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A deep learning model for brain 
segmentation across pediatric 
and adult populations
Jaime Simarro 1,2*, Maria Ines Meyer 1, Simon Van Eyndhoven 1, Thanh Vân Phan 1, 
Thibo Billiet 1, Diana M. Sima 1 & Els Ortibus 2,3,4

Automated quantification of brain tissues on MR images has greatly contributed to the diagnosis 
and follow-up of neurological pathologies across various life stages. However, existing solutions 
are specifically designed for certain age ranges, limiting their applicability in monitoring brain 
development from infancy to late adulthood. This retrospective study aims to develop and validate 
a brain segmentation model across pediatric and adult populations. First, we trained a deep learning 
model to segment tissues and brain structures using T1-weighted MR images from 390 patients (age 
range: 2–81 years) across four different datasets. Subsequently, the model was validated on a cohort 
of 280 patients from six distinct test datasets (age range: 4–90 years). In the initial experiment, 
the proposed deep learning-based pipeline, icobrain-dl, demonstrated segmentation accuracy 
comparable to both pediatric and adult-specific models across diverse age groups. Subsequently, we 
evaluated intra- and inter-scanner variability in measurements of various tissues and structures in both 
pediatric and adult populations computed by icobrain-dl. Results demonstrated significantly higher 
reproducibility compared to similar brain quantification tools, including childmetrix, FastSurfer, and 
the medical device icobrain v5.9 (p-value< 0.01). Finally, we explored the potential clinical applications 
of icobrain-dl measurements in diagnosing pediatric patients with Cerebral Visual Impairment and 
adult patients with Alzheimer’s Disease.

Neuroimaging techniques play a crucial role in advancing our understanding of the human brain, covering its 
structure, development, function, and  pathologies1. Magnetic Resonance Imaging (MRI) stands out as a non-
invasive technology to obtain high-resolution, in vivo measurements of the human  brain2. Automated analysis 
of MR images contributes to the diagnosis of neurological pathologies across various life stages, from childhood 
(e.g., focal cortical  dysplasia3) to late adulthood (e.g., Alzheimer’s  disease4).

Quantitative assessment, exemplified by volumetric analysis, enhances the objectivity of brain interpreta-
tion compared to visual MRI scan inspection alone. Traditional techniques for brain MR image segmentation 
involve atlas-based methods and statistical models, such as  FreeSurfer5,  volBrain6, or the medical device software, 
icobrain v5.97,8. Nevertheless, recent progress in deep learning models, such as  QuickNat9,  AssemblyNet10, and 
 FastSurfer11, has demonstrated superior performance compared to traditional methodologies, as evidenced in 
a recent  review12.

Despite the growing role of quantitative analysis tools, additional technical and clinical validation is  required4. 
Notably, there is a lack of validated models for robust and reliable brain quantification in multi-scanner settings, 
common in clinical data. Additionally, recent algorithms, including deep learning methods, are usually developed 
and validated using adult datasets. However, standard MRI processing methods designed for adult images may 
not be suitable for pediatric  datasets13. Pediatric brain analysis poses unique challenges such as reduced tissue 
contrast, within-tissue intensity heterogeneities, and smaller regions of  interest13,14. Consequently, pediatric brain 
analysis commonly employs specialized analysis tools like  childmetrix15.

In pediatric studies, a common dilemma arises regarding the use of age-appropriate methods for different 
developmental stages or maintaining a consistent method across all  ages16. While age-specific models are opti-
mized for specific age ranges, their use introduces the risk of attributing age-related differences to methodological 
inconsistencies rather than genuine brain development or change. Particularly when monitoring patients across 
different transitional phases, such as from the pediatric stage through adolescence and into adulthood, there is 

OPEN

1icometrix, Leuven, Belgium. 2Department of Development and Regeneration, KU Leuven, Leuven, 
Belgium. 3Department of Pediatric Neurology, UZ Leuven, Leuven, Belgium. 4Child and Youth Institute, KU 
Leuven, Leuven, Belgium. *email: jaime.simarro@icometrix.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61798-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11735  | https://doi.org/10.1038/s41598-024-61798-6

www.nature.com/scientificreports/

a significant need for a general, consistent, and reliable method, eliminating reliance on multiple age-specific 
methods.

In this work, we develop and validate a brain segmentation pipeline across pediatric and adult populations, 
emphasizing the impact of heterogeneous and representative training data rather than the optimization of the 
deep learning architecture employed. The primary objective of this study is to explore whether a single deep 
learning model can be optimized to consistently quantify structural MRI across the lifespan, reflecting the dis-
tinctive neuroanatomy of each developmental stage. We hypothesize that a single deep learning model trained 
on datasets covering a wide age range will perform comparably to age-specific models within their respective age 
groups. The secondary objective is to validate the proposed pipeline’s performance in terms of reproducibility, 
diagnostic accuracy, and computational time. We hypothesize that the proposed deep learning-based pipeline 
will produce results comparable to established methods such as childmetrix, icobrain v5.9, and FastSurfer, while 
ensuring accurate and reproducible brain quantification across pediatric and adult populations.

Materials and methods
Datasets
Four separate datasets collectively containing 390 patients, aged between 2 and 81 years, were utilized for train-
ing. Validation was performed on a separate cohort of 280 patients from six distinct test datasets, covering an 
age range from 4 to 90 years. These datasets consisted of 757 T1-weighted MRI scans acquired from various 
manufacturers (Philips, Siemens, GE, Fujifilm) with different magnetic field strengths (1.5T/3T ∼ 32%/68%) 
across 21 scanners. The patients represented a diverse pathological conditions, including developmental disor-
ders, cerebral visual impairment, depression, bipolar disorder, schizophrenia, multiple sclerosis, and Alzheimer’s 
disease. Table 1 presents a summary of the diverse datasets employed in this retrospective study. Further details 
about these datasets can be found in Appendix A.

Training dataset
The training dataset comprises a wide age range, pathologies and acquisition protocols. T1-weighted images were 
sourced from pediatric datasets, including the Healthy Brain Network (HBN, dataset 1.1.p)17 and the Calgary 
Preschool MRI (dataset 1.2.p)18. Additionally, T1-weighted images of adult patients were obtained from a research 
cohort (dataset 1.3.a) focused on the relations between very-late-onset schizophrenia-like psychosis, hippocampal 
volume, early adversity, and memory  function19 as well as another cohort from clinical practice (dataset 1.4.a).

Segmentation accuracy testing dataset
Two publicly available manually annotated datasets were used to validate the segmentation accuracy: the Child 
and Adolescent NeuroDevelopment Initiative (CANDI, dataset 2.p)20 and the MICCAI 2012 Grand Challenge 
and Workshop on Multi-Atlas Labeling (MICCAI2012, dataset 2.a)21. We excluded 5 images from the latter due 
to repeated scans of the same patient.

Reproducibility testing dataset
The reproducibility of the measurements was evaluated by analyzing two images from the same individual 
acquired with re-positioning within a very short time interval, ensuring no anatomical change between the two 
images (i.e., test and retest images). Two test-retest datasets were used to validate the reproducibility. The first 
dataset is a pediatric intra-scanner dataset obtained from Nathan Kline Institute (NKI, dataset 3.p)22, while the 
second dataset comprises 10 adult individuals who underwent two scans, using three different types of scanners 

Table 1.  The datasets utilized for model training and validation consisted of both pediatric (denoted with 
suffix p) and adult (denoted with suffix a) data. A subset of patients were randomly selected from original 
training datasets. These datasets include individuals with Developmental Disorders (DD), Healthy Control 
(HC), Very-Late-Onset Schizophrenia-Like Psychosis (VLOSLP), Late-Onset Depression (LOD), Bipolar 
Disorder (BD), Schizophrenia (Sz) and Multiple Sclerosis (MS), Cerebral Visual Impairment (CVI) and 
Alzheimer’s Disease (AD). NA = not available.

Scenario Dataset Subjects Age range (years) Diagnosis Female (%) Scanner type Source

Training

1.1.p 157 5–21 DD and HC 40% 3T: Siemens CMI-HBN17

1.2.p 66 2–6 HC 48% 3T: GE Calgary18

1.3.a 32 Adults VLOSLP, LOD and HC NA 3T: Philips Research  cohort19

1.4.a 135 16–81 MS 60% 1.5–3T: Siemens, GE and Philips, 1.5T: 
Fujifilm Clinical practice

Accuracy
2.p 103 4–16 BD, Sz and HC 45% 1.5T: GE CANDIShare20

2.a 30 18–90 HC 66% 1.5T: Siemens MICCAI201221

Reproducibility
3.p 70 6–17 DD and HC 44% 3T: Siemens NKI22

3.a 10 39–57 MS 70% 3T: Siemens, GE and Philips Re3T7

Diagnosis Performance
4.p 21 4–13 CVI and no CVI 23% 1.5T:Siemens and Philips, 3T: Philips Clinical practice

4.a 46 58–85 AD and HC 54% 1.5T: GE MIRIAD23
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(Re3T, dataset 3.a)7. Using repeated scans in multiple scanner types enables analysis for intra-scanner and inter-
scanner validation.

Diagnostic performance testing dataset
The diagnostic performance is assessed using two separate datasets. The first dataset comprises pediatric patients 
suspected of suffering from Cerebral Visual Impairment (CVI) (dataset 4.p), approved by the local Ethical Com-
mittee of UZ Leuven, Belgium (S65276). All methods were carried out in accordance with relevant guidelines 
and regulations. Informed consent was obtained from all subjects or their legal guardians. Secondly, we used 
the Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD, dataset 4.a), which includes both 
patients with Alzheimer’s Disease (AD) and healthy elderly  individuals23.

icobrain-dl pipeline: design and development
icobrain-dl is a pipeline for brain quantification. The pipeline processes a 3D T1-weighted MR image as input and 
undergoes three main steps: preprocessing, brain segmentation using a deep learning model, and brain quantifi-
cation. The output includes brain segmentation masks for various regions of interest (ROIs) and brain volumes.

Pre‑processing
Prior to training, the images underwent several fully automated pre-processing steps. Firstly, bias-field correction 
was performed using the N4 inhomogeneity correction algorithm as implemented in the Advanced Normali-
zation Tools (ANTs)  toolkit24. In pediatric cases, an age-specific atlas is used to obtain the brain mask for N4 
correction. Secondly, the images were affinely registered to MNI space using the reg_aladin algorithm in 
 NiftyReg25. To minimize the effect of outliers, intensities were clipped at the  1st and  99th percentile. Finally, the 
intensities were normalized using a variation on z-scoring, this function was computed over values above the 
 10th percentile, with preference given to the median over the mean. The standard deviation was then computed 
within the  90th percentile.

Simultaneous segmentation of brain tissue and structures via a multi‑head deep learning model
The proposed deep learning model is designed to perform two tasks, brain tissue segmentation and brain struc-
tural segmentation, whose labels are not mutually exclusive.

Task 1: Tissue segmentation. This task involves the segmentation of brain tissues into four distinct classes: 
background (i.e., not brain tissue), white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF).
Task 2: Structural segmentation. This task involves the segmentation of 22 anatomical brain structures and 
background. A detailed list of the structures is provided in Appendix B.

The architecture utilizes a 3D U-net  backbone26, incorporating two segmentation heads. Each of both outputs is 
a softmax array of Nk probability maps, where Nk is the number of classes being predicted in task k. Moreover, 
certain modifications were made to the original architecture, including substituting batch normalization with 
weight  normalization27, using leaky ReLU as the primary activation function, and using strided convolutions 
instead of max  pooling28. Figure 1 illustrates our final architecture, while detailed information including justi-
fication for the multi-task architecture can be accessed in Appendix C.

The model was trained using a weighted sum of the per-task losses, each comprising of a soft Dice loss ( LDice ) 
and a weighted categorical cross-entropy loss ( LwCE ), as shown in Eq. (1).

We set α1 = 1 (tissue segmentation) and α2 = 10 (structural segmentation).
The proposed model is trained on patches of 128× 128× 128 voxels from T1-weighted MR images acquired 

without contrast agent injection. To augment the variability in the training set, ensuring that the range of inten-
sities and tissue contrasts is similar with those observed in multi-center, multi-scanner cohorts, we applied 
intensity-based data augmentation as described in Meyer et al.29. This technique uses Gaussian Mixture Modeling 
to change the intensity of the individual tissue components within an MR image while preserving structural 
information. We utilized the predefined default parameters of the public implementation of this code, available 
at https:// github. com/ icome trix/ gmm- augme ntati on.

The model was implemented using Tensorflow 2.6 and employed He weight initialization. The training process 
was stopped upon detecting convergence of the validation loss. The validation set, which constituted a randomly 
selected 15% of the training dataset, was not utilized for optimizing the network weights. Adam optimizer was 
deployed with an initial learning rate of � = 0.001.

Efficient generation of high‑quality training labels
To address the challenge of obtaining manual annotations for large datasets, we created ‘silver’ ground truth, 
starting from the labels predicted by icobrain v5.9 on the training datasets. Subsequently, minor manual correc-
tions were made where necessary.

Models training scheme
We trained three deep learning models with identical architecture, each using a different set of data for training:

(1)Ltotal = α1

(

L
(1)
wCE

+L
(1)
Dice

)

+ α2

(

L
(2)
wCE

+L
(2)
Dice

)

https://github.com/icometrix/gmm-augmentation
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• The icobrain‑dl model was trained on both pediatric and adult data, providing the most comprehensive 
training dataset (i.e., datasets 1.1.p, 1.2.p, 1.3.a and 1.4.a ).

• The pediatric-specific model, termed icobrain‑dl‑p, was exclusively trained on pediatric datasets (i.e., datasets 
1.1.p and 1.2.p).

• The adult-specific model, termed icobrain‑dl‑a, was solely trained on adult datasets (i.e., datasets 1.3.a and 
1.4.a ).

Validating technical and diagnostic performance
Two sets of experiments were conducted to validate both technical and diagnostic performance, with a focus on 
segmentation accuracy, intra- and inter-scanner variability, and computational time.

Segmentation accuracy was evaluated through the Dice similarity coefficient (DSC) and Hausdorff distance 
(HD)30. DSC is a metric quantifying the overlap between two segmentation masks, with values ranging from 0 
(indicating no overlap) to 100 (indicating perfect agreement). The HD measures the maximal contour distance 
(in millimeters) between the two masks. A smaller HD indicates greater similarity between the masks. To address 
the high sensitivity of the HD to  outliers31, we considered the 95th percentile of the HD, denoted as HD95. In the 
initial experiment, DSC and HD95 calculations were performed between ground truth segmentations and both 
icobrain-dl and the age-specific models (icobrain-dl-p or icobrain-dl-a). Subsequently, DSC and HD95 values 
were computed between the icobrain-dl model and the age-specific models on datasets 2.p and 2.a.

The reproducibility of icobrain-dl was assessed by comparing it with established non-deep learning algo-
rithms, specifically the pediatric-focused childmetrix15 and the clinically-used adult-focused medical device 
software icobrain v5.9, referred to as icobrain‑nondl7,8. Additionally, the state-of-the-art deep learning model 
FastSurfer11 was included. Test-retest relative differences were computed with respect to the mean volumes across 
methods (dataset 3.p and 3.a), and the Wilcoxon signed-rank test was employed to identify significant differences 
between methods at levels of 0.01 and 0.001.

The validation of diagnostic performance serves as a proof of concept for the clinical application of the seg-
mentation algorithm. To demonstrate the icobrain-dl’s applicability across both pediatric and adult populations, 
two pathologies with distinct volumetric patterns were selected. In the first experiment, the objective was to 
differentiate patients with CVI from those without CVI using the whole brain white matter volume (dataset 4.p), 
motivated by the known association between periventricular white matter damage and  CVI32. The second experi-
ment aimed to distinguish patients with AD from cognitively healthy individuals using temporal lobe cortical 

Figure 1.  The deep learning model processes a 3D T1-weighted image via a single-input, dual-output 3D 
convolutional neural network (CNN) to produce estimated multi-label masks for brain tissues (background, 
white matter, gray matter, cerebrospinal fluid) and brain structures (background + 22 brain structures). The 
CNN is based on the widely used 3D U-net architecture, which operates on 3D patches of the input scan. 
Each convolutional layer utilizes 3× 3× 3 kernels, except for the two convolutional layers before the softmax 
layers, which use 1× 1× 1 kernels. Weight normalization and leaky ReLU (slope = 0.20) are employed. The 
output patches have dimensions of 88× 88× 88 voxels, which are smaller than the input patches’ dimensions 
( 128× 128× 128 voxels) due to the use of valid convolutions, mitigating off-patch-center bias.
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gray matter volume (dataset 4.a). Previous research has established the reliability of this region in discerning 
between AD patients and healthy  controls8. Volumes from the different pipelines were normalized for head size 
employing the determinant of the affine transformation to the MNI atlas as a scaling factor. Head size-normalized 
volumes of the regions of interest (i.e., whole brain white matter and temporal lobe cortical gray matter) were 
used to distinguish pathology and non-pathology. Model comparisons were conducted using the area under 
the receiver operating characteristic curve (AUC) and the DeLong test, with a significance level of 0.0533. The 
assessment of accuracy, specificity, and sensitivity metrics was based on the maximum value of the Youden index.

Results
Accuracy
On the pediatric dataset 2.p, the deep learning models  icobrain-dl and icobrain-dl-p exhibited comparable per-
formance in accurately segmenting brain structures, achieving an average DSC of 82.2% and 80.8%, respectively. 
Their average HD95 were 3.26mm and 3.23mm. Additionally, there was a high overlap between the segmentations 
of icobrain-dl and the pediatric-oriented icobrain-dl-p, with an average DSC of 87.4% and HD95 1.76mm. Similar 
results were observed in the adult dataset 2.a, where icobrain-dl achieved an average DSC of 82.6% and HD95 
of 2.27mm when compared to manual segmentations. For icobrain-dl-a, the metrics were 81.9% and 2.37mm, 
respectively. The average DSC between both segmentation models was 92.4% with an average HD95 of 1.02mm. 
Table 2 and Table 3 display the DSC and HD95 between manual ground truth segmentations and segmentations 
calculated by the three deep learning models.

These findings suggest that icobrain-dl is as effective as the age-specific models in accurately segmenting 
brain structures in both pediatric and adult populations.

Reproducibility
The segmentations generated by icobrain-dl systematically had lower test-retest volume differences for the pedi-
atric intra-scanner setting (dataset 3.p) than childmetrix and FastSurfer, as illustrated in Figure 2. For most 
structures, these test-retest differences from icobrain-dl were significantly lower than the comparable methods 
( p < 0.01).

A similar pattern of lower test-retest volume differences provided by icobrain-dl was observed in adults 
(dataset 3.a) for intra-scanner and inter-scanner settings (see Figure 3 and 4). Specifically, in the inter-scanner 
setting, icobrain-dl outperformed icobrain-nondl and FastSurfer, except in the right white matter and left cor-
tical gray matter. Notably, icobrain-dl produced significantly lower inter-scanner test-retest errors ( p < 0.01 ) 
across all substructures, including the caudate nucleus, hippocampus, globus pallidus, putamen, and thalamus.

Diagnostic performance
The performance of icobrain-dl in detecting pediatric patients with CVI surpassed childmetrix (AUC of 0.48) 
and FastSurfer (AUC of 0.60), with an AUC of 0.69, as shown in Table 4. There was no statistically significant 
difference between icobrain-dl and FastSurfer in terms of AUC. Nevertheless, icobrain-dl exhibited significantly 
superior performance compared to childmetrix ( p < 0.05).

Table 2.  icobrain-dl consistently achieves high overlap in segmenting different brain structures across subject 
age ranges, while only minimally sacrificing accuracy and sometimes even outperforming models that are 
tailored for specific age ranges (icobrain-dl-p for pediatric data and icobrain-dl-a for adult data). We compare 
segmentation accuracy as measured by the Dice similarity coefficient expressed as a percentage between three 
deep learning models that are trained using different subsets of training data against manually created ground 
truth (GT) from pediatric (CANDIShare, dataset 2.p) and adult (MICCAI2012, dataset 2.a) data. The Dice 
similarity coefficient between the models’ predictions is also shown. The Dice similarity coefficient is reported 
as: mean value (standard deviation) across subjects.  WM = White Matter,  CGM = Cortical Gray Matter, GM 
= Gray Matter.

Dice similarity coefficient (DSC)

Pediatric dataset 2.p Adult dataset 2.a

GT vs icobrain-dl-p vs GT vs icobrain-dl-a vs

icobrain-dl icobrain-dl-p icobrain-dl icobrain-dl icobrain-dl-a icobrain-dl

WM 84.8 (2.0) 85.0 (2.1) 92.3 (2.9) 88.5 (1.1) 85.5 (1.0) 91.8 (1.7)

CGM 83.0 (2.5) 79.7 (3.7) 88.2 (3.2) 83.2 (1.6) 82.5 (1.6) 89.9 (2.3)

Lateral ventricles 83.0 (4.6) 83.4 (4.7) 88.5 (6.4) 88.7 (3.6) 88.9 (3.7) 93.3 (2.7)

Hippocampus 78.8 (2.7) 71.4 (11.3) 82.1 (11.3) 76.7 (1.8) 77.2 (1.9) 91.3 (1.7)

Caudate 83.5 (3.5) 82.5 (8.3) 83.5 (9.3) 81.8 (3.1) 80.5 (3.2) 91.5 (2.2)

Putamen 84.8 (1.5) 83.9 (3.1) 89.8 (3.6) 83.4 (2.4) 80.7 (1.8) 92.1 (1.6)

Cerebellar GM 83.9 (2.5) 86.9 (1.9) 89.9 (1.9) 78.4 (2.8) 79.5 (2.4) 94.1 (1.3)

Cerebellar WM 76.1 (4.1) 75.9 (4.4) 81.1 (2.8) 77.8 (2.8) 77.4 (2.3) 92.4 (1.6)

Thalamus 82.6 (2.4) 78.7 (7.0) 90.7 (6.7) 85.0 (1.0) 84.5 (1.3) 94.7 (1.0)
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In supporting the classification of AD patients from age-matched controls, the icobrain-dl demonstrated 
comparable high performance in terms of accuracy, sensitivity, and specificity. The AUC for icobrain-dl was 0.99, 
icobrain-nondl was 0.98, and FastSurfer was 0.98, with no statistically significant difference.

Computational time
On average, the proposed method took approximately 5 minutes to complete the entire pipeline when running 
on a server without a GPU (amazon web services cloud environment c6i.2xlarge, 8vCPU and 16GiB of Memory 
RAM) while the pipeline based on FastSurfer requires nearly 6 minutes on a GPU server (cloud environment 
p2.xlarge, NVIDIA Tesla K80 (12 GiB), 4vCPU and 61GiB of Memory RAM). In contrast, the non-deep learning 

Table 3.  Summary of the Hausdorff distance 95th percentile (HD95) between ground truth (GT) and 
icobrain-dl or the age-specific models, and between the age-specific models and icobrain-dl. icobrain-dl 
consistently achieves high-quality segmentation of various brain structures across different age groups, as 
indicated by the low HD95 with comparing with GT in both datasets. The HD95 is reported as: mean value 
(standard deviation) in millimeters across subjects. WM = White Matter, CGM = Cortical Gray Matter, GM = 
Gray Matter.

Hausdorff distance 95th percentile (HD95)

Pediatric dataset 2.p Adult dataset 2.a

GT vs icobrain-dl-p vs GT vs icobrain-dl-a vs

icobrain-dl icobrain-dl-p icobrain-dl icobrain-dl icobrain-dl-a icobrain-dl

WM 2.07 (0.52) 2.08 (0.51) 1.11 (0.21) 1.34 (0.24) 1.80 (0.36) 1.01 (0.07)

CGM 2.50 (0.42) 2.81 (0.50) 1.23 (0.35) 1.36 (0.17) 1.38 (0.20) 1.00 (0.00)

Lateral ventricles 6.82 (9.47) 3.73 (6.59) 1.62 (1.67) 1.06 (0.14) 1.06 (0.14) 1.00 (0.00)

Hippocampus 2.50 (0.59) 3.43 (1.67) 1.79 (1.38) 1.93 (0.24) 1.95 (0.27) 1.00 (0.00)

Caudate 1.64 (0.37) 1.86 (1.49) 1.77 (1.28) 1.51 (0.21) 1.64 (0.25) 1.04 (0.12)

Putamen 1.80 (0.27) 2.05 (0.38) 1.37 (0.44) 1.52 (0.23) 1.74 (0.19) 1.01 (0.07)

Cerebellar GM 3.29 (0.47) 3.01 (0.57) 2.13 (0.37) 3.00 (0.25) 3.03 (0.22) 1.04 (0.12)

Cerebellar WM 5.74 (1.40) 6.72 (2.20) 3.24 (1.09) 6.51 (1.43) 6.41 (0.92) 1.16 (0.36)

Thalamus 2.99 (0.37) 3.38 (0.77) 1.65 (1.01) 2.24 (0.09) 2.36 (0.20) 1.00 (0.00)

Figure 2.  The icobrain-dl measurements exhibited statistically significantly lower test-retest errors than 
both childmetrix and FastSurfer across a majority of regions for pediatric cases (dataset 3.p) in intra-scanner 
settings, as quantified by relative test-retest volume differences. Legend: * = p < 0.01 , **= p < 0.001 according 
to Wilcoxon signed-rank tests comparing icobrain-dl to either childmetrix or FastSurfer. To ensure overall 
figure readability, certain boxplots have been cropped.  L =  left, R = right, WM = white matter, CGM = cortical 
gray matter, LV = lateral ventricles, CB = cerebellum, CdN = caudate nucleus, HC = hippocampus, GP  = globus 
pallidus, Pu = putamen, Tha  = thalamus.
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Figure 3.  The icobrain-dl measurements exhibited equal or lower test-retest errors than icobrain-nondl and 
FastSurfer for adult cases in the intra-scanner settings, as quantified by intra-scanner relative test-retest volume 
differences. Legend: * = p < 0.01 , **= p < 0.001 according to Wilcoxon signed-rank tests comparing icobrain-dl 
to either icobrain-nondl or FastSurfer.  L =  left, R = right, WM = white matter, CGM = cortical gray matter, LV 
= lateral ventricles, CB = cerebellum, CdN = caudate nucleus, HC = hippocampus, GP =  globus pallidus, Pu 
= putamen, Tha  = thalamus.

Figure 4.  The icobrain-dl measurements exhibited statistically significantly lower test-retest errors than 
icobrain-nondl and FastSurfer across all the subcortical structures (right) for adult cases (dataset 3.a) in inter-
scanner settings, as quantified by relative test-retest volume differences. The asterisk colour indicates the better 
performing method (red = icobrain-dl, black = state-of-the-art). To ensure overall figure readability, certain 
boxplots have been cropped.  L =  left, R = right, WM = white matter, CGM = cortical gray matter, LV = lateral 
ventricles, CB = cerebellum, CdN = caudate nucleus, HC = hippocampus, GP =  globus pallidus, Pu = putamen, 
Tha =  thalamus.
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approaches childmetrix and icobrain v5.9 running on a server without a GPU (cloud environment c6i.2xlarge, 
8vCPU and 16GiB of Memory RAM) required on average 24 minutes and 27 minutes.

Qualitative results
Figure 5 illustrates the segmentation results of icobrain-dl in test patients across the lifespan, with ages rang-
ing from 4 to 85 years old. These qualitative results demonstrate the model’s robustness to diverse pathological 
conditions and scans with differing intensities and contrasts.

Discussion
This study introduces icobrain-dl, a deep learning-based pipeline capable of performing quantitative assessment 
of brain tissues and structures across pediatric and adult populations.

Table 4.  The proposed method has superior performance in detecting pediatric patients with Cerebral Visual 
Impairment (CVI) from those without CVI using the white matter volume normalized for head size (dataset 
4.p) and comparable high performance in detecting adult patients with Alzheimer’s Disease from age-matched 
controls using the cortical grey matter of the temporal lobe normalized for head size (MIRIAD, dataset 4.a). 
AUC  = area under the curve.The AUC obtained by icobrain-dl was significantly higher than the AUC obtained 
by childmetrix ( p < 0.05 ) while there was no statistically significant difference between icobrain-dl and 
FastSurfer, and icobrain-dl and icobrain v5.9 using the DeLong test. The accuracy, specificity, and sensitivity 
metrics are assessed at the maximum value of the Youden index.

Pediatric dataset 4.p Adult dataset 4.a

icobrain-dl childmetrix FastSurfer icobrain-dl icobrain-nondl FastSurfer

AUC 0.69 0.48 0.60 0.99 0.98 0.98

Accuracy 0.71 0.57 0.67 0.96 0.93 0.96

Specificity 0.86 0.57 0.86 0.91 0.91 0.96

Sensitivity 0.64 0.57 0.57 1 0.96 0.96

Figure 5.  Examples of segmentations of icobrain-dl on test patients with different ages and pathologies. The 
pipeline accurately quantifies brain tissues and structures despite variations in age, pathology, and intensity 
contrast, capturing anatomical variability such as the cortical atrophy patterns characteristic of patients with 
Alzheimer’s Disease.
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The pipeline was developed and validated using T1-weighted images obtained from various scan vendors with 
different magnetic field strengths. The dataset includes patients across a broad age range with various pathological 
conditions. Evaluation of the proposed pipeline included segmentation accuracy and reproducibility assessments, 
along with an exploration of its clinical application through diagnostic performance and computational efficiency.

In contrast to methods tailored for specific age ranges, such as childmetrix for children or icobrain-nondl 
and FastSurfer for adults, icobrain-dl provides quantitative brain measurements across the human lifespan, from 
early childhood (i.e., 4 years old) to maturation and older age, within a single deep learning model. Previous 
experiments have shown the accuracy performance of adult-trained models in pediatric  data9,10. However, in 
this study, we explicitly included pediatric data to train the model and observed that it does not compromise 
the performance on scans from adult subjects, and vice versa. Furthermore, the inclusion of a pediatric cohort 
allowed the deep learning model to learn and adapt to challenges associated with brain development, including 
reduced tissue contrast, within-tissue intensity heterogeneities, and smaller regions of interest. The proposed 
single deep learning model eliminates the need for multiple age-specific segmentation models, enabling consist-
ent measurements across transitional phases, such as from the pediatric stage through adolescence to adulthood. 
This facilitates the creation of a reference standard for human brain development, essential for quantifying devel-
opmental changes, interpreting deviations, and identifying patterns of anatomical differences in neurological 
and psychiatric disorders that manifest during various stages of development and  aging34.

High reproducibility is crucial for accurately measuring brain changes and  atrophy35. The proposed icobrain-
dl, was compared with state-of-the-art brain segmentation models, including  childmetrix15,  FastSurfer11 and 
the medical device software icobrain-nondl (i.e., icobrain v5.97,8). The results demonstrated overall superior 
reproducibility assessed in pediatric intra-scanner and adult intra- and inter-scanner scenarios, particularly in 
the adult inter-scanner setting, with significantly lower variability observed in all brain substructures (p < 0.01). 
This improvement can be attributed to the diverse sources of T1-weighted images used in training, along with 
the integration of a data augmentation algorithm. This algorithm enhanced the variability of training data in 
terms of intensity and contrast, which has been proven to be particularly beneficial for repetitions in different 
scanners (i.e., inter-scanner)29.

Volumetric imaging biomarkers provided by icobrain-dl required good accuracy, specificity and sensitivity 
to be used as a metric for diagnosis (e.g., distinguishing patients with Alzheimer’s vs. healthy controls). The pro-
posed pipeline exhibited comparable diagnostic performance to state-of-the-art methods, achieving the highest 
AUC for both clinical conditions. It is important to note that the purpose of the diagnostic performance scenario 
was to compare different methods using the same measurement, rather than to identify clinically relevant imaging 
biomarkers for specific pathologies. Future studies will explore the potential of volumetric imaging biomarkers to 
enhance our understanding of the underlying mechanisms of diseases and improve their diagnosis, particularly 
in complex and partly understood conditions like CVI. This involves increasing sample sizes and considering 
factors such as sexual  dimorphism36 and age-dependent developmental  trajectories13.

The proposed pipeline also analyses the images faster than traditional segmentation approaches, aligning 
with findings from previous studies employing deep learning  models9,11. However, in contrast with previous 
deep learning models, the proposed model deployed a lightweight deep learning architecture, consisting of 
relatively few layers. This design choice aimed to reduce the computational complexity, facilitating model infer-
ence on CPU-only platforms and ensuring efficient segmentation without incurring the elevated economical 
costs associated with GPU usage. The reduced processing time avoids creating additional bottlenecks in the 
radiological workflow.

The annotation protocols used to establish the ground truth of brain structures may vary across datasets, 
potentially differing from our definition of brain structure borders. This discrepancy could explain the higher 
overlap observed between models than the overlap between models and ground truth. Notably, icobrain-dl 
and the age-specific models are trained on datasets with overlapping patients and employ the same annotation 
protocol.

The icobrain-dl pipeline is designed to use T1-weighted images to analyse the structural anatomy of the brain. 
Currently, its application is limited to conditions characterized by non-mass effects due to the absence of multi-
modal data, such as fluid-attenuated inversion recovery (FLAIR) images. However, future iterations of icobrain-
dl aim to integrate multimodal data, thereby expanding its utility to cover a broader spectrum of pathologies.

The proposed deep learning model covers the human lifespan, starting at 4 years of age. The period preceding 
this age is the most dynamic phase of postnatal human brain  development37. Maturation processes, including 
myelination, notably influence T1-weighted image contrasts, for instance, shifting from hypointense white matter 
in newborns to hyperintese in 2-year-old infants, making the development of a reliable segmentation model a 
very complex task. Hence, additional exploration is required to incorporate quantification of brain segmentation 
during this initial phase of brain development.

Conclusion
The proposed deep learning-based pipeline, icobrain-dl, is capable of quantifying brain tissues and structures 
across the human lifespan beginning at 4 years of age. Extensive validation in clinically relevant settings has 
demonstrated its ability to provide accurate and reproducible volume quantification of relevant brain anatomical 
structures from T1-weighted images.

By offering a unified solution from early childhood to maturation and older age, icobrain-dl has the potential 
to significantly enhance research and clinical applications in monitoring brain development and diagnosing 
neurological conditions.
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Data and code availability
Further details regarding the publicly available datasets analyzed in the current study can be found in Appendix 
A. Additional datasets analyzed during the current study can be made available from the corresponding author 
with the permission of a third party upon reasonable request. The code employed in this study is not publicly 
accessible due to commercial restrictions but is available from the corresponding author upon reasonable request.
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