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Abstract

Exercise enhances aspects of human cognition, but its intensity may matter. Recent animal

research suggests that vigorous exercise, which releases greater amounts of lactate, activates

more brain-derived neurotrophic factor (BDNF) in the hippocampus and, thus, may be optimal

for supporting cognitive function. The cognitive benefits of exercise may be further augmented

when combined with cognitive training. The sport of orienteering simultaneously combines

exercise with spatial navigation and, therefore, may result in greater cognitive benefits than

exercising only, especially at vigorous intensities. The present study aimed to examine the

effects of an acute bout of orienteering at different intensities on cognition and BDNF compared

to exercising only. We hypothesized that vigorous-intensity orienteering would increase lactate

and BDNF and improve cognition more than moderate-intensity orienteering or vigorous exer-

cise alone. Sixty-three recreationally active, healthy young adults (Mage = 21.10±2.75 years)

with no orienteering experience completed a 1.3 km intervention course by navigating and

exercising at a vigorous (80–85% of heart rate reserve) or moderate (40–50% of heart rate

reserve) intensity or exercising vigorously without navigation. Exercise intensity was monitored

using peak lactate, heart rate and rating of perceived exertion. Serum BDNF was extracted

immediately before and after the intervention. Memory was assessed using the Mnemonic

Similarity Task (high-interference memory) and the Groton Maze Learning Test (spatial mem-

ory). Both exercising and orienteering at a vigorous intensity elicited greater peak lactate and

increases in BDNF than moderate-intensity orienteering, and individuals with higher peak lac-

tate also had greater increases in BDNF. High-interference memory improved after both vigor-

ous-intensity interventions but did not improve after the moderate-intensity intervention. Spatial

memory only increased after vigorous-intensity orienteering, suggesting that orienteering at a

vigorous intensity may particularly benefit spatial cognition. Overall, the results demonstrate

the benefits of vigorous exercise on human cognition and BDNF.
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Introduction

As the brain ages, atrophy often outpaces plasticity, resulting in neurodegeneration and cogni-

tive decline. Some brain regions are more susceptible to age-related decline than others, and

the hippocampus is one of them [1]. After the age of 55 years old, the hippocampus atrophies

at a rate of about 0.5% percent per year but progresses at twice that rate after the age of 70

years old [2] and nearly eight times that rate for individuals with Alzheimer’s disease [3]. This

selective and severe hippocampal degeneration can impair critical hippocampal functions such

as learning, memory, and spatial cognition and may compromise independent living [4]. Age

is the greatest risk factor for dementia, and as the world’s population ages, dementia rates are

predicted to climb sharply to affect over 152 million people by 2050 [5]. With no known cure

for dementia, preventative measures that can help to stave off age-related cognitive decline are

essential.

Exercise is one way to boost plasticity; however, emerging evidence suggests that not all

forms of exercise are as effective. Vigorous exercise tends to evoke greater increases in plastic-

ity through its stimulation of brain-derived neurotrophic factor (BDNF), a neurotrophic factor

that supports the growth, function and survival of brain cells [6, 7]. Vigorous exercise has been

associated with memory improvements in both younger [8] and older adults [9]. New research

from animal models suggests that muscle-to-brain signalling during vigorous exercise is medi-

ated by l-lactate (herein referred to as lactate), a product of pyruvate metabolism under anaer-

obic conditions that accumulates with increasing exercise intensity [10] and increases

exponentially beyond the lactate threshold of ~ 4mmol/L of lactate in untrained adults [11,

12]. Although lactate has historically and erroneously been considered an inert metabolic

waste [13], recent evidence points to its importance as both a fuel source [14] and an activator

of BDNF [15–18] with rapid effects. Mere minutes after the initiation of vigorous exercise, lac-

tate-activated BDNF has the potential to facilitate long-term potentiation within existing neu-

ral synapses to enhance neuroplasticity [19]. In this way, lactate accumulation during an acute

bout of vigorous exercise may explain why acute exercise can immediately enhance certain

cognitive functions [20]. To date, most research on the lactate-cognition connection has been

done in animal models; only a few studies demonstrated the association in humans [10, 21–

23]. Therefore, a primary objective of the present study was to examine the role of lactate in

muscle-to-brain signalling on BDNF and cognition in humans.

We also wanted to examine whether the effects of vigorous exercise could be enhanced

when simultaneously combined with a cognitively challenging task. During the process of neu-

rogenesis, exercise predominantly impacts the proliferation of newborn neurons in the dentate

gyrus, whereas cognitive training predominantly impacts the maturation and survival of those

newborn brain cells [24]. Consequently, when combined, there is the potential for additive

effects. Indeed, simultaneous exercise-cognition interventions in older adults improves cogni-

tion more than sequential interventions or cognitive training alone [25]. For example, older

adults who engaged in spatial navigation while treadmill walking experienced enhancements

in their spatial cognition more than older adults who only walked on the treadmill. Moreover,

after four months of training, walkers saw a decrease in hippocampal volume, whereas naviga-

tors maintained a consistent volume, suggesting that there are added neurogenic benefits of

combining exercise with navigation [26]. While intriguing, the mechanisms underlying these

augmentative effects in humans are unclear, especially concerning the role that lactate and

BDNF may play in promoting cognition, and testing those associations was the primary aim of

this study.

For our simultaneous exercise-cognition training, we used the sport of orienteering, which

naturally and simultaneously integrates exercise with spatial navigation and, therefore, may be

PLOS ONE Effects of orienteering on lactate, BDNF and cognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0303785 May 22, 2024 2 / 22

the manuscript. There was no additional external

funding received for this study.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0303785


an optimal way to combine exercise and cognitive training to target hippocampal plasticity

and function [27]. The sport of orienteering requires the athlete to navigate through a series of

checkpoints across an unknown terrain as fast as possible using only a topographical map and

a compass [28]. Through focused attention and quick deduction of key information, highly

skilled orienteers use spatial information and mental representations of an environment to

navigate efficiently through space [28, 29], which is a critical function of the hippocampus

[30]. Atrophy of the hippocampus impairs spatial navigation [31], and in cases of advanced

AD, severe hippocampal degeneration renders the hippocampus unable to create, store, or use

mental maps for wayfinding [32], causing disorientation even in familiar environments, a con-

dition known as topographical disorientation [33, 34]. In line with the “use it or lose it”

hypothesis [35], modern-day dependencies on vehicles for transport and passive navigation

guided by Global Positioning Systems (GPS) cause most humans to underutilize their wayfind-

ing abilities, leading to spatial memory deficits [36] and a reduced sense of direction [37]

which orienteering has the potential to rescue. Moreover, to navigate through their environ-

ment, orienteers engage in various sensorimotor processes, and therefore, concepts of embod-

ied cognition may also be relevant [38].

Indeed, our prior research revealed that orienteering experts aged 18–87 reported superior

navigational strategies and better spatial memory than non-orienteering controls [27]. This

recent observation resembles earlier research on London taxi drivers who, compared to con-

trols, had a higher degree of navigational competency [39]. The taxi drivers also had a larger

posterior hippocampus, a brain region primarily involved in supporting better visuospatial

cognition, whose larger size was associated with greater years of experience [39–41]. However,

not all parts of their hippocampus were larger; the anterior hippocampus, historically under-

stood for its role in mediating episodic memory, was smaller in taxi drivers compared to con-

trols, suggesting a trade-off between spatial and episodic memory that may be dependent on

the training experience. Notably, the same trade-off was not seen with orienteering in that

expert orienteers reported better spatial memory but not worse episodic memory to controls

[27]. The simultaneous integration of exercise with navigation may be preventing the trade-off

[27]. To date, only a handful of studies have examined the effect of orienteering training on

cognition [42–44]; most have examined spatial cognition, and none have manipulated its

intensity or examined lactate and BDNF.

Therefore, the present study aimed to examine the effects of orienteering at different exer-

cise intensities (vigorous versus moderate) compared to vigorous intermittent exercise only on

lactate, BDNF and different aspects of hippocampal-dependent memory. We hypothesized

that the vigorous-intensity interventions would increase lactate more than the moderate-inten-

sity intervention, resulting in a greater increase in BDNF and memory. Given the potential for

additive effects of exercise-cognition training, we hypothesized that orienteering at a vigorous

exercise intensity would elicit larger gains in BDNF and memory compared to orienteering at

a moderate intensity or vigorous exercise alone.

Methods

Participants

Sixty-three participants (n = 41 female) who were healthy young adults (Mage = 21.10,

SD = 2.75, range = 18–30) were recruited to the study using self-referral based on the criteria

of being aged 18–30 years old and recreationally active (i.e., achieving at least 150 minutes up

to 4.5 hours of recreational moderate-to-vigorous physical activity per week, as confirmed

using the Physical Activity and Sedentary Behaviour Questionnaire; [45]. Recruitment was

ongoing between July 2022 to May 2023. Participants were only included if they had engaged
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in orienteering from zero to a maximum of five times, a criterion based on previous research

where an “orienteer” was defined as someone with at least six sessions of orienteering training

[46]. Participants were screened to ensure eligibility using the following self-reported criteria:

1) no diagnosis of a neurological disorder or major health condition, 2) English language flu-

ency, and 3) no colour blindness. Written informed consent was obtained through an online

questionnaire. Participants were randomized into one of three groups: 1) moderate-intensity

orienteering (n = 22), 2) vigorous-intensity orienteering (n = 21) and 3) vigorous-intensity

exercise (n = 20), as described below. Participants received an honorarium of thirty Canadian

dollars for their time. This study was reviewed and approved by the Hamilton Integrated

Research Ethics Board (#14560) before recruitment and data collection.

Materials and procedure

Baseline questionnaires. Following randomization and before the in-lab session, partici-

pants completed an online questionnaire (LimeSurvey software) to collect demographic infor-

mation (see S1 Appendix).

All participants then completed the Physical Activity and Sedentary Behaviour Question-

naire [45] to assess their average weekly amount of moderate-to-vigorous aerobic exercise.

The total activity amount was determined by multiplying the average length of an exercise ses-

sion by the average number of active days (minutes/week).

The Navigational Strategy Questionnaire (NSQ) was used to assess participants’ baseline

navigational tendencies [47]. Using a 5-point Likert scale, participants rated 44 items corre-

sponding to three different navigational strategies: allocentric spatial processing, egocentric spa-

tial processing, and procedural processing. For each strategy, an average score was calculated.

Baseline autobiographical memory was assessed using the Survey of Autobiographical

Memory (SAM; [48]. In the SAM, subjective memory is evaluated across 26 items which are

answered using a 5-point Likert scale. Each item is weighted and summed to obtain an average

for four memory domains including episodic, spatial, semantic, and future memory. In this

study, we examined episodic and spatial memory specifically.

Lab-based baseline measurements. In the lab, before the intervention, the participant’s

height (centimetres), weight (kilograms), and waist circumference (in centimetres and taken

from the anterior-superior iliac spine upon exhalation) were measured by a trained researcher.

Resting heart rate (HRRest) was determined using a wetted Polar HR-10 chest heart rate

(HR) monitor synchronized to a Polar Pacer Pro watch (Polar Electro Canada, Lachine, Que-

bec). The lowest HR value recorded in the final two minutes of a 12-minute supine resting

period was used.

Maximum heart rate (HRMax) was estimated using the equation HRMax = 208 - (0.7 * age)

[49]. HRRest and HRMax were used to calculate their exercising heart rate zones for the inter-

vention using the percent of heart rate reserve (HRR) and the equation (HRMax−HRRest) *
(intensity) + HRRest. For the moderate-intensity orienteering group, the exercise intensity

range was calculated as 40–50% of HRR, and 80–85% of HRR was used for the vigorous-inten-

sity orienteering and vigorous-intensity exercise groups.

Estimates of VO2 peak were calculated using the WorldFitnessLevel.org website [50]. Partici-

pants were asked to respond to the website questions as accurately as possible and input their

anthropometric and HR measurements.

Intervention measures of exercise intensity. During the intervention, HR, ratings of per-

ceived exertion (RPE) and lactate were recorded at the middle and end of the intervention

course and 10 minutes post-intervention. The highest of these values was analyzed. Heart rate

was recorded using the Polar HR-10 monitor. RPE was captured using the Borg 1–20 Scale
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[51]. Lactate was measured from a sample of whole blood obtained from the fingertip using

the Lactate Plus portable analyzer (Nova Biomedical, Waltham, MA).

Pre- and post-intervention measurements. Before the intervention, the cognitive testing

was completed before obtaining a serum sample for BDNF. Following the intervention, the

blood sample was collected within 10 minutes of finishing the intervention course and was fol-

lowed by cognitive testing.

For BDNF, three-hour fasted samples of venous blood were obtained from a vein in the

antecubital fossa. Samples were collected into BD Vacutainer SST tubes (BD, Franklin Lakes,

NJ), chilled on ice, allowed to clot for a minimum of 45 minutes following sample collection

and then centrifuged at 1000 x g for 15 minutes at 4˚C. For all samples, 300μL of supernatant

was collected to obtain serum, aliquoted into microtubes, and stored immediately at -20˚C

until analysis. The concentration of serum BDNF was quantified using a sandwich Biosensis

Mature BDNF RapidTM ELISA Kit (Biosensis Pty Ltd, Thebarton, Australia). Samples were

diluted 100x and were run in duplicate. Using a BioTek SynergyMx spectrophotometer, absor-

bance was measured at 450 nm and analyzed using Gen 5 1.11 Software (BioTek Instruments

Inc., Winooski, VT). Select samples whose concentration fell above the standard curve of the

preliminary analysis were re-analyzed using a 125x dilution and the same protocol.

Memory was tested in two ways. First, memory was tested using Kirwan and Stark’s Mne-

monic Similarity Task [52–54], a modified object recognition task that places a large emphasis on

high-interference memory and hippocampal function. The Mnemonic Similarity Task begins

with a study phase in which participants are shown a series of images of 60 everyday objects dis-

played on the screen for two seconds and must classify whether the image is an ‘indoor’ or an ‘out-

door’ item. This is immediately followed by a test phase, in which participants are shown 20

‘repeat’ images (correct response = “old”), 20 ‘lure’ images that are highly similar but not identical

to a previous image (correct response = “similar”), and 20 completely new, ‘foil,’ images (correct

response = “new”) and asked to classify them. The Mnemonic Similarity Task has two measures

which provide a valuable distinction between hippocampal-dependent high-interference memory

and recognition memory. The “lure discrimination index” is a measure of high-interference

memory, calculated as [p (“Similar” | Lure image)–p (“Similar” | Foil image)] × 100, and reflects

one’s ability to correctly classify ‘lure’ items as “similar”. High-interference memory relies on the

ability to remember specific details during encoding [55], which is dependent on the function of

the hippocampus and is associated with hippocampal neurogenesis [54]. The second measure of

the Mnemonic Similarity Task is general “recognition memory”, defined as the ability to correctly

label a ‘repeat’ image as “old,” [p (“Old” | Repeat image)–p (“Old” | Foil image)] × 100. Recogni-

tion memory does not require participants to distinguish between highly interfering memories. It

is less impacted by exercise and, therefore, theorized to be less dependent on hippocampal neuro-

genesis [56, 57]. The Mnemonic Similarity Task was administered before and after the interven-

tion with different stimulus sets, and the order of each set was counterbalanced.

The second test of memory assessed spatial learning and memory using a computerized

version of the Groton Maze Learning Test, adapted from the Milner Maze [58]. The 2D maze

consists of a 28-step pathway hidden beneath a 10x10 grid of grey tiles that is revealed by click-

ing on adjacent tiles within the matrix using a mouse. If a correct tile in the sequence is

selected, the tile briefly turns green, a rewarding auditory tone is played, and the participant

can select a new tile. If an incorrect tile is selected, the tile briefly turns red, an incorrect audi-

tory signal is played, and the participant must click on the previously correct tile before choos-

ing a new tile. In the learning phase, participants complete the same maze five times in a row

as fast as possible. To test delayed memory, participants complete the same maze once more

following a 10-minute break. A Maze Efficiency Index [59] was calculated using the equation

Maze Efficiency Index = number of correct moves per second/Log10 (time of the trial). Mean
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Maze Efficiency Index was calculated for the learning phase by averaging across the five learn-

ing trials whereas the Maze Efficiency Index for the test phase consisted of performance on the

single test trial. The Groton Maze Learning Test was administered before and after the inter-

vention with randomized maze sequences using computer software.

The intervention. The intervention started with a practice phase during which all partici-

pants completed a 500-meter outdoor practice course on the McMaster campus that included

six orienteering checkpoints to get warmed up and familiarized with the intervention proce-

dures. Participants learned how to read their HR on the Polar Pacer Pro GPS watch and main-

tain their pace so that their HR remained in the target range. Participants in the orienteering

groups (both moderate and vigorous intensity) were taught how to use the orienteering map

legend, orient their map, use the map to plan a route and locate checkpoints, and re-locate

themselves should they make an error. Then, to simulate the intervention, the orienteering

groups located the first three checkpoints at a light walking pace of 30–40% of HRR with the

help of a researcher. For the fourth checkpoint, participants were encouraged to locate the

checkpoint independently. For the final two checkpoints, participants located the checkpoints

on their own and at their target intensity (moderate-intensity: 40–50% of HRR) or running

(vigorous-intensity: 80–85% of HRR) pace. In contrast, participants in the vigorous exercise

only group did not actively navigate. Instead, they followed a researcher around the 500 m

course, beginning at a walking pace of 30–40% of HRR for the first four checkpoints and at

their target intensity of 80–85% of HRR for the final two checkpoints.

Immediately after the practice phase, all participants were led to the start location of the

intervention course by a researcher, and the Polar Pacer Pro GPS watch was started to track

the participant’s HR and route. All participants completed the intervention course, which was

approximately 1.3 kilometers and consisted of 10 checkpoints around the McMaster Univer-

sity campus according to their intervention condition. Those in the orienteering groups navi-

gated to the checkpoints using the map at either a moderate (40–50% of HRR) or vigorous

intensity (80–85% of HRR) along any route they chose. For safety reasons, a researcher silently

followed participants during the intervention. For participants who were severely lost or had

ventured outside the bounds of the orienteering map, the researcher informed them of their

current location to ensure their safety but did not provide any additional information that

would alter their navigational decisions. In contrast, those in the exercise only group exercised

at a vigorous intensity (80–85% of HRR) but did not engage in orienteering. Instead, a member

of the research team led the participant along the most efficient route.

All participants were responsible for tracking their HR at each checkpoint and were

instructed to adapt the pace or pause until their HR returned to the target zone for a maximum

of one minute. At the midpoint and finish checkpoints, a second researcher recorded HR, RPE

and blood lactate.

Statistical analysis

All data were analyzed using SPSS (IBM SPSS Statistics for Macintosh, version 28.0; IBM

Corp., Armonk, NY). For all study variables, descriptive statistics were computed. Normality

was assessed using skewness, kurtosis, and visual inspection of histograms. Data were screened

for outliers using visual inspection of boxplots. For BDNF, cases were removed if BDNF con-

centration was above the standard curve, in which seven cases were removed (moderate orien-

teering = 1, vigorous orienteering = 4, vigorous exercise = 2). For the Mnemonic Similarity

Task, three cases were removed as the difference in the percent corrected and raw score for

appropriate key use was >8% (moderate orienteering = 2, vigorous orienteering = 1). Cases

were also removed due to programming errors with the cognitive test software (Mnemonic
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Similarity Task: moderate orienteering = 1, vigorous orienteering = 1; Groton Maze Learning

Test: moderate orienteering = 1, vigorous orienteering = 1) and because of errors in GPS data

recording (vigorous orienteering = 2). Only complete cases were analyzed for each variable.

All tests were computed with an alpha criterion of .05 and a 95% confidence interval.

Potential covariates and manipulation checks. To test for potential covariates, a one-

way analysis of variance (ANOVA) was used to assess group differences in all demographic

variables, weekly physical activity, spatial navigation tendencies and autobiographical memory,

as well as pre-intervention differences in BDNF and cognition. To ensure that our intervention

was adequate in reaching the desired exercise intensity, one-way ANOVA tests were computed

for peak HR, peak RPE and peak blood lactate between groups. For blood lactate, a Kruskal-

Wallis Means Ranks Test was used to confirm that the proportions of those above or below the

lactate threshold of 4mmol/L differed by group, thus indicating that our intervention was ade-

quate in reaching the desired exercise intensity.

Primary outcome measures. All primary outcome variables (BDNF, high-interference

memory (lure discrimination index), recognition memory and spatial learning and memory

efficiency) were analyzed using separate 2 x 3 mixed model ANOVAs with a within-subjects

factor of time (pre, post) and between-subjects factor of group (moderate orienteering, vigor-

ous orienteering, vigorous exercise). A priori one-sample t-tests (one-tailed) were computed to

evaluate the pre- to post-intervention increases in BDNF and memory for each group with

Hedge’s correction. Post hoc analyses of any between-group comparisons were performed

with Bonferroni correction. Spearman’s correlation was used to evaluate the relationship

between peak lactate and percent change in BDNF.

To further explore the relationship between peak lactate, percent change in BDNF and cog-

nitive function, we computed a composite cognitive score was calculated by averaging the z-

scores for the post-minus-pre change score values for each of our cognitive measures (high

interference memory, recognition memory, Groton Maze learning efficiency, and Groton

Maze test efficiency). Then, we performed an exploratory analysis using Spearman’s correla-

tion to evaluate the relationship between the composite cognition score with peak lactate and

percent change in BDNF. Finally, we conducted a partial Spearman’s correlation to determine

whether the association between composite cognition score and peak lactate was diminished

after controlling for the percent change in BDNF.

Secondary outcome measures. An exploratory analysis was done to quantify differences

in the navigational performance of the two orienteering groups. The distance travelled by each

of the orienteering groups (moderate orienteering, vigorous orienteering) was compared to

the vigorous exercise group which, by design, travelled the most efficient route. A 2 x 3 mixed

model ANOVA with a within-subjects factor of course half (start to midpoint, midpoint to fin-

ish) and between-subjects factor of group (moderate orienteering, vigorous orienteering, vig-

orous exercise) was used to identify group differences in distance travelled as indicated by the

Polar Pacer Pro GPS watch. Post hoc analyses used a Bonferroni correction. Spearman’s corre-

lation was used to determine existing associations between the total distance travelled and sub-

jective measures of spatial processing/navigation and memory and for baseline measures of

cognitive function for the two orienteering groups.

Results

Participants

Table 1 reports descriptive statistics of key baseline variables across groups. Ninety-two per-

cent (n = 58/63) of participants were students at McMaster University. Participants did not dif-

fer in pre-exercise measures of high-interference or recognition memory or in spatial learning
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and memory. However, pre-intervention BDNF levels were higher for the moderate orienteer-

ing group than the vigorous orienteering or vigorous exercise groups (p< .001) (Table 2). Uni-

variate ANOVA tests confirmed no other baseline differences between groups (Table 1).

Intensity manipulation checks

Our intervention successfully induced the appropriate level of exercise intensity for each

group, as confirmed by a significant main effect of group for peak lactate, F(2, 60) = 17.49, p<

Table 1. Descriptive statistics between intervention groups.

Moderate Orienteering Vigorous Orienteering Vigorous Exercise

n 22 21 20

Age (years) 20.48 ± 2.34 21.76 ± 3.36 21.05 ± 2.46

Age Range (years) 18–28 18–30 18–26

Sex (F/M) 14/8 13/8 14/6

Height (cm) 170.16 ± 7.52 166.79 ± 8.53 169.40 ± 9.30

Weight (kg) 67.38 ± 10.53 68.91 ± 12.64 63. 91 ± 14.89

WC (cm) 82.52 ± 7.15 83.80 ± 7.72 81.97 ± 10.17

Aerobic Physical Activity (min/week) 172.74 ± 91.12 172.62 ± 99.64 198.25 + 103.76

Predicted VO2Max (mL/kg/min) 49.23 ± 6.58 50.19 ±6.23 48.95 ± 5.51

Education

< Secondary 0% 0% 5%

Secondary 82% 57% 75%

Post-Secondary 18% 24% 5%

Post-Graduate 0% 19% 15%

McMaster Student (No/Yes) 1/21 2/19 2/18

McMaster Campus Familiarity (%)

Not Familiar 5% 5% 5%

Somewhat Familiar 0% 5% 15%

Neutral 41% 24% 20%

Fairly Familiar 32% 29% 25%

Very Familiar 23% 38% 35%

Orienteering Engagement (%)

None 77% 90% 80%

1–2 times 18% 5% 15%

3–4 times 5% 5% 5%

Video Games (hours/week)

None 55% 62% 55%

<1 to <3 27% 24% 30%

3 to <7 14% 10% 15%

7 to <9 5% 5% 0%

NSQ

Egocentric 3.34 ± 0.72 3.09 ± 0.61 3.02 ± 0.84

Allocentric 3.12 ± 0.65 2.97 ± 0.61 2.85 ± 0.79

Procedural 3.65 ± 0.47 3.64 ± 0.55 3.58 ± 0.68

SAM

Episodic 100.68 ± 15.51 100.54 ± 12.32 102.53 ± 14.07

Spatial 98.21 ± 12.91 96.10 ± 14.01 97.10 ± 12.72

NSQ, Navigational Strategy Questionnaire; SAM, Survey of Autobiographical memory; WC, waist circumference. Values reflect M ± SD.

https://doi.org/10.1371/journal.pone.0303785.t001
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.001, η2 = .37, peak RPE F(2, 60) = 21.56, p< .001, η2 = .42, and peak HR F(2, 60) = 57.26, p<

.001, η2 = .66. Post hoc comparisons indicate that the moderate orienteering group had lower

peak HR, RPE and lactate than the vigorous orienteering and vigorous exercise groups which

did not differ from each other (Fig 1). Peak HR was within the instructed range of 40–50% of

Table 2. Mean pre- and post-intervention values for primary variables.

Moderate Orienteering Vigorous Orienteering Vigorous Exercise

n 19 19 20

Recognition Memory

Pre (%) 87.89 ± 10.46 87.47 ± 8.02 85.20 ± 12.67

Post (%) 84.84 ± 9.95 85.21 ± 11.57 84.15 ± 11.91

High-Interference Memory

Pre (%) 49.89 ± 26.22 47.68 ± 17.08 45.10 ± 22.27

Post (%) 42.37 ± 30.01 49.95 ± 18.55 52.20 ± 19.82

Groton Maze Learning Efficiency

Pre 26.12 ± 10.32 23.28 ± 6.85 24.60 ± 5.89

Post 29.45 ± 7.88 29.42 ± 6.45 29.92 ± 4.52

Groton Maze Test Efficiency

Pre 35.69 ± 14.24 30.62 ± 9.69 34.19 ± 10.68

Post 38.32 ± 11.07 36.24 ± 9.61 38.42 ± 9.23

n 21 17 18

BDNF

Pre BDNF (ng/mL) 40.96 ± 10.15 38.85 ± 9.30 29.00 ± 6.19

Post BDNF (ng/mL) 42.33 ± 9.75 39.78 ± 8.71 31.33 ± 5.39

BDNF, Brain-derived neurotrophic factor. Values reflect M ± SD.

https://doi.org/10.1371/journal.pone.0303785.t002

Fig 1. Group differences in exercise intensity metrics. (A) Peak HR, (B) peak RPE and (C) peak lactate achieved during the intervention between groups.

Bars reflect mean score, and error bars represent ± SEM. *** = p< .001.

https://doi.org/10.1371/journal.pone.0303785.g001
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HRMax for the moderate-intensity group and 80–85% of HRMax for the vigorous-intensity

groups. The proportion of participants above the estimated LT of 4mmol/L differed signifi-

cantly between groups, H(2) = 21.70, p< .001, with more participants above the LT in the

vigorous orienteering and vigorous exercise groups than the moderate orienteering group

(Fig 2).

Primary outcomes

BDNF. Fifty-six complete cases were analyzed (moderate orienteering: n = 21, vigorous

orienteering: n = 17, vigorous exercise: n = 18). The mixed model ANOVA revealed a signifi-

cant main effect of time, F(1, 53) = 10.51, p = .002, ηp
2 = .17, and group, F(2, 53) = 10.15, p<

.001, ηp
2 = .28, but no interaction. Fig 3A shows an increase in BDNF for all groups over time,

but the change was only significant for the vigorous orienteering, t(16) = 1.83, p = .043, g = .42,

and the vigorous exercise groups, t(17) = 3.09, p = .003, g = .70, but not the moderate orien-

teering group, t(20) = 1.43, p = .084, g = .30. The vigorous exercise group’s BDNF levels were

significantly lower at baseline and post-intervention (Table 2) than the other two groups

(moderate orienteering, p< .001; vigorous orienteering, p = .020) (Fig 3B). This suggests that

the group differences seen here reflect baseline differences that are unrelated to the interven-

tion, and because of this, the relative change score (i.e., percent change) for BDNF was used in

the correlation and mediation analyses below.

Fig 4 depicts the results from the Spearman’s correlation, whereby a higher peak lactate

achieved during exercise significantly correlated with a greater percentage increase in BDNF,

rs (54) = .28, p = .037.

Fig 2. Proportion of intervention group above or below lactate threshold. Values reflect the number of participants

per group with peak lactate above the lactate threshold of 4mmol/L.

https://doi.org/10.1371/journal.pone.0303785.g002
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High-interference and recognition memory. Fifty-eight cases were included in the anal-

ysis (moderate orienteering: n = 19, vigorous orienteering: n = 19, vigorous exercise: n = 20).

For high-interference memory, there was a significant group by time interaction, F(1, 55) =

3.23, p = .047, ηp
2 = .11. As shown in Fig 5, high-interference memory performance improved

for the vigorous orienteering and vigorous exercise groups but declined for the moderate ori-

enteering group. The difference between the moderate orienteering and vigorous exercise

groups was significant, t(37) = -2.45, p = .019, g = -.77. There were no other effects for high-

interference memory and no effects or interaction for recognition memory (Table 2).

Spatial learning and memory. Sixty-one complete cases were analyzed (moderate orien-

teering: n = 21, vigorous orienteering: n = 20, vigorous exercise: n = 20). Both the learning and

delayed test trials of the Groton Maze Learning Test revealed a significant main effect of time

for both the learning phase, F(1, 58) = 30.39, p< .001, ηp
2 = .35, and test phase, F(1, 58) = 8.09,

p = .006, ηp
2 = .12, suggesting that all groups improved in spatial processing efficiency post-

intervention (Table 2). For learning trials, Fig 6A depicts a significant improvement in perfor-

mance for all groups following the intervention, though the largest effect size was for the vigor-

ous orienteering group, t(19) = 4.11, p< .001, g = .88, followed by the vigorous exercise group,

t(19) = 3.43, p = .001, g = .74, and the moderate orienteering group, t(20) = 2.14, p = .022, g =

.45. For the delayed test performance (Fig 6B), only the vigorous orienteering group improved

significantly, t(19) = 2.70, p = .007, g = .58. There was no effect of group or interaction for

either the learning or delayed test trials.

Peak lactate, BDNF and cognitive function. In this exploratory analysis, the Spearman’s

correlation revealed significant correlations such that greater improvements in composite cog-

nition scores were associated with higher peak lactate, rs (54) = .26, p = .049, and greater

Fig 3. Change in BDNF concentration and group differences following intervention. (A) Bars reflect mean change in BDNF concentration between groups,

error bars represent ± SEM. (B) A boxplot showing the interquartile range, median, minimum, and maximum concentration of BDNF between groups from

pre- to post-intervention * = p< .05, ** = p< .01, *** = p< .001.

https://doi.org/10.1371/journal.pone.0303785.g003
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increases in BDNF, rs (47) = .29, p = .041. However, after controlling for the percent change in

BDNF, the association between cognition and peak levels of lactate obtained during exercise

was no longer significant, rs (44) = .21, p = .143.

Secondary outcomes

Sixty-one complete GPS cases were analyzed (moderate orienteering, n = 22, vigorous orien-

teering, n = 19, vigorous exercise, n = 20). The mixed model ANOVA for distance travelled

revealed a significant main effect of group (F(2, 58) = 8.81, p< .001, ηp
2 = .23) such that the

orienteering groups travelled longer (moderate orienteering: p = .018; vigorous orienteering: p
< .001) than those in the non-orienteering group, but the orienteering groups did not differ (p
= .509). Distances travelled can be found in Table 3. Fig 7 depicts the extra distance travelled

by the two orienteering groups compared to the most efficient route.

Across participants in the orienteering groups, those who travelled farther and, by exten-

sion, made more errors reported significantly worse egocentric spatial processing tendencies

from the NSQ (rs (39) = -.44, p = .004) and subjective spatial memory from the SAM (rs (39) =

-.44, p = .004). They also performed significantly worse on the delayed test phase of the Groton

Maze Test at baseline (rs (37) = -.35 p = .030). Though not significant, allocentric spatial pro-

cessing trended in the same direction (rs (39) = -.27, p = .086). In contrast, procedural spatial

processing (rs (39) = -.13, p = .438) and subjective episodic memory (rs (39) = .05, p = .744)

were not related to the total distance travelled (Table 4), nor were any other aspects of cogni-

tion measured at baseline (Table 5).

Fig 4. Correlation between peak lactate and percent change in BDNF. A scatterplot of ranked cases showing the

correlation between the percent change in BDNF, and the peak lactate achieved during exercise. Y = 0.242x + 20.89,

R = 0.28, p = .037.

https://doi.org/10.1371/journal.pone.0303785.g004
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Discussion

The present study was the first to examine the effects of an acute bout of orienteering versus

exercise on cognition in a sample of healthy young adults who were recreationally active but

unfamiliar with orienteering. The results revealed a strong effect of exercise intensity such

that the vigorous-intensity interventions in the form of either running or orienteering elic-

ited greater increases in lactate, BDNF and memory than the moderate-intensity interven-

tion. Additionally, vigorous orienteering improved spatial learning and memory more than

vigorous running, suggesting an additional benefit of simultaneous training.

Fig 5. Change in high-interference memory following intervention. Bars reflect mean change in performance on the

lure discrimination index measure of the Mnemonic Similarity Task between groups, and error bars represent ± SEM.

* = p< .05.

https://doi.org/10.1371/journal.pone.0303785.g005
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This study demonstrates a link between lactate, BDNF and cognition in humans. A novel

and important finding is that the higher peak lactate induced by our vigorous exercise inter-

ventions was associated with greater percent increases in BDNF and better memory than our

moderate-intensity intervention, lending support for the hypothesis that lactate mediates mus-

cle-to-brain signalling [10, 15, 16, 19]. Cognition was also significantly related to peak levels of

lactate obtained during exercise. Interestingly, when controlling for BDNF, the relationship

between cognition and lactate was no longer significant. We hypothesize that BDNF may

partly underlie the effects of lactate on cognition, however, further work is needed to

Fig 6. Change in spatial learning and memory following intervention. (A) Bars reflect mean change in Groton Maze learning efficiency by group. (B) Bars

reflect mean change in Groton Maze test efficiency by group. Error bars represent ± SEM. * = p< .05, ** = p< .01, *** = p< .001.

https://doi.org/10.1371/journal.pone.0303785.g006

Table 3. Distances travelled on the intervention course between groups.

Moderate Orienteering Vigorous Orienteering Vigorous Exercise

n 22 19 20

Average Distance Start to Midpoint (m) 678.18 ± 136.40 718.42 ± 130.74 606.5 ± 13.09

Average Distance Midpoint to Finish(m) 681.82 ± 38.62 697.37 ± 57.24 641.00 ± 13.34

Average Total Distance (m) 1360 ± 149.83* 1415.79 ± 162.25*** 1247.50 ± 17.73

Values reflect M ± SD.

* = p< .05 compared to the vigorous exercise group

** = p< .01 compared to the vigorous exercise group

*** = p< .001 compared to the vigorous exercise group.

https://doi.org/10.1371/journal.pone.0303785.t003
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Fig 7. Routes traversed on the intervention course between groups. Figures show the routes traversed by each study group along

the (approximately) 1.3 km intervention course around the McMaster University campus. Routes in pink show the paths of those in

the vigorous exercise group (n = 20) who followed a researcher throughout the course at a running speed. These pink routes indicate

the most efficient route. Routes in yellow show the paths of the vigorous orienteering group (n = 19) who actively navigated the

intervention course at a running speed. The blue routes are those in the moderate orienteering group (n = 22) who navigated the

intervention course at a walking speed. All routes were tracked using a Polar Pacer Pro GPS watch. Note that all participants started

and finished in the same location, and checkpoints remained in the same location for all trials; any major differences in routes, such

as a different starting location (seen in vigorous orienteering group map) can be attributed to GPS accuracy.

https://doi.org/10.1371/journal.pone.0303785.g007

Table 4. Correlation matrix between distance travelled in the intervention course by the orienteering groups and

subjective measures.

1 2 3 4 5 6

1. Total Distance (m) -

2. NSQ Egocentric -.44 ** -

3. NSQ Allocentric -.27 .55 *** -

4. NSQ Procedural -.13 -.32 * -.02 -

5. SAM Episodic .05 .06 -.11 -.14 -

6. SAM Spatial -.44 ** .59 *** .49 *** -.26 -.11 -

NSQ, Navigational Strategy Questionnaire; SAM, Survey of Autobiographical Memory.

* = p< .05

** = p< .01

*** = p< .001.

https://doi.org/10.1371/journal.pone.0303785.t004
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understand how exercise-induced lactate impacts cognition through and beyond its effects on

BDNF [10, 15, 16, 19].

On top of vigorous-intensity effects, running while navigating conferred additional benefits

on our measure of spatial cognition. Spatial learning and memory were tested using the

Groton Maze Learning Test, which is a close 2D analog to the 3D wayfinding of orienteering.

Although all groups increased in spatial learning efficiency, the vigorous orienteering group

improved the most and was the only group to improve in spatial memory after a delay. It is

important to consider why. One reason relates to the specific cognitive processes tested. Dur-

ing the Groton Maze Learning Test, participants had to recall the maze route immediately and

after a 10-minute delay, requiring skills that are highly dependent on the hippocampus, a brain

region that is responsive to intervention-induced plasticity [60]. A second reason why orien-

teering may preferentially benefit spatial cognition relates to its overlap in cognitive processes

engaged by the task. In general, cognitive training effects tend to transfer more readily to

“near-transfer” tasks, i.e., tasks that closely resemble the cognitive demands of the training pro-

tocol, than “far-transfer” tasks, i.e., tasks that depend on more disparate cognitive processes

[61, 62]. In the case of orienteering, spatial cognition would classify as a near-transfer task and

based on this framework, would be expected to benefit the most.

In contrast, the high-interference memory task would be considered a far-transfer task and,

by the same logic, would be less likely to show additive effects, as was observed. Instead, high-

interference memory (lure discrimination index) improved to a similar extent for both vigor-

ous exercise and orienteering groups, suggesting that this aspect of cognition is more sensitive

to the acute effects of exercise intensity than the combined effects of the exercise-cognitive

training that is experienced during an acute bout of orienteering. Although the effects of vigor-

ous exercise on high-interference memory were expected and consistent with prior work [9,

56, 57, 63], we were surprised to observe a decrement in high-interference memory perfor-

mance following moderate-intensity orienteering. This may be related to the amount of exer-

cise-induced BDNF, which is less after moderate intensities compared to vigorous [6–8].

Indeed, those who orienteered at moderate intensity produced less BDNF than those who

orienteered at a vigorous intensity, and this may have reduced their neurogenic support, ren-

dering substrate-dependent memory benefits unobtainable.

The difference in BDNF levels between moderate and vigorous intensity orienteering may

also help to explain why expert taxi drivers experience a trade-off that augments their posterior

(primarily relating to spatial processing) hippocampus at the cost of their anterior (mainly

involved in episodic memory) hippocampus [39]. Taxi drivers are sedentary while driving,

which is in stark contrast to expert orienteers who perform their sport at a rapid running

speed [29]. The lack of vigorous movement during navigation may be why we see evidence for

Table 5. Correlation matrix between distance travelled in the intervention course by the orienteering groups and

baseline measures of cognitive function.

1 2 3 4 5

1. Total Distance (m) -

2. High-Interference Memory Pre -.20

3. Recognition Memory Pre -.12 .14

4. Groton Maze Learning Efficiency Pre -.29 .20 .08

5. Groton Maze Test Efficiency Pre -.35* .20 .04 .88***

* = p< .05

*** = p< .001.

https://doi.org/10.1371/journal.pone.0303785.t005
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a trade-off in expert taxi drivers but not in expert orienteers. Regardless of the mechanism, we

found that engaging in vigorous-intensity exercise while orienteering benefited spatial mem-

ory but not high-interference memory. Although the reasons for this are unclear, a single

acute orienteering session may not be a strong enough stimulus to evoke adaptative changes in

all hippocampal functions. Future research is needed to investigate whether chronic orienteer-

ing interventions can produce “far-transfer” effects beyond the effect of spatial cognition

observed here.

Although BDNF increased more for the vigorous interventions than the moderate interven-

tion, it was expected to increase even more following vigorous orienteering, but that was not

observed. Our sample of healthy, recreationally active younger adults may have been the rea-

son why. Unlike older adults, prior research with younger adults reveals no additional boost in

BDNF from exercise-cognitive training, as was observed here [57, 64]. This makes sense given

that BDNF is thought to respond to energetic challenges [65], and in our sample of recreation-

ally active younger adults, the additional challenge of running while navigating may not have

been enough of an acute energetic demand. This may be especially true given the wayfinding

task was short (only ~12 minutes) and across a familiar terrain. Future work should examine

the potentially additive effects of orienteering versus running on BDNF using longer and less

familiar routes. Additionally, there is evidence that females have lower BDNF responsivity to

acute exercise [66] and lower lactate responses at the same relative exercise intensity compared

to males [67]. These potential sex-based differences in lactate-induced BDNF activation may

be at play with our predominately female sample (65%) and should be followed up in future

work.

Despite our participants’ familiarity with the campus on which the orienteering course was

set, both the moderate and vigorous intensity orienteering groups travelled significantly far-

ther and, by extension, made more errors than the most efficient route. Interestingly, the dis-

tance travelled while orienteering was associated with several of our baseline measures.

Notably, those who travelled shorter distances (i.e., made fewer errors) had better spatial mem-

ory at baseline, as revealed by both self-report and task performance, which reaffirms the exis-

tence of overlapping cognitive processes engaged between navigation and spatial memory

[30]. Also, those who travelled shorter distances reported greater reliance on egocentric spatial

navigation. Allocentric spatial navigation was not as strongly related to course distance trav-

elled, which was surprising given that allocentric spatial processing, like egocentric spatial pro-

cessing and spatial memory, have been previously associated with expertise in the sport of

orienteering [27]. The weak association between allocentric spatial processing and navigational

efficiency observed here may be related to participants’ familiarity with the course terrain. We

set the course on campus because it provided a safe environment for orienteering, but it is

important to acknowledge that navigational tendencies may differ between familiar and unfa-

miliar terrains [30]. For example, participants could identify campus buildings by their names

and then navigate based on previously learned routes rather than utilize allocentric spatial nav-

igation. It will be important for future work to examine the orienteering interventions across

novel terrains over a variety of course difficulties.

Moreover, overreliance on GPS devices may be a factor because it minimizes active naviga-

tion and the practice of allocentric navigation in the case of “use it or lose it” [36]. GPS may be

used more commonly by those with little experience in orienteering, as allocentric navigation

may require more practice to be developed [30]. Unfortunately, we did not capture GPS use,

but we would recommend this be done in future studies. Furthermore, prior research suggests

that females may rely less on allocentric navigation than males [68], and our sample was pre-

dominantly female. Although we did not power our sample size to examine sex differences, it

is recommended that future research do so. Another reason why we failed to observe a strong
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association between allocentric spatial processing and navigational efficiency is speculative but

worth noting; this study was conducted in North America where orienteering awareness and

practice is relatively limited compared to Nordic countries where orienteering is embedded

into the school curricula and local cultural activities [69]. This fact should be considered when

comparing studies from different countries.

Conclusion

This study demonstrates the effect of vigorous exercise on lactate, BDNF and hippocampal-

dependent memory. It also reveals that orienteering may outperform exercise in improving

spatial memory when done at a vigorous intensity. Together, this study establishes the efficacy

of using orienteering to improve cognition in younger adults and provides essential ground-

work for future research in older adult or AD populations to help preserve cognitive function

across the lifespan.
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