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Revealing the mechanism and function
underlying pairwise temporal coupling in
collective motion

Guy Amichay 1,2,3,4,5 , Liang Li 1,2,3, Máté Nagy 1,2,3,6,7 &
Iain D. Couzin 1,2,3

Coordinated motion in animal groups has predominantly been studied with
a focus on spatial interactions, such as how individuals position and orient
themselves relative to one another. Temporal aspects have, by contrast,
received much less attention. Here, by studying pairwise interactions in juve-
nile zebrafish (Danio rerio)—including using immersive volumetric virtual
reality (VR) with which we can directly test models of social interactions
in situ—we reveal that there exists a rhythmic out-of-phase (i.e., an alternating)
temporal coordination dynamic. We find that reciprocal (bi-directional)
feedback is both necessary and sufficient to explain this emergent coupling.
Beyond a mechanistic understanding, we find, both from VR experiments and
analysis of freely swimming pairs, that temporal coordination considerably
improves spatial responsiveness, such as to changes in the direction ofmotion
of a partner. Our findings highlight the synergistic role of spatial and temporal
coupling in facilitating effective communication between individuals on
the move.

Collective motion underlies many important biological processes
across scales in biology1. As a consequence, the mechanisms that give
rise to coordinated motion have received considerable attention,
connecting theoretical principles2–6 to experimental data for a wide
range of systems, including cells forming tissues7,8, the onset and
maintenance of swarming in insects9–11, schooling infish12–19, flocking in
birds20–22 and the formation of mobile aggregations in humans23–25.

Such studies have emphasized the role of relatively local
(and thus self-organized) spatial interactions among system com-
ponents (e.g. cells/organisms), with evidence having been found for
multiple types of spatial interaction, including those that depend on
distance (so-called metric interactions)26, a fixed number of indivi-
duals irrespective of their distance (topological interactions)20 and

interactions that explicitly depend on sensing, such as visual per-
ception, of others (sensory interactions)15. Consequently, it is widely
appreciated that the spatial structure of interactions has important
consequences to information flow in groups, such as waves of
changing velocity that characterise response to both attractive and
aversive stimuli, such as stimuli associated with food15 or a localised
threat27, respectively.

By contrast, relatively little work has considered the role of tem-
poral coupling (coupling in time) in the regulation of collective
motion, or the feedback processes that may exist between spatial and
temporal coupling in groups. In schooling fish, a common model
for investigating collective motion among animals28, it has, however,
been shown that some species do regulate temporal aspects of their
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interactions. Banded killifish (Fundulus diaphanous), for example,
exhibit regular, periodic oscillations in swim speed (that occur over a
slower timescale than their tail beat frequency), and exhibit a tendency
to remain out of phase in relation to their nearest neighbours. It was
speculated that this systematic cycling of relative spatial positions
among near neighbors may allow fish to better detect changes in the
speed and/or heading of others29. Evidence has been found that sug-
gests that adult zebrafish (Danio rerio), while not exhibiting clear
oscillatory dynamics, exhibit burst-and-glide dynamics in which turns
are made during the active acceleration, and inertia and friction are
largely responsible for the deceleration (the passive glide). It is argued
that when fish are passive during decelerations, they may collect
valuable social information, but that it is during bursts when this
information is enacted upon. Thus the response to othersmayoccur in
limited time periods, but the timescale where information is obtained
from the environment could not be explicitly determined17.

For juvenilefish, the relatively high viscosity of thewater results in
burst-and-glide becoming extremely pronounced-appearing as highly
abrupt jerky locomotion. As with other sensory systems that must
exhibit sudden movements, such as during eye saccades, environ-
mental sensing has been found to be severely compromised during
periods of high acceleration and speed30. As a consequence, sensory
suppression, and/or cancellation of neural outputs during such peri-
ods (reafferent cancellation) is ubiquitous across sensory modalities
and species31,32. For sensing via their lateral line (whichdetectsflowand
pressure changes in water in very close proximity to the body) it has
recently been shown that young (7 days post fertilization) zebrafish
already exhibit a graded subtraction of self-generated motion, thus
maximally-silencing reafferent sensory signals during the most vigor-
ous tail activity during each burst33. Rapid self-generated motion will
also tend to induce motion blur to the visual field that are likely not
possible to compensate for by eye movements (which also introduce
motion blur—silenced through saccadic masking)34.

Thus, despite multiple possible mechanisms having been sug-
gested, the nature and functional consequences of time-varying sen-
sing and motor response in regulating collective behavior remain
largely unknown. One of the key issues has been that establishing the
time-varying reciprocal coupling of interaction strength among indi-
viduals, even when only considering a pair, proves very challenging.
For example, motor decisions being made in relatively discrete win-
dows of time, does not inform us about possible windows of percep-
tion, or the timescale that informs each discrete motor decision, is
obtained17. The changing strength and direction of reciprocal social
coupling can make the causal time-varying structure of interactions
hard to infer.

Recent advances in virtual reality (VR) technology for freely-
moving animals, however, offer the possibility to both control the
causal structure of social relationships among individuals, including
insects, mammals, and fish18,35, and to test specific hypotheses
regarding the nature of social interactions in-situ. Thus, similar to how
the dynamic patch clamp method has allowed principled exploration
of the reciprocal coupling between neurons, virtual reality sets the
scene for a dynamic social clamp paradigm. First proposed to study
real-time human interactions, but emphasized to be a powerful tool
across systems and scales of biological organization36, this approach
allows real-time bidirectional interactions between animals and
empirically-derived, or empirically-grounded, models of coordination
dynamics.

Here, we employ this dynamical social clamp approach to reveal
key aspects of temporal social coupling during the regulation of col-
lective motion, and in response to sudden changes in salient social
stimuli, using pairs of interacting juvenile zebrafish (24–26 days post
fertilization; body length of 9-11 mm) as our model biological system.
Understanding the coordination of pairs of individuals is a valuable
starting point, both for tractability, due to the rich dynamics we see in

pairs, and because swimming in pairs is the most common config-
uration found inmost natural fish populations28, and it has been found
that even when schooling individuals tend to swim close to, and
behaviorally couple most strongly with, a single neighbor37.

By embedding real fish into immersive, volumetric (holographic-
like) environments in which they can freely interact with a virtual
conspecific (withwhom they interact in the sameway as they do to real
conspecifics18), whose motion can be precisely controlled in both
open- and closed-loop (see18,35 for details) we were able to overcome
the inherent limitations of purely observational studies. Combining
this with traditional experiments, we can (i) establish, from data of
freely swimming pairs, an experimentally-derived model of how zeb-
rafish couple behavior, temporally, with a partner, and (ii) (in both
open- and closed-loop) test our experimentally-derived model,
revealing the importance of bidirectional temporal coupling in reg-
ulating naturalistic collective motion, and, finally, (iii) (in open-loop)
demonstrate the functional significance of temporal interactions in
facilitating effective response to rapidly-changing spatial information
—sudden changes in direction—a vital feature for effective motion
coordination in mobile groups (see Supplementary Fig. 1 for an over-
view of the methodology).

Results
Temporal coordination in pairs of juvenile zebrafish
Freely-swimming juvenile zebrafish swim in characteristic pulsatile
movements corresponding to their burst-and-glide gait (Fig. 1A).When
relatively far (> 6–7 cm) from each other, such-aged zebrafish do not
school (with a sharp decrease in social interaction strength at around 5
cm, and a tendency to swim on the same plane; see18). As is common
amongmany fish species, individuals exhibit periods of time of highly-
coordinated motion when relatively close, and uncoordinated motion
when relatively far (termed fission-fusion dynamics28,38) while typically
swimming with different speeds (Fig. 1B). Here we tracked (using
TRex39) 29 pairs of zebrafish swimming freely in two different arenas: a
square 30 × 30 cm2 arena, and a circular arena with a diameter of 28.7
cm, with water depth ~0.5 cm in both cases.

Fish were considered to be socially-isolated using a conservative
inter-individual distance of > 10 cm18; we also confirmed this separa-
tion by comparing the cross-correlation between close-by, far-away,
and randomly shuffled pairs of fish, and their behavior differed sig-
nificantly (Fig. 1C; Kolmogorov-Smirnov test: p < 0.001, refer to Fig. S2
for a detailed explanation of the correlation technique and Fig. S3 for
the statistical procedure). While each fish exhibits variable speed over
time (due to their gait), the time intervals (lags) between successive
bursts also exhibit a broad distribution of values (Fig. 1D).

When in close proximity and schooling most strongly—at swim
speeds that are above their typical speed when isolated, of >6 cm/s
(conditions under which social interactions in zebrafish, and other
species are most pronounced, see:14,16,40), fish are found to exhibit
prominent temporal coupling with respect to the timing of their
bursts, exhibiting a characteristic (shared) time-lag, and out-of-phase
(i.e., alternating) relationship, between bursts (as evident in the sym-
metric curve in Fig. 1C). This temporal coupling is characteristic of out-
of-phase coupledoscillators, a common temporalmotif underlying the
regulation of collective dynamics of other biological systems, includ-
ing in some conditions neurons41, among neural groups42 or between
humans43.

We note that regular temporal dynamics at a collective level need
not imply strong, or any, rhythmic behavior on the part of system
components (such as juvenile zebrafish, which show irregular, and
thus non-rhythmic bursts; Supplementary Fig. 4). Sustained rhythmic
coupling between system components can, for example, emerge
spontaneously when these components mutually excite one another
(such as a neuron’s firing increasing the probability of another to
whom it is connected to subsequently fire), but also exhibit a
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refractory period (such as the inability for a neuron to fire again due to
the necessity for ions to be transported back into the cell). In other
neural systems it arises when cells inhibit one another but then exhibit
post-inhibitory rebound44, with alternating bursting of neural activity
being a dynamically-stable state resulting from the interactions45.
Similar dynamics are ubiquitous and are found also in animal collec-
tives, such as ants (where isolated individuals exhibit temporally
chaotic activity, but as a colony collectively synchronize activity via
contact-based mutual excitation)46–48 or spiders (which exhibit syn-
chronized movements in pursuit of prey)49–51.

Quantifying the phase response curve (PRC) suggests a putative
mechanism of coupling
To establish insights into themechanism underlying the observed out-
of-phase coupling in our paired-fish systemwefirstquantified its phase
response curve (PRC)52,53. PRCs have been employed to characterize a
wide range of oscillatory systems, including cardiac rhythms54, net-
works of neurons55, coupling of circadian clocks56, and in temporal
coordination of animal signalling, such as flashing in fireflies57 and
singing in crickets58. For both linear and nonlinear dynamical oscillat-
ing systems valuable information regarding the mechanics of interac-
tions can be extracted by studying the individual components—in our
case the individual fish—and simplifying their oscillatory behavior (if
appropriate) to single pulses. Note that this does not make any
implications aboutwhich aspect of the oscillating cue/signal is causally
influencing the response, rather it allows us to quantify the overall
temporal relationships exhibited, from which we can then employ
biological insights to generate testable hypotheses.

Specifically, the PRC of our system can evaluate the transient
change (phase response) in a focal individual’s bout duration—the
time lag (T) of a focal fish (i) between its previous burst and its sub-
sequent burst, i.e., period length—as a function of the delay in time (τ)
between its former burst and that exhibited by the other
fish. Thus it evaluates how theburst exhibitedby an individual towhich
it is socially-coupled influence its timing of itself producing
another burst.

In doing so (Fig. 1E) we see that fish tend to be oblivious (unre-
sponsive), in terms of the timing of their subsequent burst, if their
neighbors burst followed theirs closely in time (when τ < 0.1 s) hen-
ceforth referred to as the unresponsive temporal window. This is
consistent with the hypothesis that during the rapid acceleration and
speed of the burst phase, fish may be transiently unable to obtain
salient sensory input59.

Following this short unresponsive interval, the PRC shows fish
employ the time difference between their burst, and that observed to
modulate the timing of their subsequent burst (up to time lags that
exceed the typical timing interval range exhibited, being approxi-
mately 0.23 s).We refer to this as the responsive temporal window.We
can approximate the observed trend here as a linear relationship of
y = 2x (the red dashed line in Fig. 1E). When comparing the χ2 values of
the fit to the actual data with shuffled pairs, we see a significant sta-
tistical difference with a Kolmogorov-Smirnov test: p <0.001 (Sup-
plementary Fig. 5). Also, performing a linear regression analysis for the
data between0.1 s < τ <0.4 s for each pair separately, we report amean
regression coefficient of 1.71, with R2 = 0.48, showing that a focal
individual’s response can be approximated as it waiting for the same
interval, the τ it just experienced, again, before exhibiting its own
burst. In other words, this simple functional form can enable an out-of-
phase relationship to emerge, even amongst irregular (non-iso-
chronous) oscillators. When one reacts early the other will tend follow
suit, or when one is late the other will also be inclined to delay its own
response.

One-way information flow is insufficient to explain the observed
synchronized temporal structure of real pairs
The above analysis suggests that fish may employ simple rules of
thumb to regulate temporal coordination when schooling—but is this
explanation sufficient to explain the observed temporal dynamics? If
fish keep track of the time interval between their burst, and that of a
conspecific (τ), and then add that time interval to their internal timer
employed to decide when to produce their next burst, we may expect
to see this same timing regulation to be exhibited in open-loop
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Fig. 1 | Temporal relationship of real fish (RF) pairs. A 2D trajectories of two RF
swimming together for 10 s and a graphical explanation for obtaining the important
temporal parameters by locating the timing of the burst (beat timing). The beat
timing signal was obtained from the speed over time. Dots denote the time the fish
started about, whena localminimaoccurred in the speedprofile. These timepoints
define the bout duration T, and for pairs, the beat timing difference τ.
B Occurrences (probability density function; PDF) of mean swimming speed for
individuals when their conspecific was in close proximity ( < 4 cm) or far away ( > 10
cm). C The correlation function Cij between 2 RF normalized with the number of
sample windows for pairs swimming close (blue), far (red) or for shuffled pairs
generated by randomization (yellow; randomizing the entire dataset 100 times,

resulting in 100 different curves; see the methods section for more details). Thick
lines show single curves from pooled data, and thin, semi-transparent curves show
data separately for each pair. D Occurrences (PDF) of bout durations.The dis-
tribution f0, which was derived from times when the pairs were close, is the natu-
rally occurring distribution that was used in our model (see later; Fig. 2B).
E Heatmap showing the relative occurrences of the beat timing difference τ and
bout duration T. If a relationship exists and T is a function of τ, then that defines a
phase response curve (PRC). y = 2x is shown for reference as a dashed red line
overlaid on the heatmap (left). For comparison, we show the resultant heatmap
when we create shuffled pairs by randomizing (right).
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experiments with a virtual conspecific (Fig. 2A); i.e., where the real fish
canbe influencedby the virtualfish, but not vice versa (see closed-loop
vs. open-loop in Fig. 2B vs. 2C). In other words, if one-way information
flow is sufficient for temporal coupling, we would expect the timing of
the focal fish’s tailbeats to alternate with those of the virtual fish. Thus,
we would expect to see two peaks in the correlation function sym-
metrical about τ = 0.

To ask whether this is the case we investigated how real fish time
their bursts in response to virtual conspecifics which exhibit different
inter-burst intervals, across the natural range exhibited by pairs of real
fish (240 ms–360 ms, Figs. 1D and 2C). We found that, irrespective of
the burst-burst frequency exhibited by the virtual fish, when the real
fish interacted with the virtual fish (i.e., were mostly in close proximity
with a distanceof < 4 cm, aswith the analysis of 2RF) theymaintained a
constant temporal lag of approximately 0.32 s between theburst of the
virtualfish and their own subsequent burst (we fit a Gaussian to eachof
these peaks to reliably detect theirmaxima—for each VF period length,
with 95% confidence bounds, these were: TV=240 ms: 311.8 ms, ± 5.7
ms; TV=270 ms: 327.6 ms, ± 10.8 ms; TV=300 ms: 332.9 ms, ± 8.7 ms;
TV=330 ms: 330.9 ms, ± 5 ms; TV=360 ms: 323.3 ms, ± 3 ms) (Fig. 2D).
Thus, if only provided unidirectional information flow, zebrafish do
not exhibit the out-of-phase temporal coupling observed in real fish
pairs (bidirectional information flow; Fig. 1C).

Computational model of unidirectional and bi-directional tem-
poral coupling
To investigate why this may be the case we developed a simple com-
putational model of the mechanism suggested by the PRC analysis,
taking into account the sources of stochasticity observed in the natural
system; notably the probabilistic nature of individual response and the
irregularity exhibited in the inherent timing of bursts. This model
captures the three core features (rules of thumb) suggested by our
analyses of real fish pairs (Fig. 1).

Rule 1: Individuals are unresponsive to the burst of another if
experiencing it within t≤0.1 s after their own burst (t = 0).

Rule 2: If experiencing the burst of another individual after the
unresponsive period, but still within a reasonable waiting time
(t <0.4 s; to ensure continued motion), individuals have a probability
of adjusting the timing of their subsequent burst (if P ≤ β, where β
defines the strength of the interaction), and if they do so they delay it
by the estimated timing difference, τ, between these events, i.e., they
beat at t = 2τ. Thus their inter-burst interval, T is 2τ.

Rule 3: Otherwise, as individuals are inherently stochastic with
respect to the timing of their bursts (Fig. 1D); we assume that they
employ a stochastic process, based on the observed irregularity of
intrinsic inter-burst-intervals exhibited by the fish (Fig. 1D), to deter-
mine when to produce their next burst. Thus, Rule 3 captures the
intrinsic capability of fish to burst irrespective of social cues.

Wefirst consider the scenariowhere there exists only unidirectional
flow; simulated individual A responds, probabilistically (by following the
above rules), to the bursts exhibited by simulated individual B, but not
vice versa. That is, B is the driver of the systemdynamics, and is assumed
to exhibit bursts at a fixed interval, but over a range of frequencies, with
high frequencies corresponding to short inter-burst intervals and vice
versa (to allow comparison to our open-loop experiments).

Note that we studied the behavior of the model with increments
of β values over its full range (see Supplementary Figs. 6–9 formultiple
parameter space analyses). Since our results are robust to this choice
(see Supplementary Figs. 6–9), we present a single value (β =0.3) here
(e.g., Fig. 2E), for simplicity, and without loss of generality. In addition,
our findings are robust to both the starting conditions (initial lag)
(Supplementary Figs. 10, 11) and, especially in the presence of sto-
chasticity, to the specific value chosen for the slope of the PRC (Sup-
plementary Figs. 12, 13). This demonstrates that out-of-phase coupling
is robust in the face of inherent errors associated with perception and
action.

if 0.1s<τ<0.4s and rand(0,1)≤β,
then  T=2τ
otherwise T=rand(f0)
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intervals (bout durations). This provided a systematic way to study how this timing
information influences the RF. The overall travel speed was kept constant, which
allowsus to varyonlyoneparameter, the durationof bouts.DCorrelation functions
obtained from experiments with a non-interactive VF following a fixed beat timing.
Each separateplot corresponds to a different VFbout the durationTV. The peaks on
the rightwere fittedwith aGaussian function denoted by a dashed line, and its peak
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which defines the shared lag. E Simulations of the experiment (as shown onD; data
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the exact values for the shared lag, rather the qualitative behavior.
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Wefind thatunidirectional informationflow is insufficient to allow
A to achieve an out-of-phase coupling with B, and instead—as in our
experiments with unidirectional information flow—Awill tend to adopt
a fixed, constant, temporal lag with respect to B, irrespective of the
frequency of bursting exhibited by B (Fig. 2E). Thus, our experimental
results under conditions of unidirectional information flow are con-
sistent with the proposed model.

If we allow bidirectional information flow between A and B in the
model, however, we find that this alone can recover the observed out-
of-phase coupling of bursts exhibited by realfish pairs (Fig. 3A, B). This
suggests that bidirectional interactions are required in order to facil-
itate the temporal coupling observed in real fish pairs.

In order to test this hypothesis, we also evaluated our in-silico
model, in-virtualis, employing the dynamical social clamp approach to
allow reciprocal (closed-loop) interactions between a real fish and a
virtual conspecific, the latter employing our above-proposedmodel to
coordinate its bursting dynamics. We found two significant peaks in
this correlation function, akin to what appears in real fish pairs and the
model (Fig. 3C; Kolmogorov-Smirnov test comparing to randomiza-
tion: p < 0.001). Thus, our model—despite its simplicity—captures the
essential features employed in zebrafish temporal coordination.
Reciprocal coupling is necessary, and sufficient, to observe the tem-
poral dynamics exhibited by pairs of individuals.

Functional consequences of temporal coupling
While much has been revealed regarding spatial coupling among
individuals in groups, such as that directional information tends to
flow unidirectionally, from front to back, but that speed changes flow
bidirectionally14, we know comparatively little about the role of tem-
poral coordination in mobile animal groups. It is apparent, from our
above analysis, that individuals are incapable of responding, in terms
of timing, to bursts exhibited by a partner if they occur very shortly
(<0.1 s) after their own burst. Whether the rules of thumb exhibited for
temporal coordination impact the responsiveness of individuals to
changing social conditions, such as turning by their partner, over
longer timescales is unknown.

To test the possible functional consequence of temporal rela-
tionships between a leader and a follower swimming in close proxi-
mity, we investigated how a followers’ responsiveness to a sudden
change of direction (a turn of 60 degrees) of a (virtual) partner
(exhibiting multiple fixed inter-burst intervals, Fig. 2C) is impacted by
the temporal relationship between them, controlling for spatial factors

like proximity, or degree of alignment, prior to the turning event
(Fig. 4A, Supplementary Figs. 14 and 15, and see Methods for details).

We found that individuals were considerably more responsive to
the direction change of their virtual partner, and thus able to maintain
close spatial proximity to them, if, prior to the turn, they exhibited the
specific temporal relationship that we found in the open loop experi-
ments (Fig. 2D). By comparing turning events with and without the
specific temporal relationship, we found significant differences in the
distances between the RF and VF for time intervals shortly after the
turn (proportion test: −0.5 s < t < 0 s: p = 0.1578, 0 s < t <0.5 s: p =
0.0010, 0.5 s < t < 1 s: p = 0.0010, 1 s < t < 1.5 s: p = 0.0020, 1.5 s < t < 2 s:
p = 0.0001; N = 423 for the specific, and N = 144 for the nonspecific
temporal relationship cases) (Fig. 4B) and while before the turn pairs
were swimming in close proximity, the success of staying in close
proximity was shown to not be influenced by spatial factors prior to
the turn (Supplementary Fig. 15).

Wefinishby returning toour observational data of pairs of RF, and
ask whether different temporal coupling regimes might be associated
with certain spatial configurations, and whether such spatial config-
urations may also impact information flow/influence. We find that
when their coupling is approximately out-of-phase, they tend to swim
side by side (Fig. 4C and Supplementary Fig. 16; projecting the 2D
distributing in each panel on a circular axis, and then computing a
circular Kuiper test, we obtain p = 0.001). We note that it has been
suggested that such side-by-side swimming may indeed be beneficial
for social influence. Firstly, it facilitates reciprocity of information flow
(any other configuration would be asymmetric in this respect), and
furthermore, based on geometric principles, it has been shown that
this configuration can allow individuals to optimize their detection of
both speed and heading changes of a partner by utilizing perceived
angular velocity and loom (approaching/receding) on the retina,
respectively60.

Discussion
Analysis of collectives has proven to be a daunting task, with a myriad
of interactions all happening simultaneously. Here we zoomed in to
focus on pairwise interactions, with the hope of elucidating their
dynamics as a starting point for understanding emergent collective-
level outcomes. This in itself is not trivial; reciprocal feedback makes
establishing causal relationships of social influence challenging. Non-
reciprocity, in the physical sense (the force exerted by one body on
another wouldn’t be reciprocated equally), has recently been
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highlighted as a key ingredient in out-of-equilibrium systems61.
Although behavioral reciprocity isn’t strictly equivalent, here we pro-
vide, previously unattainable, evidence of how a real system operates
in this regard.

Taking inspiration from the study of coupled-oscillators, we
mapped the PRC of our system (a graphical method that was, to the
best of our knowledge, never used in the context of pairwise move-
ments). Owing to this, we were able to explicitly detect an unrespon-
sive window of time in the burst-and-glide cycle of the fish, and to
derive a simple linearmodeof response in the responsivewindow.Due
to these direct measurements, we were able to avoid unnecessary a
priori assumptions in our modeling. Our confirmation of the plausi-
bility of themodel is twofold—as two agents interacting in-silico, and as
a novel hybrid, of essentially the same agent (now rendered as an
avatar virtual fish) interacting with real fish.

We found that coordinated motion in zebrafish relies on two-way
coupling. This is in contrast with other animal collectives displaying
coupled oscillator dynamics such as certain firefly swarms, where one-
way interactions are sufficient—a firefly can entrain to a periodic arti-
ficial light62. One reason for this difference could be the fact that these
fireflies are relatively isochronous, which can enable a nonreciprocal
agent (not influenced by the firefly) and the firefly to fall in step. Bi-
directional interactions have their possible advantages, though. It
allowsboth parties to reach a consensus over the selected frequency at
which they operate. Therefore how synchronization (or anti-

synchronization) emerges in nature can take a variety of forms, and
finding where common solutions/algorithms are utilized across the
tree of life (or not, and the reasons thereof) is of importance.

We performed extensive analyses of our model. By adding an
additional parameter γ to our model, we demonstrate a continuous
transition fromone- to a two-way interaction.With further analysis, we
also showed that the model is robust to specific parameter values and
will work also with a wide range of different slope values, with noise
playing a vital role here—the added stochasticity stabalizes the system.

We also provide evidence from VR experiments that temporal
coupling influences spatial responsiveness. Further suggestive evi-
dence comes from analysis of real fish pairs, which revealed sub-
stantially different spatial configurations at times of different temporal
coupling regimes. These findings open up new theoretical and
experimental directions of inquiry. While, to date, many modeling
studies have focused on metric vs topological interactions, here we
suggest that the interplay of spatial and temporal factors play an
important role, andmuch is left to fully understand how thismanifests
itself in entire collectives.

Another theoretical avenue that has gained attention of late, is
so-called Swarmalator systems63–65, whereby collective motion is
combined with temporal coupling. Our results offer an example
of such a system in the real world, and crucially, how it may differ
from the proposed toy-models. As mentioned, in our case the
internal oscillator is the speed of the agent (fish), the oscillation is

RF VF
y

Sudden VF turn 

VR experiments

x

Or

C

0

1

2

-1

-2

x10-4

-0.05 0.05
-0.05

0.05

x (m)

y
(m

)

0s<t<0.1s 0.3s<t<0.4s 0.6s<t<0.7s 0.9s<t<1s

- P
D

F n
on

al
te

rn
at

in
g

+P
D

F a
lte

rn
at

in
g

Co-moving frame of reference (2 RF)

0

1

0.4

0.8

0.6

0.2

Pr
ob

ab
ilit

y 
of

 s
w

im
m

in
g

in
 c

lo
se

 p
ro

xi
m

ity
,

 P
(d

ij 
< 

d*
)

***
***

n.s.

-0.5 0 0.5 1 1.5
time, t (s)

A

0

0
0

0

B tu
rn specific        (N=423)

nonspecific  (N=144)

temporal coupling

no
na

lte
rn

at
in

g
al

te
rn

at
in

g
oc

cu
pi

ed
 m

or
e 

of
te

n 
w

he
n

** ****

Fig. 4 | The functional significance of temporal coupling. A Illustration of the VR
experiments when the VF performed a sudden, unexpected turn to a randomly
chosen direction (left or right; ± 60°). B Bar plot shows the probability of being in
close proximity (d <0.04m) at different times right before and after the VF turned
at t =0. We analyzed cases where the fish was swimming close to the virtual con-
specific prior to the turn. Such turning events were assigned to two categories
based on the temporal pattern between the fish before the turn. One category was
for cases where the fish followed a specific temporal coupling with the VF (shown
with purple), with a peak in the correlation as we previously detected (Fig. 2D); in
theother category therewasnopeak in the correlation close towhatwaspreviously
detected (nonspecific temporal coupling; hatched bars) (see Supplementary Fig. 14
for the full dynamics of all the data). Those with the specific temporal coupling had
a higher likelihood to continue swimming with the virtual fish after it turned. (n.s.

shown for not significant; * for p <0.05; ** for p <0.01; *** for p ≤ 0.001; **** for p≤

0.0001; exact results from a one-sided proportion test: p = 0.1578, p = 0.0010, p =
0.0010, p = 0.0020, p = 0.0001).CHeatmaps of the spatial configurations between
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when the pair was alternating, and red shows positions occupied more often when
nonalternating.

Article https://doi.org/10.1038/s41467-024-48458-z

Nature Communications |         (2024) 15:4356 6



non-isochronous, and the coupling tends to be in an alternating
fashion.

Lastly, the application of VR environments opens up powerful
opportunities for gaining insight into the dynamics of social influence
underlying collective behavior. As mentioned, this direction already
bore fruit in the study of human interactions36. The application of
various experimental methods (robotics, VR, etc) that enable
researchers to mimic animal conspecifics can pave the way for a much
deeper understanding of coordinationdynamics. An obvious next step
would be to utilize these experimental paradigms with zebrafish in an
attempt to understand the neural underpinnings of temporal coupling
dynamics.

Methods
Fish
All experiments were conducted on 1 cm±0.1 cm long zebrafish of age
24 to 26 days post-fertilization raised in a room at 28 °C on a 12 h light,
12 h dark cycle (light switching on and off and 7 am and 7 pm). The fish
were bred and raised by the animal care staff of the Department of
Collective Behavior at theMax Planck Institute of Animal Behavior and
the University of Konstanz. Fish were transferred to the experimental
room at least 12 h prior to the experiments in water from their holding
tanks. This ensured that the water quality in the experimental room
was the same as in their holding facility. Thiswater was also used in the
experimental setups (either the arenas for 2 RF experiments or the
fishVR setup for virtual reality experiments) where water changing was
done once a day. All the fish were naïve, and chosen at random from
their holding tanks. All experiments were conducted in accordance
with the animal ethics permit approved by Regierungspräsidium
Freiburg, G-17/170, G-17/46, and G-21/135.

Fish length measurement
Fish length was measured by recording them using a custom-built set-
up where we mounted a camera above a petri dish. Using the TRex
software39, we measured the length of the midline of the fish.

Experimental conditions
Room temperature was kept at 26 °C. Experiments were carried out
during the day, between 07:00–19:00.

Pairs of RF
We tracked pairs of juvenile zebrafish in two experimental conditions:
(A) a 30 × 30 cm square arena or (B) in petri dishes of 28.7 cmdiameter
(circular arena). In both conditions, water was filled to ~0.5 cm depth,
to allow the fish to swim at ease, but confined to a quasi 2D environ-
ment. The fish were filmed from above at 100 fps with Basler cameras
(acA2040-90um 2K NIR) and lit from below with an array of infrared
lights. The set-up was lit from above with visible light to allow the fish
to see each other and the environment, with DÖRR DLP-2000 LED.
After being transferred to the arena, each individual first got 5 min for
acclimatization (in condition A), and 20 min (in condition B). In con-
dition A, we executed 10 sessions with 10 different pairs, each for
55 min, between 6.12.2017–22.01.2018. In condition B, we recorded 19
pairs, each for 100 min between 7–14.09.2020. The fish were tracked
using the TRex software39. To reliably detect the fish, we used an
intensity threshold of 22 (on a gray scale from 0 to 255; to detect only
objects that had similar brightness as the fish) and blob sizes in the
range of 0.001 to 1 (to filter for specific object sizes which are around
the size of the fish). The videos were cropped for the size of the arena.

VR experiments
Experiments were conducted in a VR setup produced by loopbio
GmbH. One can refer to Stowers et al. (2017)35 for the details of the
fishVR setup. Fish were tested in a spherical cap-shaped acrylic bowl of
a maximum of 34 cm diameter. After transferring to the test arena,

each individual first had some acclimatization time, and then the VR
stimulus began (a detailed description below). The VFmodel (its visual
appearance) that we used in all experiments is the same as in Stowers
et al., 201735. In all VR experiments, only a single VF was presented.

VR - Nonreciprocal VF
In total, 74 individuals were tested in the no-turn experiment, and 77 in
the turn experiment (the recording in a few trials failed). Each fish first
had 5 min of acclimatization time. Then the experiment with 1 VF with
no turns (noperturbations) occurred for 30min, followedby 30minof
the experiment with the VF turns. Experiments were conducted
between 23-30.5.2020.

TheVF appeared in a randompositionwithin the bowl, 12 cmaway
from the planar (horizontal) centroid, oriented to face the centroid
(with 0° pitch and roll). The VF was situated 3 cm below the surface of
thewater as in this region the projection is optimal and this allows for a
long duration of swimming (compared with deeper positions due to
the curvature of the bowl). The VF swam in a straight line through the
2D centroid of the bowl at that height. The speed of the VF was pre-
defined according to fish kinematic statistics (Fig. 1B, D). We then
generated typical burst and glide patterns with different frequencies,
keeping the integral equal, so the average speed in the different fre-
quencies was kept constant (Fig. 2C). After swimming for ~6 s it turned
back to move along the same trajectory, but in the opposite direction
(a 180° turn occurred when the VF reached a minimum of v, thus
causing small variation in the exact duration of a straight path segment
for the different frequencies). After a few sec (up to 1 min, depending
on the experiment—explained below), the VF would disappear and
reappear after a short break (5–15 s; randomly chosen duration) in a
new random position, with a new random frequency (out of the five
values used in this study).

- with no VF turns: In these experiments, the VF swimming con-
tinued for 1 min after which the VF disappeared and reappeared in a
new position and frequency.

- with VF turns: These experiments are equivalent to the experi-
ments with no turns (and were carried out subsequently), except for
the following differences: after the first straight path segment followed
by the 180° turn, the VF turned in a randomly selected direction (±60°;
either left or right). The turn occurred in close proximity to the center
of the bowl, timed at the VF’s tailbeat (thus slightly different for each
frequency; the timing after the VF initially appeared was: T = 240 ms,
tturn=9.6 s; T = 270 ms, tturn = 8.91 s; T = 300ms, tturn = 9 s; T = 330ms,
tturn = 8.91 s; T=360 ms, tturn = 8.64 s). After the turn, the VF continued
to swim in the same direction through the bowl and beyond, as the VF
can, in principle, be projected to any position in space, even outside
the borders of the bowl. The VF then disappeared and after a short
break, a new frequency and locationwere selected as described for the
no VF turn case.

VR - Reciprocal VF
These experiments were conducted between 05.02.2024–13.03.2024.
In total, 67 individuals were tested. Individuals had 20 min for accli-
matization, followed by 100 min of the actual VR experiment. The
duration of the burst and glide of the VF was dynamically controlled
according to the PRC rule or randomly selected from pre-collected
periods of real fish (see below). The detailed burst-and-glide patterns
of VF were controlled with a piecewise function:

v=
a � t + b if t ≤0:12

ec�t +d otherwise

�
ð1Þ

Where v is the speed of the virtual fish at time t, a =0.88, b =0.188,
c = − 10.5, and d = −0.823 are fitted parameters. t = 0 represents the
start of the period. Note that the start of the acceleration can happen
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when the VF has different instantaneous speeds. In general, when the
virtual fish accelerates (its burst), it is by 0.88 m/s2.

According to the PRC we evaluate the next bout duration of the
VF, namely when to start the next cycle with a burst. The bout duration
of virtual fish is determined based on the time difference between the
burst time of the VF and the burst time of the RF, τ.

T =

randðf 0 > 100msÞ if τ < 100ms

2τ if 100ms≤ τ ≤400ms

randðf 0 > 400msÞ otherwise

8><
>: ð2Þ

Data analysis
Data processing and analysis were done with MATLAB versions 2020a
and 2023b.

Speed calculation and filtering
The instantaneous speed was calculated using a five-point stencil
method, then smoothedwith a Savitzky-Golayfilterwith awindowof 11
frames (=110 ms) and a polynomial order of 2.

Minima detection
The minima of the speeds (the start of each tailbeat) were detected
using the find peaks function in MATLAB on −v. Minima that were
above 5 cm/s were discarded as outliers. Also, minima that weren’t
followed by a pronounced acceleration (100 ms after the minima the
increase in speedwas <2 cm/s) were also discarded to only account for
actual bursts and not small variations in speed.

Temporal coupling correlation
Timewindows of 100 frames (1 s) were extracted for each fish. In these
times the fish had to be close to each other (Euclidean 2D distance < 4
cm for at least 0.75 s). The cross-correlation was calculated on a dis-
cretization of the speed, which is the timing of the minima (the timing
of the bursts). This was calculated according to B∈ {0, 1} where B = 1
when _v=0 and €v<0, and B =0 otherwise. Note that each B = 1 was
cushioned with a Gaussian window, according to

wðnÞ= e�2ðαn=ðL�1ÞÞ2 ð3Þ

Where L is the window length of 5 frames (=50 ms), and α is the
width factor of 2.5. The correlation function then reads

CijðτÞ=BiðtÞ � Bjðt + τÞ ð4Þ

We present the sum of all these cases. Due to the symmetrical
relationships between the two RF, we treated all these fish as the
focal fish.

The autocorrelation was calculated similarly to the cross corre-
lation between two fish, only by using the fish with itself, that is

CiiðτÞ=BiðtÞ � Biðt + τÞ ð5Þ

Statistics for the correlation function
We shift the correlation function C by subtracting it from its mean,
more precisely

Cshift =C � hCi ð6Þ

afterwards, we calculate the integrals of the resultant peaks in
Cshift.

Co-moving frame of reference
We calculated the relative position of the neighbor similarly
to14,66,where the focal fish is at the origin of this moving coordinate
system (and in this case, the focal fish is facing east). To achieve this we
applied translation and rotation transformations on the original
coordinate system thatwasfixed to the environment (i.e., the bowl). By
doing this, we can investigate where the neighbor is relative to the
focal. To account for theburst-and-glidemotionof the focalfish,which
would result in bursty tracks even for a neighbor swimming on a
straight path with constant speed, we implemented one addition, that
the co-moving frame of reference followed the mean motion of the
focal fish within each 1-sec-long time window (see Supplementary
Fig. 16 for the full visualization). More precisely,

xnewðtÞ= xðtÞ � v0t ð7Þ

where v0 is the mean speed calculated from the first and last positions
of the focal in this 1 s time window.

Shuffling
Randomizations were generated by shuffling the trajectories of the
individuals—pairing individuals (whether real or virtual) that hadn’t
participated in the same experimental trial (pairing between a focal
individual and another individual randomly selected from another
pair) and treating them as if they had been swimming together. These
randomized trials were analyzed identically as real pairs. For each case,
we performed 100 randomizations.

Statistics
For the proportion test, to calculate the test statistic we used the fol-
lowing equation

z =
PA � PBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PAð1�PAÞ
nA

+ PBð1�PBÞ
nB

q ð8Þ

WhereP is the proportion of values for each specific case.We then
determine if the result is significant (the p-value) with the cumulative
distribution function (CDF) of the standard normal distribution, eval-
uated at z.

All statistical tests, where appropriate, were two-sided.

Handling errors in tracking and VR
To account for errors in detection from the tracking algorithm of the
pairs, we omitted from our analysis all data with undefined x, y, or
speed values. For the VR experiments, we omitted cases where we
detected errors in the VR output, whereby the speed of the VF wasn’t
according to what we had assigned. That is, if we detected too
low or too high speeds (<0.001 m/s or >0.11 m/s) for more than 5
frames within our window of analysis (100 frames in the case of the
nonreciprocal VFwith no VF turns and 300 frames in the casewith the
VF turns). In the case of the reciprocal VF, where the speed profile
isn’t fully determined prior to the experiment, we omit cases
according to extreme values of VF acceleration (numerical differ-
entiation of the speed)—that is, if we hadmore than 5 frames of >0.05
m/s2 or <−0.05m/s2 in a 100 frame window. Overall the ratio of values
omitted, over the total number of values (omitted cases and used
cases) was 0.25 for the nonreciprocal VF and 0.14 for the reciprocal VF
experiment.

Simulation
The simulations were designed to test the effect of the parameter
settings and the directionality of the information flow on the temporal
coupling in our model. We only concentrated on the temporal aspect
of the behavior, so movement in space was not implemented.
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We ran one- and two-way interactions. In the two-way scenario,
both oscillators behaved responsively according to the model descri-
bed inRules 1–3,withβ capturing the level of responsiveness. In caseof
β = 1 they perfectly follow the PRC response, and in case of β =0 they
choose their timing entirely randomly (without taking into account the
timing of their neighbor).

In the one-way scenario, one of the oscillators behaved respon-
sively as described above, with the other oscillator ignoring the timing
of its neighbor (either acting as a metronome or with random oscil-
lation). We added Gaussian noise with a standard deviation σ = 3 (in
simulation steps) to the responsive oscillator in both the one- and two-
way cases. In all models, one timestep is analogous to 0.01 s in the
experiments.

Supplementary Figs. 6–9 and 12, 13 show results for two oscilla-
tors in multiple scenarios. For each case, we ran 20 realizations, each
for 101,000 timesteps, where we analyzed the last 100,000 timesteps,
to account for the transient dynamics. Supplementary Fig. 10 is a
parameter space exploration of the transients to assess the influence
of the initial conditions (the initial lags) on the dynamics. Supple-
mentary Fig. 11 is an exploration of varying degrees of interactivity. In
both cases, we looked at the phase differences after 1000 timesteps.
We ran 1000 realizations of each model for every combination of the
parameter values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available infigshare
with the identifier 10.6084/m9.figshare.c.7123501.v1. In addition,
source data are provided in this paper in https://doi.org/10.6084/m9.
figshare.25626990.v1.

Code availability
Codes for experiments, simulations, as well as analysis were written
either in MATLAB versions 2020a and 2023b (MathWorks Inc., Natick,
MA, USA) or Python (Python Software Foundation, 2018). All codes
that support the findings of this study are available onfigsharewith the
identifier https://doi.org/10.6084/m9.figshare.25398523.v1
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