Skip to main content
. 2024 May 22;14:11735. doi: 10.1038/s41598-024-61798-6

Table 1.

The datasets utilized for model training and validation consisted of both pediatric (denoted with suffix p) and adult (denoted with suffix a) data.

Scenario Dataset Subjects Age range (years) Diagnosis Female (%) Scanner type Source
Training 1.1.p 157 5–21 DD and HC 40% 3T: Siemens CMI-HBN17
1.2.p 66 2–6 HC 48% 3T: GE Calgary18
1.3.a 32 Adults VLOSLP, LOD and HC NA 3T: Philips Research cohort19
1.4.a 135 16–81 MS 60% 1.5–3T: Siemens, GE and Philips, 1.5T: Fujifilm Clinical practice
Accuracy 2.p 103 4–16 BD, Sz and HC 45% 1.5T: GE CANDIShare20
2.a 30 18–90 HC 66% 1.5T: Siemens MICCAI201221
Reproducibility 3.p 70 6–17 DD and HC 44% 3T: Siemens NKI22
3.a 10 39–57 MS 70% 3T: Siemens, GE and Philips Re3T7
Diagnosis Performance 4.p 21 4–13 CVI and no CVI 23% 1.5T:Siemens and Philips, 3T: Philips Clinical practice
4.a 46 58–85 AD and HC 54% 1.5T: GE MIRIAD23

A subset of patients were randomly selected from original training datasets. These datasets include individuals with Developmental Disorders (DD), Healthy Control (HC), Very-Late-Onset Schizophrenia-Like Psychosis (VLOSLP), Late-Onset Depression (LOD), Bipolar Disorder (BD), Schizophrenia (Sz) and Multiple Sclerosis (MS), Cerebral Visual Impairment (CVI) and Alzheimer’s Disease (AD). NA = not available.