,
the immuno-collagenic subtypes were identified through
consensus analysis (Figure 3A). These subtypes were
associated with ICB responses and clinical outcomes
in melanoma and BLCA (Figure 3B-F). Moreover, they
showed associatons with established biomarkers, such as
immuno-subtypes (Figure 3G), PD-L1 expression scores
in immune cells (PD-L1 IC score), and PD-L1 expres-
sion scores in tumor cells (PD-L1 TC score; Supplemen-
tary Figure S5). Similarly, these subtypes categorized ICB
responses in NTNBC, TNBC, and STAD (Figure 3H-J).
It is worth noting that neither anti-tumor immunity nor
collagen deposition predicted ICB response across all the
mentioned cancer types, whereas the immuno-collagenic
subtypes consistently demonstrated a strong association
with ICB response in all 6 cancer types (Supplemen-
tary Table S10), suggesting their potential as a universal,
reliable biomarker for solid tumors.

F IGURE 2 Establish the immuno-collagenic subtypes for immune checkpoint blockade response prediction in non-small cell lung
cancer. (A) Gene set enrichment analysis of genes associated with good immunotherapeutic response (left) and poor immunotherapeutic
response (right) in the merged dataset of the GSE126044 dataset and the GSE135222 dataset. Orange boxes indicate immune-related pathways
and collagen-related pathways. (B) Heatmap exhibiting consensus clustering solution for collagen- and immune-related genes in NSCLC
samples. (C) Heatmap showing scores of collagen- and immune-related gene modules in the three immuno-collagenic subtypes. (D)
Difference in the immunotherapeutic response rate in the three immuno-collagenic subtypes in the merged NSCLC cohort. Significance was
calculated using the Fisher exact probability test. (E) Representative images uncovering the collagen area, TIIC infiltration, and PD-L1
expression in tumors with various subtypes and corresponding immunotherapeutic responses. (F) Proportion of four subtypes divided by
collagen area and TIIC infiltration. The proportion of co-high collagen and TIIC was quietly limited as shown on the pie chart. (G) Difference
in the immunotherapeutic response rate in the three immuno-collagenic subtypes in the in-house NSCLC immunotherapy cohort.
Significance was calculated using the Fisher exact probability test. (H) Difference in the PD-L1 expression in three immuno-collagenic
subtypes in the in-house NSCLC immunotherapy cohort. Data are presented as mean ± standard deviation. Significance was calculated using
the Kruskal-Wallis test with Dunn’s multiple-comparison test. ns: non-significance, ***: P < 0.001. Abbreviations: CAF, cancer-associated
fibroblast; CPS, Combined Positive Score; GSEA, gene sets enrichment analysis; HE, hematoxylin and eosin; ICB, immune checkpoint
blockade; MHC, major histocompatibility complex; NSCLC, non-small-cell lung cancer; PD, progressive disease; PD-1, programmed cell
death 1; PD-L1, programmed cell death 1 ligand 1; PR, partial response; TGF-β, transforming growth factor-β; SD, stable disease; TIIC,
tumor-infiltrating immune cells.
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3.3 Collagen inhibition improved ICB
response in preclinical models

Wehypothesized that inhibiting collagen depositionmight
enhance the effectiveness of anti-PD-1 immunotherapy,
particularly in armored & cold tumors known to resist
immunotherapy. Our investigation focused on collagen
and immune modules within various murine tumors. Sur-
prisingly, analysis of tumor tissues derived from 4T1 cells
indicated the highest collagen score and a low immune
score (Figure 4A-B), suggesting that the 4T1 tumor exhib-
ited characteristics of being armored & cold. To inhibit
collagen within the TME in vivo, we administered talabo-
stat, a fibroblast activation protein (FAP) inhibitor known
for significantly reducing collagen production in CAFs
[54], to BALB/c mice bearing 4T1 tumors (Figure 4C).
Monitoring the time course of tumor volume and weight
revealed that talabostat effectively inhibited tumor growth
(Figure 4D-E). To assess the effect of collagen inhibition
on the response to ICB, we administered anti-mouse PD-
1 antibody to these models. As expected, ICB resulted
in a 50% inhibition of tumor growth (Figure 4D-E). Sur-
prisingly, the combination of talabostat with ICB further
suppressed tumor growth, achieving an inhibition rate
of approximately 75% (Figure 4D-E). This suggests that
inhibiting collagen improves the efficacy of ICB. Within
the TME, talabostat strongly inhibited collagen, whereas
anti-PD-1 treatment did not (Figure 4F, Supplementary
Figure S6). Notably, flow cytometry revealed increased
infiltration of CD8+ T cells and reduced myeloid-derived
suppressor cells (MDSCs) following talabostat or anti-PD-1
treatment (Figure 4G). The combination of talabostat and
anti-PD-1 further enhanced T cell infiltration while sup-
pressing MDSC infiltration (Figure 4G). These findings
indicate that targeting collagen triggers an inflammatory

response in the TIME, thus enhancing the efficacy of ICB
in preclinical models.

3.4 Immuno-collagenic subtypes were
conserved across a wide range of cancers

To investigate whether immuno-collagenic subtypes are
prevalent across various cancers, transcriptomic data
from 31 solid tumor types were obtained from the TCGA
dataset. These data were scored based on 21 functional
gene modules as mentioned earlier. GSVA, a model cen-
tered on biological pathways, was employed to decipher
the immuno-collagenic landscape. As anticipated, all 31
types of solid tumors could be categorized according to
the immuno-collagenic classification (Figure 5A, Supple-
mentary Figure S7). Taking skin cutaneous melanoma as
an example, a detailed analysis revealed distinct features
of the three subtypes. The armored & cold subtype,
associated with ICB resistance in other cancers, exhibited
a lower TMB level (Figure 5B-C). Notably, there was no
discernible difference in TMB between soft & hot subtypes
and quiescent types (Figure 5B-C), suggesting that TMB
alone is inadequate for predicting ICB response. Lower
TMB has been linked to ICB resistance in melanoma
[55], indicating that using TMB as a sole predictor of
response is confounded by melanoma subtypes [56].
Similar to melanoma, immuno-collagenic subtypes were
strongly associated with immunotherapy indicators across
cancer types but were not associated with TMB levels
(Supplementary Figure S8). Specific biomarkers have been
proposed for ICB response in certain tumor types, such
as microsatellite instability-high (MSI-H; or mismatch
repair deficient [dMMR]) for colon adenocarcinoma
(COAD) [57], the triple-negative subtype for BRCA [58],

F IGURE 3 Immuno-collagenic subtypes predict immune checkpoint blockade response in five cancer types. (A) Heatmap showing
scores of collagen- and immune-related gene modules in three immuno-collagenic subtypes in five cancer types. (B) Difference in the
immunotherapeutic response rate in three immuno-collagenic subtypes in the melanoma cohort (the PRJEB23709 cohort). Significance was
calculated using the Fisher exact probability test. (C, D) Difference in overall survival (C) and progression-free survival (D) in three
immuno-collagenic subtypes in the melanoma cohort. Significance was calculated using the log-rank test. (E) Difference in the
immunotherapeutic response rate in three immuno-collagenic subtypes in the BLCA cohort (the IMvigor210 cohort). Significance was
calculated using the chi-square test. (F) Difference in overall survival in three immuno-collagenic subtypes in the BLCA cohort. Significance
was calculated using the log-rank test. (G) Difference in immune subtype distribution in three immuno-collagenic subtypes in the BLCA
cohort. (H) Difference in the immunotherapeutic response rate in three immuno-collagenic subtypes in the non-triple negative breast cancer
cohort (the merged cohort of the GSE173839 dataset and the GSE194040 dataset). Significance was calculated using the chi-square test. (I)
Difference in the immunotherapeutic response rate in three immuno-collagenic subtypes in the triple negative breast cancer cohort (the
merged cohort of the GSE173839 dataset and the GSE194040 dataset and the MEDI4736 dataset). Significance was calculated using the
chi-square test. (J) Difference in the immunotherapeutic response rate in three immuno-collagenic subtypes in the STAD cohort (the
PRJEB25780 cohort). Significance was calculated using the Fisher exact probability test. Abbreviations: BLCA, bladder urothelial carcinoma;
CAF, cancer-associated fibroblast; ICB, immune checkpoint blockade; MHC, major histocompatibility complex; NTNBC, non-triple negative
breast cancer; OS, overall survival; PD-1, programmed cell death 1; PFS, progression-free survival; STAD, stomach adenocarcinoma; TGF-β,
transforming growth factor-β; TNBC, triple negative breast cancer.
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F IGURE 4 Inhibition of collagen deposition activates tumor immune microenvironment and boosts immune checkpoint blockade
efficacy in preclinical models. (A, B) Heatmap and boxplot showing scores of collagen- and immune-related gene modules in three
immuno-collagenic subtypes in mouse tumors (the GSE168846 dataset) receiving no antitumor therapy. (C) Schematic protocol of the
combination of PD-1 monoclonal antibody (mAb) and talabostat in BALB/c mice bearing 4T1 cells. (D) Effect of PD-1 mAb and talabostat on
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and Epstein-Barr virus (EBV) infection in STAD [59]. Our
analysis revealed thatMSI-Hwas enriched in the soft & hot
subtype inCOAD, the triple-negative subtypewas enriched
in the soft & hot subtype in BRCA, and the EBV rate was
highest in the soft & hot subtype in STAD (Figure 5D-F),
supporting the notion that immuno-collagenic subtypes
hold predictive value. Subsequent investigation showed
that the immuno-collagenic subtypes predicted survival
benefit in 13 cancer types, with the soft & hot subtype
indicating a favorable prognosis (Figure 5G, Supplemen-
tary Figure S9). Additionally, we examined the prognostic
value of either collagen or immune score across various
cancers. The results demonstrated that the predictive value
of immuno-collagenic subtypes for prognosis surpassed
that of either collagen or immune score (Supplementary
Figure S10). However, immuno-collagenic subtypes were
not associated with prognosis in several challenging-to-
treat tumor types, including pancreatic adenocarcinoma
(PAAD), glioblastoma multiforme (GBM), and liver
hepatocellular carcinoma (LIHC) (Supplementary
Figure S9).
We collected a total of 1,012 patient samples from 10

cancer types to investigate the suitable cancer types for
immuno-collagenic subtypes. Our histopathological anal-
ysis revealed significant variation in collagen infiltration
among these cancer types. Notably, PAAD exhibited the
highest infiltration, whereas glioma showed the lowest
(Figure 6A-B). These distinct characteristics in collagen
expression created challenges in stratification, potentially
explaining why the immuno-collagenic subtypes did not
associate with prognosis in these tumor types. To refine
our subtyping, we utilized Masson, HE, and anti-PD-L1
staining. Generally, samples displaying high levels of both
TIICs (TIIC-high) and collagen (collagen-high) were lim-
ited (Figure 6C, Supplementary Figure S11). In specific
cancers such as NSCLC, BLCA, ovarian serous cystadeno-
carcinoma (OV), cervical & endocervical cancer (CESC),
and COAD, the immuno-collagenic subtypes accurately
predicted prognosis and exhibited associations with PD-L1
expression or dMMR status (Figure 6D-G, Supplemen-
tary Figure S11). Conversely, in BRCA and STAD, while
these subtypes did not predict prognosis, they still asso-
ciated with PD-L1 expression, the triple-negative subtype,
or dMMR (Supplementary Figure S12). Notably, collagen

score alone predicted prognosis in only two cancer types,
while TIIC score alone predicted prognosis in 5 cancer
types (Supplementary Figure S13), emphasizing the signif-
icant prognostic value of the immuno-collagenic subtypes.
These subtypes were validated in a comprehensive pan-
cancer analysis and were associated with immuno-activity
and prognosis in 13 cancer types (Supplementary Table
S11). Collectively, our TCGA analysis and clinical samples
provide a comprehensive framework for subtype stratifi-
cation and prognostic prediction across various common
cancer types.

3.5 Identification of B7-H3 as a
potential target for ICB response

To determine potential therapeutic targets for armored
& cold tumor types, we conducted a pan-cancer analy-
sis to assess the expression of various drug targets. To
enhance clinical relevance, we focused on targets from
cancer drugs either in use or entering phase II clinical tri-
als. Intriguingly, targets such as fibroblast growth factor
receptor (FGFR), platelet-derived growth factor recep-
tor (PDGFR), and immune inhibition-associated targets
such as CD276 (B7-H3) and angiogenesis-related targets
exhibited high expression in armored & cold subtype, con-
trasting with lower expression in quiescent or soft & hot
subtype (Figure 7A). These findings support our subtype
categorization. Among these targets, B7-H3 demonstrated
the most significant association with subtypes in our pan-
cancer analysis (Figure 7A, Supplementary Figure S14),
exhibiting consistent associations with collagen signatures
across various cancer types (Figure 7B). Notably, B7-H3
was consistently overexpressed in tumor tissues across
different cancer types (Figure 7C), and its high expres-
sion was associated with poor prognosis in the pan-cancer
analysis (Figure 7D). Validation using our in-house BLCA
cohort confirmed the upregulation of B7-H3 in tumor tis-
sues, especially in armored & cold tumors (Figure 7E-F).
Moreover, high B7-H3 expressionwas associated with poor
prognosis in this cohort (Figure 7G).
Further investigation into the alterations within the

tumor cells and TME following anti-B7-H3 treatment
involved analyzing primary scRNA-seq data from murine

tumor volume in BALB/c mice bearing 4T1 cells. (E) Effect of PD-1 mAb and talabostat on tumor weight in BALB/c mice bearing 4T1 cells
and quantitative analysis. Data are presented as mean ± standard deviation. Significance was calculated using the ANOVA with Tukey’s
multiple-comparison test. ***: P < 0.001. (F) Representative images uncovering collagen areas in tumors from BALB/c mice. (G) CD8+ T cells
and MDSCs in tumors from BALB/c mice examined by flow cytometry. Data are presented as mean ± standard deviation. Significance was
calculated with one-way ANOVA with Tukey’s multiple-comparison test. ns: non-significance, ***: P < 0.001. Abbreviations: ANOVA,
analysis of variance; CAF, cancer-associated fibroblast; ICB, immune checkpoint blockade; MDSC, myeloid-derived suppressor cell; MHC,
major histocompatibility complex; PD-1, programmed cell death 1; TGF-β, transforming growth factor-β; TIME, tumor immune
microenvironment; TNBC, triple negative breast cancer.



MEI et al. 567



568 MEI et al.

head and neck squamous cell carcinoma tissues treated
with either vehicles or anti-B7-H3 antibodies for 4 weeks
[46]. In the tumor tissues, B7-H3-positive cells primarily
constituted tumor cells (Figure 7H). Strikingly, anti-B7-
H3 therapy not only reduced B7-H3 expression in tumor
cells but also suppressed their proliferation activity (Sup-
plementary Figure S15A-B). Additionally, targeting B7-H3
increased the populations of naive and cytotoxic T cells
while decreasing exhausted T cells (Supplementary Figure
S15C-E), indicating an activation of the immuno-cold
TME. Of equal significance was our analysis of cell-
cell communication, revealing that anti-B7-H3 therapy
notably impeded communication between tumor cells
and fibroblasts (Figure 7I, Supplementary Figure S16).
Remarkably, these communications in the control group
primarily involved collagen receptors (Supplementary
Table S12), suggesting that anti-B7-H3 therapy hindered
collagen-mediated tumor progression. Overall, these find-
ings underscore the association of B7-H3 with immuno-
collagenic subtypes and its potential as a promising target
to enhance ICB response.

4 DISCUSSION

Herein, we propose a framework that integrates the colla-
gen features with immune signatures to predict responses
to ICB treatment. Tumors obtained from a large cohort
of patients receiving ICB were categorized into three dis-
tinct subtypes: soft & hot (low collagen activity and high

immune infiltration), armored & cold (high collagen activ-
ity and low immune infiltration), and quiescent (low
collagen activity and immune infiltration). Among these
subtypes, armored & cold tumors exhibited the highest
response to ICB treatment across multiple cancer types. In
preclinical models, collagen inhibition improved response
to ICB treatment. Additionally, these subtypes were vali-
dated in a comprehensive pan-cancer analysis and were
associated with immuno-activity and prognosis in 13 can-
cer types. Moreover, B7-H3, a clinically available drug
target, was strongly expressed in armored & cold tumors
and was associated with poor prognosis, which could be
a potential candidate target for the therapy of armored &
cold tumors.
Collagen, a vital component of the ECM, is anomalously

deposited in the TME, encapsulating tumor cell clusters.
This action has several consequences: (1) it obstructs phys-
ical contact between immune cells and tumor cells [60];
(2) it mechanically restrains the cytotoxicity of immune
cells [61]; and (3) it releases bioactive fragments that reg-
ulate immune cell activity [62]. Notably, specific collagen
markers have been linked to immunotherapy response and
prognosis [63]. Given the close interaction between colla-
gen and immune cells, incorporating collagen signatures
into the classical ICB response predictor emerges as an
enticing strategy for enhancing ICB response prediction. In
this study, tumors were classified into three subtypes: soft
& hot, armored & cold, and quiescent, which effectively
predicted ICB response. To validate the hypothesis that col-
lagen impedes the inflammatory TIME, we demonstrated

F IGURE 5 Immuno-collagenic subtypes across a broad array of cancer transcriptomic data. (A) Stacked bar plots depicting the relative
proportion of each immuno-collagenic subtype in all solid cancers queried. The proportion of all tumors of a particular cancer type belonging
to individual immuno-collagenic subtypes was calculated. (B) Heatmap showing scores of collagen- and immune-related gene modules in
three immuno-collagenic subtypes in the TCGA-SKCM cohort. (C) Difference in TMB levels in three immuno-collagenic subtypes in the
TCGA-SKCM cohort. Horizontal lines in the boxplots represent the median value, the lower and upper hinges correspond to the first and
third quartiles, respectively. Significance was calculated using the ANOVA with Tukey’s multiple-comparison test. ns: non-significance, ***: P
< 0.001. (D) Difference in microsatellite instability status in three immuno-collagenic subtypes in the TCGA-COAD cohort. Significance was
calculated using the chi-square test. (E) Difference in PAM50 subtypes in three immuno-collagenic subtypes in the TCGA-BRCA cohort.
Significance was calculated using the chi-square test. (F) Difference in molecular subtypes in three immuno-collagenic subtypes in the
TCGA-STAD cohort. Significance was calculated using the chi-square test. (G) Difference in overall survival in three immuno-collagenic
subtypes in the TCGA-SKCM, TCGA-BLCA, TCGA-LUAD, and TCGA-LUSC cohorts. Significance was calculated using the log-rank test.
Abbreviations: ACC, adrenocortical carcinoma; ANOVA, analysis of variance; BLCA, bladder urothelial carcinoma; BRCA, breast invasive
carcinoma; CAF, cancer-associated fibroblast; CIN, chromosomally unstable; CESC, cervical & endocervical cancer; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; EBV, Epstein-Barr virus; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;
GS, genomically stable; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell
carcinoma; KIRP, kidney renal papillary cell carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; TGF-β, transforming growth factor-β; MESO, mesothelioma; MHC, major
histocompatibility complex; MSI, microsatellite instability; MSI-H, microsatellite instability-high; MSI-L, microsatellite instability-low; MSS,
microsatellite stability; NTNBC, non-triple negative breast cancer; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic
adenocarcinoma; PAM50, Prediction Analysis of Microarray 50; PCPG, pheochromocytoma and paraganglioma; PRAD, prostate
adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach adenocarcinoma;
TCGA, The Cancer Genome Atlas; TGCT, testicular germ cell tumor; THCA, thyroid carcinoma; THYM, thymoma; TNBC, triple negative
breast cancer; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma.
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that inhibiting collagen using an FAP inhibitor sensitized
ICB in preclinical models, proposing a potential combi-
nation therapy strategy for ICB-resistant tumors. While
talabostat revealed alterations in collagen-induced TIME,
understanding the detailed molecular mechanism under-
lying this combination therapy necessitates further inves-
tigation. Additionally, an unbiased pan-cancer drug target
analysis confirmed the collagen-immune axis. Targets
such as fibroblast activation-associated FGFR, PDGFR,
and immune inhibition-associated B7-H3, angiogenesis
associated with immuno-collagenic subtypes. Despite val-
idating only the most highly associated target, B7-H3, we
assert that targeting the collagen-immune axis through
clinically available targets holds clinical relevance and
presents a potential combination therapy strategy for
ICB-resistant tumors.
It is crucial to note that quiescent tumors, resistant to

ICB therapy, exhibited poor prognosis in certain cancer
types, with high expression of erb-b2 receptor tyrosine
kinase (ERBB) signaling and poliovirus receptor-related
4 (PVRL4). ERBB signaling is recognized for promot-
ing immune escape [64], while PVRL4 associates with
cancer progression and poor prognosis [65]. However,
whether ERBB signaling and PVRL4 sustain malignancy
and immune evasion in quiescent cancers demands fur-
ther exploration. In soft & hot tumors, aside from clas-
sical immune checkpoints, we observed high expression
of folate receptor, which represents an appealing thera-
peutic target in tumors [66]. To succinctly portray the
impact of immuno-collagenic subtypes on clinical treat-
ment, we summarized the molecular and clinical features
in Figure 8.
Our study yielded a striking discovery: the existence of

proposed subtypes across all solid tumor types, associat-
ing with the prognosis in 13 tumor types. These universal
subtypes likely stem from the widespread expression of

collagen in solid tumors. Unlike specific cancer-centric
biomarkers such as TMB or MSI associated with ICB
response, these immuno-collagenic subtypes assist in iden-
tifying ICB-responsive patients in various common cancer
types, encompassing the majority of patients with cancer.
This research demonstrates the interrelationship between
collagen and immune cell infiltrations. Notably, while 13
tumor types have shown these associations, large-scale
clinical validation is pending to determine the predictive
value of these subtypes.
Current biomarkers typically rely on transcriptomic

and genomic data to predict ICB response. However,
performing deep genome sequencing and transcriptome
sequencing for every clinical sample is impractical due
to the high economic burden on patients. In pursuit
of clinical relevance, we revisited transcriptome-based
immuno-collagenic subtypes and found that a simple
histochemistry method can replicate these subtypes
with satisfactory similarity. This simplified approach
transforms the bioinformatics-driven patient stratification
into an affordable pathological task, manageable by an
experienced pathologist. Together, this provides a uni-
versal, accurate, and user-friendly predictive biomarker
for ICB response across cancer types, benefiting a
broad range of patients with cancer undergoing ICB
treatment.
Although this study sheds light on the crucial associa-

tion between collagen and anti-tumor immune responses
in the TME, several limitations warrant acknowledgment.
Our primary analysis extracted TME features from het-
erogeneous bulk RNA-seq data, necessitating further val-
idation using high-resolution techniques such as scRNA-
seq and spatial transcriptomics to mitigate confounding
variables from the heterogeneous TME. Furthermore,
the mechanisms responsible for the negative correlation
between collagen and immune cell infiltration remain

F IGURE 6 Pan-cancer analysis of collagen distribution landscape and immuno-collagenic subtypes. (A) Representative images
uncovering various collagen distribution in 10 common cancer types. (B) Proportion of low and high collagen distribution in 10 common
cancer types. (C) Representative images uncovering collagen area, TIIC infiltration, and PD-L1expression in tumors of various subtypes in
NSCLC (the merged cohort of the HLugA180Su06 and HLugS180Su01 cohorts) and BLCA (the HBlaU079Su01 cohort), and the proportion of
four subtypes divided by collagen area and TIIC infiltration. The proportion of co-high collagen and TIIC was quietly limited. (D) Difference
in overall survival in three immuno-collagenic subtypes in the in-house NSCLC cohort. Significance was calculated using the log-rank test.
(E) Difference in PD-L1 expression in three immuno-collagenic subtypes in the in-house NSCLC cohort. Data are presented as mean ±
standard deviation. Significance was calculated using the Kruskal-Wallis test with Dunn’s multiple-comparison test. ns: non-significance, ***:
P < 0.001. (F) Difference in overall survival in three immuno-collagenic subtypes in the in-house BLCA cohort. Significance was calculated
using the log-rank test. (G) Difference in PD-L1 expression in three immuno-collagenic subtypes in the in-house BLCA cohort. Data are
presented as mean ± standard deviation. Significance was calculated using the Kruskal-Wallis test with Dunn’s multiple-comparison test. ns:
non-significance, *: P < 0.05, ***: P < 0.001. Abbreviations: BLCA, bladder urothelial carcinoma; BLCA, bladder urothelial carcinoma; BRCA,
breast invasive carcinoma; CESC, cervical & endocervical cancer; COAD, colon adenocarcinoma; CPS, Combined Positive Score; GBM,
glioblastoma multiforme; HE, hematoxylin and eosin; LGG, brain lower grade glioma; LUAD, lung adenocarcinoma; LUSC, lung squamous
cell carcinoma; NSCLC, non-small-cell lung cancer; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PD-L1,
programmed cell death 1 ligand 1; STAD, stomach adenocarcinoma; TIIC, tumor-infiltrating immune cells.
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F IGURE 7 B7-H3 as a therapeutic target in armored & cold tumors. (A) Heatmap showing expression levels of 15 drug targets based on
their mean expression level in three immuno-collagenic subtypes in pan-cancer analysis (left), and boxplot showing high expression of B7-H3
in armored & cold tumors in pan-cancer analysis. Horizontal lines in the boxplots represent the median value, and the lower and upper
hinges correspond to the first and third quartiles, respectively. Significance was calculated using the ANOVA with Tukey’s
multiple-comparison test. ns: non-significance, *: P < 0.05, **: P < 0.01. (B) Radar plot showing the positive correlation between B7-H3
expression and collagen score in most cancer types. Significance was calculated using Pearson test. (C) Expression of B7-H3 in tumor and
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nontumor tissues in The Cancer Genome Atlas (TCGA) dataset. Cancer types with tumor or nontumor samples over 5 are showed.
Significance was calculated using the Student t test. (D) Prognostic value of B7-H3 in pan-cancer samples from the TCGA dataset.
Significance was calculated using the log-rank test. (E) Representative images uncovering B7-H3 expression in tumor and non-tumor samples
in the in-house BLCA cohort and quantitative analysis. Significance was calculated using the paired Student t test. ***: P < 0.001. (F)
Difference in B7-H3 expression in three immuno-collagenic subtypes in the in-house BLCA cohort. Data are presented as mean ± standard
deviation. Significance was calculated using the one-way ANOVA with Tukey’s multiple-comparison test. ns: non-significance, *: P < 0.05. (G)
Difference in overall survival in patients with low and high B7-H3 expression in the in-house BLCA cohort. Significance was calculated using
the log-rank test. (H) t-SNE visualization of cell types annotated by classical gene markers, and the proportion of B7-H3-positive cells in
various cell types. (I) Cell-cell communications analysis in the control and anti-B7-H3 therapy groups. Abbreviations: B7-H3, B7 homolog 3;
TCGA, The Cancer Genome Atlas; ANOVA, analysis of variance; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma;
CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and
neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell
carcinoma; LGG, brain lower grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma;
UCEC, uterine corpus endometrial carcinoma; CPS, Combined Positive Score.

F IGURE 8 Schematic description of the features associated with the three pan-cancer immuno-collagenic subtypes. A framework was
developed to stratify tumors according to collagen deposition and immune activity. Soft & hot tumors are accompanied by high immune
infiltration and low collagen deposition, which showed good prognosis and responded to immune checkpoint blockade (ICB) therapy. These
tumors highly express classical immune checkpoints and folate receptor. Armored & cold tumors are accompanied by low immune
infiltration and high collagen deposition, which showed poor prognosis and resistance to ICB therapy. These tumors highly express B7-H3,
angiogenesis-related markers, platelet-derived growth factor receptor, and fibroblast growth factor receptor. Quiescent tumors are
accompanied by both low immune infiltration and low collagen deposition, which showed poor prognosis and resistance to ICB therapy.
These tumors highly express erb-b2 receptor tyrosine kinase and PVRL4. Abbreviations: B7-H3, B7 homolog 3; ERBB, erb-b2 receptor tyrosine
kinase; FGFR, fibroblast growth factor receptor; FOLR, folate receptor; ICB, immune checkpoint blockade; PDGFR, platelet-derived growth
factor receptor; PVRL4, poliovirus receptor-related 4.

largely unclear. To effectively translate these findings,
standard clinical trials across different cancer types are
imperative to scrutinize the targets highlighted in this
research.

5 CONCLUSIONS

In summary, leveraging the biological association between
collagen deposition and immune activity in the TME,
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we developed a framework with exceptional predictive
value for stratifying patients who respond favorably to
ICB therapy.Additionally, it proposes potential therapeutic
strategies for those resistant to ICB therapy. Furthermore,
immuno-collagenic subtypes surpass previous predictive
biomarkers and exhibit consistency across tumor types.
Moreover, the ease of measuring Masson staining and HE-
based detection of TIIC score sets the stage for the practical
translation of these findings.
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