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Graphical Abstract

1. Ubiquitin-modifying enzyme (UMEs), comprising E1, E2, E3 ubiquitinat-
ing enzymes and deubiquitinating enzymes, orchestrate ubiquitination and
thereby critically regulate the pathophysiology of cerebrovascular diseases
(CVDs).

2. Alteration in the abundance or activity of UMEs affects the outcome of CVDs.
3. UME-targeting therapy and therapeutic techniques applying UMEs may be

beneficial for the treatment of CVDs.
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Abstract
Cerebrovascular diseases (CVDs) are a major threat to global health. Elucidation
of themolecularmechanisms underlying the pathology of CVDs is critical for the
development of efficacious preventative and therapeutic approaches. Accumu-
lating studies have highlighted the significance of ubiquitin-modifying enzymes
(UMEs) in the regulation of CVDs. UMEs are a group of enzymes that orches-
trate ubiquitination, a post-translational modification tightly involved in CVDs.
Functionally, UMEs regulate multiple pathological processes in ischemic and
hemorrhagic stroke, moyamoya disease, and atherosclerosis. Considering the
important roles of UMEs in CVDs, they may become novel druggable targets
for these diseases. Besides, techniques applying UMEs, such as proteolysis-
targeting chimera and deubiquitinase-targeting chimera, may also revolutionize
the therapy of CVDs in the future.
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1 INTRODUCTION

As the “central processing unit” of the body, the brain
needs a relatively large amount of energy to maintain its
sophisticated functionality. Although its weight accounts
for only 2% of the body weight, the brain consumes about
20% of the human body’s oxygen and glucose supply.1,2
Unlike other major energy consumers of the body, such
as the liver, the brain has barely any reservation of energy
materials. Therefore, the cerebrovascular system is the
only important source of glucose and oxygen for the brain.
Cerebral blood flow, which is mainly supplied by inter-
nal carotid arteries and vertebral arteries, accounts for
up to 20% of total cardiac output.3,4 Given the impor-
tance of the cerebrovascular system in brain energy supply,
interruption of the cerebral blood supply leads to termi-
nation of cerebral electrical activity and irreversible brain
damage within minutes. Chronic cerebrovascular diseases
(CVDs), such as moyamoya disease (MMD) and intracra-
nial atherosclerotic disease, cause insufficient blood sup-
ply to the brain, inciting symptoms including headache,
visual disturbance, paresthesia, motor nerve dysfunc-
tion, mental abnormality, and cognitive impairment.5–9
These chronic CVDs and other factors, for example,
hypertension, can also trigger life-threatening acute cere-
brovascular accidents such as ischemic and hemorrhagic
stroke.5,6,8 CVDs have become the main cause of dis-
ability and mortality in both developing and developed
countries.10
Accumulative studies have shown that the pathological

processes of CVDs are closely regulated by ubiquitina-
tion, a post-translationalmodification (PTM) that is widely
involved in signal transduction, inflammatory responses,
metabolism, and cell fate determination.11–17 In the process
of ubiquitination, ubiquitin, a 76-amino acid small protein,
is covalently conjugated to a lysine residue of the sub-
strate protein under the sequential catalysis of ubiquitin-
activating enzymes (E1s), ubiquitin-conjugating enzymes
(E2s), and ubiquitin ligases (E3s)18 (Figure 1A). First, an
E1 hydrolyzes ATP and forms a thioester bond between
the sulfhydryl group of its active cysteine and the carboxyl
group of the ubiquitin C-terminal glycine. Second, the acti-
vated ubiquitin is attached to an active cysteine of the
E2 through a new E2-ubiquitin thioester bond. Then, the
E2-ubiquitin complex interacts with an E3, which recog-
nizes the protein substrate to mediate the final ubiquitin
transfer.18 E3s containing the really interesting new gene
(RING) domain catalyze the direct transfer of ubiquitin
from the E2 to the substrate. In contrast, E3s belong-
ing to the RING-between-RING (RBR) and homologous
to the E6AP carboxyl terminus (HECT) subfamilies form
a ubiquitin-E3 thioester intermediate before transferring

the ubiquitin to the substrate18,19 (Figure 1A). According
to the type of ubiquitin attachment, ubiquitination can
be classified as polyubiquitination, monoubiquitination,
and multi-monoubiquitination (Figure 1A). In polyubiq-
uitin chains, ubiquitin monomers are linked together via
isopeptide bonds between the C-terminal glycine car-
boxyl group of one ubiquitin and the amino group of
the N-terminal methionine residue (M1) or any one of
the internal lysine residues (K6, K11, K27, K29, K33, K48,
K63) in the next ubiquitin.20 Of note, polyubiquitin chains
can be added to substrates by “sequential addition” or
“en bloc transfer.” In the sequential addition, individ-
ual ubiquitin monomers are transferred stepwise to the
end of a growing polyubiquitin chain. By contrast, in
the en bloc mechanism, a pre-assembled polyubiquitin
chain is transferred as a whole to a substrate.21 Func-
tionally, ubiquitination controls the localization, activity,
stability, or binding partners of protein substrates. As a
reversible PTM, ubiquitination is antagonized by deubiq-
uitinating enzymes (DUBs), which are divided into seven
subfamilies based on sequence and domain conservation:
ubiquitin-specific proteases (USPs), ovarian tumor pro-
teases (OTUs), ubiquitin C‑terminal hydrolases (UCHs),
Machado–Josephin domain-containing proteases (MJDs),
JAB1/MPN/MOV34 family (JAMMs), motif interacting
with ubiquitin-containing novel DUB family (MINDYs),
and zinc finger with UFM1-specific peptidase domain pro-
tein (ZUFSP/ZUP1).22,23 Mostly, DUBs directly remove
ubiquitin molecules from protein substrates (Figure 1B).
However, OTUB1, a DUB of the OTU subfamily, possesses
a non-canonical function that enables it to obstruct the
ubiquitination of protein targets by blocking ubiquitin
transfer from E2s24–26 (Figure 1C). Of note, the removed
ubiquitin molecules from substrates will be recycled for
new ubiquitination processes. Besides, DUBs can also
enrich the free ubiquitin pool by cleaving ubiquitin precur-
sors encoded byUBA52, RPS27A,UBB, andUBC to release
free ubiquitin molecules27 (Figure 1D).
Ubiquitin-modifying enzymes (UMEs) comprising E1s,

E2s, E3s, and DUBs orchestrate the diverse and exquisite
ubiquitination of target proteins to precisely control their
cellular localization, protein interaction, enzymatic activ-
ity, and degradation, thereby affecting the initiation and/or
outcome of brain diseases. For example, loss-of-function
mutations in the TRIM37 gene, which encodes the E3 lig-
ase TRIM37, cause the Mulibrey (muscle–liver–brain–eye)
nanism.28,29 In the scope of CVDs, the gene encoding the
E3 ligase RNF213 has been identified as the most promi-
nent susceptibility gene for MMD.30–34 In this review, we
elaborate on the functional roles and molecular mecha-
nisms of UMEs in CVDs and discuss the possibility of
exploring UMEs as therapeutic targets for these diseases.
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F IGURE 1 Overview of the process of ubiquitination and deubiquitination. (A) Ubiquitination is an enzymatic cascade catalyzed
sequentially by E1s, E2s, and E3s. Ubiquitin is first activated by an E1 and subsequently transferred to an E2. An E3 mediates the final
attachment of the ubiquitin molecule to a protein substrate. In contrast to HECT and RBR E3s, which receive ubiquitin molecules from E2s
before transferring to substrates, RING E3s mediate the transfer of ubiquitins directly from E2s to substrates. (B,C) Ubiquitination is inhibited
by DUBs, which either directly remove ubiquitins from substrates (B) or block the ubiquitination process. (D) DUBs cleave ubiquitin
precursor proteins to release free ubiquitin molecules, which are further used for ubiquitination.

1.1 UMEs regulate cerebral injury after
ischemic stroke

Stroke is the second leading cause of death and disabil-
ity worldwide. Around the world, there are more than
12 million new stroke cases per year and approximately
100 million people are living with the aftermath of a
stroke.10 Stroke is caused by infarction or rupture of a
blood vessel in the brain, and accordingly can be classi-
fied into ischemic stroke and hemorrhagic stroke, with the
former accounting for nearly 80% of all stroke cases.35,36
Thrombolytic therapy with tissue plasminogen activator
(tPA) and mechanical thrombectomy are two common
ways to restore blood supply after ischemic stroke.37 How-
ever, blood reperfusion can cause secondary brain damage
known as cerebral ischemia/reperfusion (CI/R) injury.
Multiplemechanisms, such as calciumoverload, excitotox-
icity, mitochondrial damage, oxidative stress, blood-brain
barrier (BBB) disruption, and inflammation, are involved
inCI/R injury, culminating in neuronal cell death andneu-
rological deficits.38 The middle cerebral artery occlusion
(MCAO) model, an animal model phenocopying key fea-

tures of human ischemic stroke, is widely used to study
the pathophysiology and treatment of ischemic stroke.
With the MCAO model, regulatory functions of UMEs in
ischemic stroke injury have been revealed. Recent stud-
ies have shown that UMEs affect the injury in ischemic
stroke predominantly by regulating neuronal death, axonal
function, neuroinflammation, BBB integrity, and mito-
chondrial dysfunction.

1.1.1 UMEs regulate neuronal death after
ischemic stroke

Neuronal cell death is the basic pathophysiology of stroke,
and the ischemic insult sequentially induces two major
forms of programmed cell death, that is, necroptosis and
apoptosis39 (Figure 2). Necroptosis is a regulated necrosis
that is rapidly induced in neurons shortly after cerebral
ischemia.39 In response to necroptosis-inducing stimuli,
receptor-interacting protein kinase 1 (RIPK1) undergoes
a conformational change and recruits RIPK3 to form a
RIPK1/RIPK3 oligomer. In this kinase complex, RIPK3 is
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F IGURE 2 The role of UMEs in ischemic stroke. Ischemic stroke induces BBB damage, mitochondrial dysfunction, axonal damage, and
neuronal death. Shortly after cerebral ischemia/reperfusion, neurons undergo necroptosis, leading to the release of DAMPs including
S100A8/A9 and HMGB1. These DAMPs stimulate adjacent astrocytes and microglia to produce pro-inflammatory cytokines.
Neuroinflammation in turn promotes neuronal necroptosis in a positive feedback loop and instigates neuronal apoptosis in the late stage.
UMEs influence ischemic stroke injury by regulating BBB damage (A), mitochondrial dysfunction (B), axonal damage (C), neuronal
necroptosis (D), neuronal apoptosis (E), and neuroinflammation (F). UMEs inhibiting ischemic stroke injury are in green and UMEs
promoting ischemic stroke injury are in red.

activated and then phosphorylates the effector molecule
mixed lineage kinase domain-like protein (MLKL).40
PhosphorylatedMLKL forms oligomers that translocate to
the plasma membrane. At the membrane, MLKL under-
goes conformational changes, leading to rapid breakage
of the cell membrane and cell death.41,42 Due to mem-
brane permeabilization, necroptotic cells leak intracellular
contents comprising damage-associated molecular pat-
terns (DAMPs), which further activate innate immune
responses to incite inflammation43 (Figure 2). Inhibition
of necroptosis has been shown to be neuroprotective in
mice subjected to MCAO.44,45 Necroptosis is inhibited by
E3 ligases TRAF2, CHIP, and Triad3, and they can mit-
igate cerebral ischemic injury by attenuating necroptosis
and neuroinflammation.46–48 Consistently, viral vector-
mediated overexpression of CHIP has been shown to
prevent neuronal cell death after cerebral ischemia.49
In mice, MCAO-induced neuronal cell death undergoes

the transition from necroptosis to apoptosis over time, and
apoptosis becomes the main type of neuronal cell death

following the initial necroptosis39 (Figure 2). Ischemia-
induced neuronal apoptosis is inhibited by UMEs such
as MDM2, RNF8, Smurf2 and ZNRF2, and enhanced
by TRAF3, TRAF5, and TRAF6.11,50–55 Cerebral ischemia
induces the upregulation of MDM2, an E3 ligase that neg-
atively regulates p53 via both repressing p53 target gene
transcription and ubiquitinating p53 for degradation.50
Consistent with studies showing that p53 promotes stroke-
induced apoptosis and affects functional recovery after
stroke,56,57 the single-nucleotide polymorphism of the
MDM2 gene (SNP309T > G), which enhances MDM2
expression, is associated with better functional outcomes
in patients with ischemic or hemorrhagic stroke.50 RNF8
is an E3 ligase that is involved in DNA damage repair
via histone ubiquitination, and ablation of RNF8 leads to
DNA damage accumulation and neuronal apoptosis.58,59
In mice subjected to MCAO, RNF8 plays a neuropro-
tective role by inducing the ubiquitination and degrada-
tion of HDAC2, which enhances oxygen-glucose depri-
vation (OGD)-induced neuronal apoptosis via regulating
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GSK3β activation.51 Smurf2 is another E3 ligase that can
inhibit neuronal apoptosis induced by cerebral ischemia
and OGD, and overexpression of Smurf2 reduces brain
injury in mice subjected to MCAO.11 Smurf2 ubiquiti-
nates Yin Yang 1 (YY1) for proteasome-dependent degra-
dation, thereby suppressing apoptosis via inactivating
the apoptosis-inducing YY1/HIF1α/DDIT4 axis.11 CI/R-
induced neuronal apoptosis can also be inhibited by the
E3 ligase ZNRF2, which inhibits apoptosis by preventing
excessive autophagy, and overexpression of ZNRF2 attenu-
ates cerebral injury in rats after MCAO.52 In sharp contrast
to the aforementioned apoptosis-inhibiting E3 ligases,
several E3 ligases of the tumor necrosis factor receptor-
associated factor (TRAF) family, including TRAF3/5/6 can
enhance CI/R-induced neuronal apoptosis.53–55 For exam-
ple, TRAF6 potentiates CI/R-induced neuronal apoptosis
by K63 ubiquitinating and activating Rac1.54

1.1.2 UME regulates axonal function after
ischemic stroke

In addition to grey matter, white matter can also be
injured by ischemic stroke.60,61 UCHL1 is a neuron-specific
DUB that is essential for axonal function.14 After cere-
bral ischemia, UCHL1 is deactivated by reactive lipids,
which bind to the C152 residue of UCHL1, leading to
an impaired ubiquitin-proteasome pathway. However, the
UCHL1 C152A mutant preserves the ubiquitin hydrolase
activity in the presence of reactive lipids.62 As compared
with wild-type controls, the UCHL1 C152A knock-in mice
show decreased accumulation of ubiquitinated proteins
and axonal injury after MCAO, suggesting that UCHL1
plays a critical role in maintaining axonal function after
ischemic stroke.14

1.1.3 UMEs regulate neuroinflammation
after ischemic stroke

Neuroinflammation is an indispensable component of
the pathological machinery in ischemic stroke.63 Shortly
after ischemic stroke, DAMPs such as S100A8/A9 and
HMGB1 are released from necroptotic cells. These DAMPs
are recognized by microglia and astrocytes, two innate
immune cell populations in the brain, through pattern
recognition receptors, resulting in the production of pro-
inflammatory cytokines and chemokines39,64 (Figure 2).
The post-stroke neuroinflammation is driven by various
pro-inflammatory signaling pathways, in particular the
nuclear factor-kappa B (NF-κB) pathway, which is tightly
regulated by ubiquitination andUMEs.63,65–68 Noteworthy,
in response to pro-inflammatory stimuli, polyubiquitin

chains catalyzed byUMEs provide large scaffolds to induce
multi-protein structures comprising IκB kinases (IKKs),
which serve as an upstream organizing center regulating
NF-κB activation.69,70 As such, multiple UMEs have been
shown to influence ischemic stroke injury by regulating
neuroinflammation (Figure 3). Ischemic stroke-induced
neuroinflammation has been shown to be promoted by
TRIM8,71 TRIM45,72 TRIM4773 and TRIM62,74 and inhib-
ited by TRIM9,13 USP10,75 USP18,76 USP20,77 and USP25.78
For example, after CI/R injury, microglia-mediated neu-
roinflammation and neurological deficit are enhanced by
the E3 ligase TRIM45.72 After OGD/R, TRIM45 catalyzes
K63-specific polyubiquitination on TAB2, which is cru-
cial for the phosphorylation of TAK1 and the subsequent
activation ofNF-κB signaling.Moreover,microglia-specific
knockdown of TRIM45 significantly mitigates neurolog-
ical deficit following CI/R injury in mice.72 In sharp
contrast to TRIM45, theDUBUSP25 inhibits CI/R-induced
K63 ubiquitination of TAB2 in microglia.78 In both mice
and humans, microglial expression of USP25 is upreg-
ulated in the ischemic penumbra.78 USP25 physically
interacts with TAB2 through theUIM2 domain and cleaves
K63 polyubiquitin chains on TAB2. In mice, ablation of
USP25 significantly exacerbated MCAO-induced cerebral
deficits by enhancing neuroinflammation.78 Ubiquitina-
tion and degradation of IκBα, the inhibitor that retains
NF-κB in the cytoplasm in resting cells, is essential for
the activation of NF-κB signaling. Of note, the ubiqui-
tination of IκBα is induced by an E3 ligase complex
comprising β-TrCP.79 As a counter-regulating mechanism,
the degradation of IκBα is inhibited by TRIM9, which
competes with IκBα for β-TrCP interaction and thereby
inhibits the ubiquitination of IκBα.80 Upon ischemic
stroke, TRIM9 inhibits NF-κB-mediated neuroinflamma-
tion by stabilizing IκBα, resulting in alleviated cerebral
damage.13

1.1.4 UMEs regulate BBB integrity after
ischemic stroke

BBB disruption, characterized by loss of BBB junctional
proteins and enhanced permeability, is another patho-
logical process associated with cerebral ischemic stroke.
Disrupted BBB subsequently leads to cerebral edema and
neuronal cell death.81 After ischemic stroke, BBB dam-
age is promoted by the E3 ubiquitin ligase CRL, which
induces the degradation of the protective protein neurofi-
bromatosis 1 (NF1).82 The activity of CRL is inhibited by
the small-molecular inhibitor MLN4924, and treatment of
mice with MLN4924 ameliorates ischemic brain injury by
inducing the accumulation of NF1.82 In addition to neu-
ronal apoptosis, BBB disruption is alsomitigated in TRAF5
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F IGURE 3 UMEs regulate neuroinflammatory signal transduction after ischemic stroke. DAMPs released from necroptotic neurons
induce the production of pro-inflammatory cytokines in glial cells mainly by activating NF-κB and MAPK signaling pathways. E3s and DUBs
tightly control the activity of these signaling pathways, thereby affecting neuroinflammation and ischemic stroke outcomes.

knockout mice after CI/R, indicating a role of TRAF5 in
regulating BBB damage.53

1.1.5 UMEs regulate mitochondrial
dysfunction after ischemic stroke

Mitochondrial dysfunction is a key mechanism contribut-
ing to brain injury in ischemic stroke.83 Mul1 is a mito-
chondrial membrane protein with dual E3 ligase functions
in both ubiquitination and sumoylation, a ubiquitination-
like PTM.84,85 Mul1 is upregulated in the rat brain
after MCAO, and it aggravates mitochondrial dysfunction
by regulating the protein abundance of the mitochon-
drial fission protein Drp1 and the mitochondrial fusion
protein Mfn2 through sumoylation and ubiquitination,
respectively.84 Knockdown of Mul1 ameliorates MCAO-
induced brain injury by restoring protein abundance of
Drp1 andMfn2.84 In response to OGD, the E3 ligase SIAH2
is activated in neurons, and it induces the ubiquitina-
tion and degradation of mitochondrial NCX3, a protein
essential for mitochondrial integrity and neuronal sur-
vival during hypoxia. As compared with control neurons,
SIAH2-deficient neurons show improved mitochondrial
function under OGD conditions due to elevated NCX3
levels.86 Another study demonstrated that SIAH2 could
also aggravate ischemia-induced mitochondrial damage

by inducing the ubiquitination and proteasomal degrada-
tion ofAKAP121, amitochondrial scaffold protein essential
for mitochondria activity.87 Therefore, the two studies
jointly show that SIAH2 contributes to mitochondrial
damage upon ischemic stress.86,87 Selective mitochondrial
autophagy, known as mitophagy, serves as a key mecha-
nism in clearing damaged mitochondria and it is activated
in ischemic brains.88 Upon ischemic injury, the E3 lig-
ase Parkin is recruited to the damaged mitochondria and
ubiquitinates mitochondrial membrane proteins to trig-
ger mitophagy.89 In mice, Parkin-mediated mitophagy has
been shown to be a key protective mechanism in CI/R
injury.88,90
In aggregate, these studies show that, after ischemic

stroke, UMEs impinge on cerebral injury by regulating a
broad range of biological activities, implying that UMEs
may serve as potential therapeutic targets for ischemic
stroke.

1.2 UMEs regulate cerebral injury after
hemorrhagic stroke

Nearly 20%of stroke cases are hemorrhagic,with intracere-
bral hemorrhage (ICH) accounting for about 10−15%.91,92
ICH causes neuronal cell death and neurological deficits
by hematoma-associated mechanical damage and sec-
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ondary injury mechanisms such as oxidative stress,
mitochondrial dysfunction, neuronal excitotoxicity, cal-
cium overload, neuroinflammation, and free radical
production.93 UMEs have been shown to affect the out-
come of ICH by regulating many of these pathological
processes.94–98 The DUB A20, encoded by the TNFAIP3
gene, serves as a brake on inflammatory responses via sup-
pressing multiple pro-inflammatory signaling pathways,
such as NF-κB and JAK-STAT signaling66,99 (Figure 3).
Mutations in or close to the TNFAIP3 gene are associ-
ated with various autoimmune diseases including sys-
temic lupus erythematosus, rheumatoid arthritis, multiple
sclerosis, and colitis.66,100,101 ICH-induced inflammatory
injury is also inhibited by A20, and overexpression of
A20 ameliorates brain damage after ICH.94 Moreover, in
humans, A20 mRNA levels in peripheral blood mononu-
clear cells are negatively correlated with neurological
deficits after ICH, indicating that A20 is a key sup-
pressor for ICH injury.94 Mitochondrial dysfunction and
oxidative stress are inhibited by PGC-1α and enhanced
by RNF34, an E3 ligase inducing the ubiquitination-
mediated degradation of PGC-1α.95,102 Overexpression of
RNF34 exacerbates ICH-induced brain injury by promot-
ing PGC-1α protein degradation and increasing oxidative
stress and mitochondrial dysfunction.95 Necroptosis is
an important mechanism causing brain injury after ICH
and it can be regulated by CHIP, which ubiquitinates
the key component of necroptosis, RIPK3, for lysosomal
degradation.103–105 Overexpression of CHIP inhibits neu-
ronal necroptosis and neuroinflammation in rats after
ICH, resulting in reduced hemorrhagic lesions. Concor-
dantly, CHIP deficiency leads to aggravated brain injury
after ICH.96 In addition to necroptosis, apoptosis is also
induced by ICH, and it can be enhanced by theDUBsUSP4
and USP11.97,98
Subarachnoid hemorrhage (SAH) is another subtype

of hemorrhagic stroke, accounting for nearly 5−10% of
acute stroke.92,106 The E3 ligase RNF216, also known as
Triad3A, has been shown to modulate synaptic plastic-
ity in glutamatergic neurons by inducing the ubiquiti-
nation and degradation of Arc.107 Upon SAH, RNF216
increases oxyhemoglobin-induced intracellular Ca2+ accu-
mulation in neurons by restraining the Arc-AMPAR path-
way, thereby promoting cytotoxicity and neuronal apopto-
sis. Moreover, the downregulation of RNF216 ameliorates
brain injury following SAH.108 In addition to RNF216, neu-
ronal apoptosis induced by SAH is also enhanced by the E3
ligase TRAF3, which enhances SAH-induced NF-κB and
MAPK signaling by activating TAK1.109 Inflammation is a
key pathological process contributing to early brain injury
(EBI) following SAH. After experimental SAH, microglia
upregulate the expression of Peli1, an E3 ligase that posi-
tively regulates neuroinflammation by promoting c-IAP2

ubiquitination and downstream inflammatory signaling
in microglia.65,110 Consistently, the knockdown of Peli1
reduces neuroinflammation and improves neurological
outcomes during EBI after SAH.110

1.3 UMEs regulate moyamoya disease
(MMD)

MMD is an idiopathic cerebral vasculopathy characterized
by progressive narrowing of the intracranial portion of the
internal carotid artery and its main branches including the
middle cerebral and anterior cerebral arteries.7,111 InMMD,
ahazy network of collateral arteries namedmoyamoya ves-
sels develops around the occlusive region to compensate
for the blood flow. MMD usually causes cerebral ischemia
in pediatric and adult patients, but half of adult patients
can also develop intracranial bleeding.112 Therefore, MMD
poses a key risk factor for both hemorrhagic and ischemic
stroke.111,112
The annual incidence of MMD is as high as 0.5–

1.5/100 000 in East Asian countries including China,
Japan, and Korea, but as low as 0.1/100 000 in other parts
of the world.7 The difference inMMD prevalence is largely
due to genetic susceptibility factors in East Asian pop-
ulations. Indeed, RNF213, which encodes the E3 ligase
RNF213, was identified as the principal susceptibility gene
for MMD.7,30,31 The heterozygous p.Arg4810Lys variant of
RNF213 has been identified as a founder mutant present in
East Asian MMD patients.30,32–34 Around 1.5% of the pop-
ulation of South Korea and Japan carry this variant, but it
is rarely found in Caucasians, which may explain, at least
partly, the nearly tenfold higher frequency ofMMD in East
Asian countries than in other regions.
RNF213 is the biggest E3 ligase in the human proteome

with a mass of 591 kD, consisting of an N-terminal stalk,
a dynein-like ATPase core, and a C-terminal multidomain
E3 module.113 Since most of the pathological MMD vari-
ants map to the E3 module of RNF213, these MMD-related
variants may disturb the E3 ligase activity of RNF213.113
Consistently, a recent study found that proteins encoded
by MMD-associated RNF213 variants, including the most
prevalent Arg4810Lys variant, had reduced ubiquitina-
tion activity, suggesting that decreased E3 ligase activity
of RNF213 contributes to the pathogenesis of MMD.114
A recent study found that ablation of RNF213 disrupted
the barrier function of human cerebral endothelium in
vitro, which could be a potential pathogenic mechanism
causing MMD.15 However, the exact biological functions
and molecular mechanisms of RNF213 in MMD remain
largely unclear. In the future, studies on macromolecular
interactions, conformational dynamics, and biochemical
functions of RNF213may reveal the role andmechanism of
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action of this E3 in MMD and accelerate the development
of RNF213-targeting therapies for MMD.

1.4 UMEs regulate atherosclerosis

Atherosclerosis is a chronic vascular disease resulting
from the complex interplay between lipid metabolism
and immune responses. Besides, atherosclerosis can also
contribute to the development of other diseases of the
circulation system, such as coronary artery disease, periph-
eral artery disease, and stroke.6,115,116 The chronic build-up
of atherosclerotic plaques in the sub-endothelial inti-
mal layer of medium- and large-sized arteries causes
stenosis and restricts blood flow to critical organs, partic-
ularly the brain. In addition, rupture of the atheroscle-
rotic plaque leads to acute thrombo-occlusive events,
including ischemic stroke.117 The p.Arg4810Lys variant
of RNF213, which represents the most prevalent genetic
abnormality in East Asian MMD patients, is also closely
associated with intracranial atherosclerosis and ischemic
stroke.118–121 Besides, this RNF213 variant predisposes
patients with symptomatic intracranial atherosclerosis to
stroke recurrence.122
Atherosclerosis is a cholesterol-related disease caused

by the deposition of lipoproteins, especially low-density
lipoproteins (LDLs), in the intimal space of arteries
(Figure 4). In the intima, LDLs are oxidized by free rad-
icals to form oxidized LDLs (OxLDLs), which can be
taken up primarily by macrophages through scavenger
receptors (SRs).123,124 Macrophages and vascular smooth
muscle cells (VSMCs) engulfing excessive OxLDLs dif-
ferentiate into foam cells, and the accumulation of foam
cells contributes to the development of atherosclerotic fatty
streaks and plaques.125,126 In addition to driving the tran-
sition of macrophages and VSMCs to foam cells, OxLDLs
as a group of metabolism-associated molecular patterns
(MAMPs) can also promote atherosclerosis by triggering
inflammation,which is a key pathological process underly-
ing the pathogenesis and progression of atherosclerosis123
(Figures 4 and 5). UMEs have emerged as key regulators of
atherosclerosis and they affect the onset and progression
of atherosclerosis by modulating endothelial cell function,
foam cell formation, and vascular inflammation.

1.4.1 UMEs regulate endothelial cell
function in atherosclerosis

The atherosclerotic process begins with the accumula-
tion of LDLs in the sub-endothelial space of arteries127
(Figure 4A). Endothelial cell dysfunction, such as altered
permeability and apoptosis, is the critical initial step in

atherogenesis, and this process is tightly regulated by
E3 ligases HRD1, MDM2, and WWP2.128–130 The bind-
ing of OxLDLs with lectin-like oxidized LDL receptor-1
(LOX-1), the specific scavenger receptor for OxLDLs on
endothelial cells, induces endothelial dysfunction and
OxLDL uptake.131 LOX-1 can be ubiquitinated by the
E3 ligase HRD1 for degradation.128 HRD1 expression is
downregulated in human atherosclerotic intima and its
overexpression attenuates OxLDL-induced apoptosis of
endothelial cells by reducing LOX-1 abundance, indicating
that decreased HRD1 expression induces endothelial dys-
function in atherosclerosis.128 Oxidative stress is a primary
driving factor in endothelial dysfunction. The E3 ligase
MDM2 promotes OxLDL-induced mitochondrial damage
and oxidative stress in endothelial cells.129 MDM2 induces
the UPS-dependent degradation of retinoid X receptor
beta (RXRβ), a protein that plays a protective role in
endothelial cells upon OxLDL stimulation. In LDLr−/−
mice, pharmacological inhibition of MDM2 increases the
protein abundance of RXRβ in the aorta and decreases
the formation of atherosclerotic lesions.129 In sharp con-
trast, the E3 ligase WWP2 can inhibit OxLDL-induced
endothelial cell injury by antagonizing oxidative stress.
Mechanistically, WWP2 ubiquitinates PDCD4 for degra-
dation, thereby activating the antioxidant HO-1 pathway
in endothelial cells. In ApoE−/− mice, overexpression of
WWP2 ameliorates atherosclerosis by reducing oxidative
stress and inflammation.130

1.4.2 UMEs regulate foam cell formation in
atherosclerosis

Foam cell formation is a hallmark of atherosclerosis
(Figure 4B). A majority of foam cells are derived from
macrophages, which ingest OxLDLs through scavenger
receptors SR-A1 and SR-B2 (CD36)124,132 (Figure 5A). Upon
binding with OxLDLs, SR-A1 is K63 polyubiquitinated at
theK27 residue, and this PTM facilitates SR-A1 internaliza-
tion, OxLDL uptake, and foam cell formation.133 The K63-
linked polyubiquitination of SR-A1 is counter-regulated
by the DUB USP9X (Figure 5A). Pharmacological or
genetic inhibition of USP9X increases OxLDL-induced
SR-A1 ubiquitination and internalization in macrophages.
Furthermore, disrupting the interaction between SR-A1
and USP9X with a cell-penetrating peptide exacerbates
atherosclerosis by increasing foam cell formation, show-
ing that USP9X is an important beneficial regulator
of atherosclerosis.133 The other key scavenger receptor
CD36 can also be ubiquitinated, and the ubiquitination
of CD36 leads to its proteasomal degradation.134,135 Of
note, the ubiquitination and degradation of CD36 is inhib-
ited by DUBs including USP10, USP14, and UCHL1136–138
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F IGURE 4 The role of UMEs in atherosclerosis. Atherosclerosis is a primary risk factor for stroke. During the initial stages of
atherosclerosis, LDLs are transported across dysfunctional endothelial cells to the sub-endothelial space of arteries (A). LDLs in the artery
intima are engulfed by macrophages through scavenger receptors. After ingesting overdose LDLs, macrophages laden with lipids become
foam cells. Apart from macrophages, smooth muscle cells can also become foam cells after ingesting LDLs (B). Accumulation of foam cells
further leads to the formation of atherosclerotic plaques. Besides, plaque formation is strongly promoted by pro-inflammatory cytokines
produced by macrophages and T cells (C). UMEs can influence the pathogenesis and development of atherosclerosis by regulating various cell
populations including endothelial cells, T cells, macrophages, and smooth muscle cells. UMEs inhibiting atherosclerosis are in green and
UMEs promoting atherosclerosis are in red.

F IGURE 5 UMEs regulate macrophage functions in atherosclerosis. Macrophages are a key cell population promoting atherosclerosis.
On the one hand, macrophages ingest LDLs to become foam cells (A). On the other hand, macrophages produce pro-inflammatory cytokines
in response to LDLs (B). The two processes are closely controlled by UMEs.
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(Figure 5A). Inhibition of USP10, USP14 orUCHL1 reduces
CD36 protein abundance in macrophages and thereby
diminishes OxLDL-induced foam cell formation.136–138
Apart from macrophages, another important source of
foam cells is VSMCs. The E3 ligase TRIM7 promotes the
proliferation and migration of VSMCs in atherosclerosis,
and the downregulation of TRIM7 alleviates atherosclero-
sis in ApoE−/− mice.139 On the contrary, the E3 ligase Peli1
inhibits atherosclerosis progression by reducing inflamma-
tion and the transition of VSMCs to foam cells.140

1.4.3 UMEs regulate inflammation in
atherosclerosis

Atherosclerosis is characterized by continuous low-grade
inflammation in the artery wall, and inflammation
accelerates plaque expansion and destabilization141,142
(Figure 4C). Macrophages are the predominant source
of pro-inflammatory molecules in atherosclerosis and
macrophage-mediated inflammatory responses are regu-
lated by UMEs including A20, TRIM64, FBXW2, FBXO3,
TRAF6143–147 (Figure 5B). A20, a special UME with both
DUB and E3 ligase activities, is an NF-κB inhibitor and
critically regulates inflammatory responses in various
diseases.99,148,149 A20 was found to play a protective role in
atherosclerosis by suppressing the expression of NF-κB tar-
get genes including cytokines and adhesion molecules.143
As compared with control ApoE−/− mice, atheroscle-
rotic lesions are increased in A20-haploinsufficient mice
and decreased in A20-overexpressing mice.143 In con-
trast, OxLDL-induced NF-κB-dependent inflammation in
macrophages is promoted by the E3 ligase TRIM64, which
enhances IκBα degradation by ubiquitinating IκBα at
the K67 residue.144 The E3 ligase FBXW2 is an F-box
protein and acts as a substrate-binding component of
the E3 ligase complex termed Skp1-Cullin-F-box protein
(SCF) complex.145 FBXW2 is upregulated in macrophages
in atherosclerotic plaques. FBXW2 enhances the pro-
duction of pro-inflammatory factors by mediating the
ubiquitination and degradation of KSRP, an RNA-binding
protein that negatively regulates the synthesis of a sub-
set of cytokines and chemokines. Consistently, myeloid
cell-specific ablation of FBXW2 mitigates atherosclerosis
in mice, accompanied by reduced expression of pro-
inflammatory factors in atherosclerotic lesions.145 Another
F-box protein of the SCF complex, FBXO3, can also
promote atherosclerosis by enhancing inflammation.146
FBXO3 is predominantly expressed in macrophages in
human carotid atherosclerotic plaques, and FBXO3 deple-
tion in macrophages diminishes OxLDL-induced inflam-
matory responses. Intriguingly, individuals carrying a
hypo-functioning FBXO3 variant are less susceptible to

atherosclerosis.146 YAP is an essential signaling molecule
of the Hippo pathway and it was recently shown to exac-
erbate atherosclerosis by promoting chemokine produc-
tion in macrophages.147 YAP expression is upregulated in
macrophages inmouse and human atherosclerotic lesions,
and myeloid cell-specific YAP overexpression aggravates
atherosclerosis in mice. Upon stimulation with IL-1β, a
key pro-inflammatory cytokine involved in atherosclero-
sis, YAP is K63 ubiquitinated by the E3 ligase TRAF6
at the K252 residue, leading to its protein stabiliza-
tion and nuclear translocation. This study found that
IL-1β enhanced YAP-mediated chemokine production in
macrophages by activating TRAF6, highlighting a pivotal
role of TRAF6 in the inflammation-driven progression of
atherosclerosis.147
Akin to macrophages, T cells are a dominant immune

cell type in atherosclerotic plaques and mediate the
inflammatory responses underlying atherosclerosis150,151
(Figure 4C). In both human and mouse atherosclerotic
plaques, the E3 ligase CBL-B is mainly expressed in
infiltrating macrophages and T cells.152 CBL-B deficiency
exacerbates vascular inflammation in mice by increas-
ing the abundance and cytotoxicity of CD8+ T cells as
well as macrophage activation, resulting in aggravated
atherosclerosis.152 In addition to macrophages and T cells,
VSMCs can also contribute to inflammation in atheroscle-
rosis. The DUBUSP20 has been shown to inhibit IL-1- and
TNF-evoked inflammatory responses inVSMCs by deubiq-
uitinating RIPK1. In vivo, specific overexpression of USP20
inVSMCs significantly reduces vascular inflammation and
ameliorates atherosclerosis.153
Collectively, these reports demonstrate that UMEs regu-

late various key aspects in the pathogenesis and progres-
sion of atherosclerosis. Therefore, enhancing the benefi-
cial functions and/or inhibiting the detrimental functions
of UMEs may impede the progression of atherosclerosis,
preventing the occurrence of more severe CVDs such as
stroke.

1.5 UMEs as therapeutic targets and
tools

Considering that UMEs serve as versatile and crit-
ical regulators in CVDs, potent and specific UME
inhibitors/agonists may become efficacious drugs for
the prevention and treatment of CVDs. For example,
the USP14 inhibitor IU1 has been shown to attenuate
neurological deficits caused by ischemic stroke.154,155
Since inhibition of USP14 diminishes foam cell forma-
tion, IU1 may also ameliorate atherosclerosis.137 Of note,
compared with E1, E2, and E3 ubiquitinating enzymes,
DUBs are more favorable targets for the development of
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small-molecule inhibitors.156,157 In the past two decades,
DUBs have emerged as novel drug targets for cancer
and immune disorders.158 In the foreseen future, UME
inhibitors, particularly DUB inhibitors, may also enrich
the therapeutic armamentarium for CVDs. Notably, in
the NF-κB signaling, which critically regulates inflamma-
tion and cell death in multiple CVDs, stimulus-specific
polyubiquitin scaffolds provide the docking sites for key
upstream signaling molecules including IKKs.69,70 In light
of this, compared with the conventional “target-centric”
inhibitors that inhibit single UMEs, “network-centric”
inhibitors, which inhibit ubiquitin-mediated assem-
bly of signaling complexes, may be more specific and
effective.159 In addition, given that UMEs tightly control
the abundance, location, and activation of key proteins
involved in CVDs, UMEs can also be applied to treat
CVDs by precisely inhibiting detrimental proteins and
enhancing beneficial proteins. Indeed, techniques based
on UMEs, such as deubiquitinase-targeting chimera
(DUBTAC) and proteolysis-targeting chimera (PROTAC),
are gaining increasing attention as innovative therapeutic
methods.160–162 Therefore, UMEs may become novel drug
targets and therapeutic tools, opening up new possibilities
for the prevention and treatment of CVDs.

2 CONCLUSION AND PERSPECTIVE

CVDs are a leading cause of disability and death in both
developing and developed countries. In 2020, CVDs caused
7.08 million deaths worldwide, surging from 6.6 million
deaths in 2019.116,163 Recent studies have elucidated the
pivotal roles of UMEs in CVDs, shedding light on the
mechanism and therapy of these medical emergencies.
Despite these advances, several critical aspects concern-
ing UMEs in CVDs remain to be strengthened. First, more
effects are needed to delineate the disease linkage of UMEs
with CVDs. Inflammation is of particular importance in
the progression of CVDs. Some UMEs, such as Pellino,
are impactful regulators of inflammatory signaling, but
their roles in CVDs remain largely unknown. Besides, no
UME has been found to regulate cerebral small vessel
diseases to date. It is intriguing and meaningful to iden-
tify new CVD-regulating UMEs. Second, the function of
some UMEs in CVDs has yet to be clarified. Although
RNF213 has been established as an essential protein in
MMD, its exact function in MMD remains unclear. In the
future, the in-depth investigation of newbiochemical func-
tions, interacting partners, and substrates of RNF213 may
unravel the pathogenic mechanisms of MMD and inspire
new therapies for MMD. Third, the clinical relevance of
UMEs with human CVDs should be confirmed. Given that
animal models cannot fully recapitulate human diseases

and most studies have explored the function of UMEs
in CVDs using animal models, these findings cannot be
simply extrapolated to clinical situations. Comprehensive
studies involving clinical research or humanized mice are
more favorable for concluding the function of UMEs in
CVDs. Fourth, the research and development of thera-
peutic approaches and drugs for CVDs based on UMEs
should be accelerated. Despite recent advances, the study
onUME inhibitors/agonists and PROTAC/DUBTAC is still
in its infancy. Further studies in this burgeoning field may
improve or even revolutionize the treatment for CVDs.
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