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Abstract
CD44, a nonkinase single span transmembrane glycoprotein, is a major cell sur-
face receptor for many other extracellular matrix components as well as classic
markers of cancer stem cells and immune cells. Through alternative splicing of
CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44
(CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44
participate in regulating various signaling pathways, modulating cancer prolif-
eration, invasion, metastasis, and drug resistance, with its aberrant expression
and dysregulation contributing to tumor initiation and progression. However,
CD44s and CD44v play overlapping or contradictory roles in tumor initiation
and progression, which is not fully understood. Herein, we discuss the present
understanding of the functional and structural roles of CD44 in the pathogenic
mechanism of multiple cancers. The regulation functions of CD44 in cancers-
associated signaling pathways is summarized.Moreover, we provide an overview
of the anticancer therapeutic strategies that targeting CD44 and preclinical and
clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxic-
ity about CD44-targeted therapies. This review provides up-to-date information
about the roles of CD44 in neoplastic diseases, whichmay open new perspectives
in the field of cancer treatment through targeting CD44.
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1 INTRODUCTION

CD44, a nonkinase transmembrane glycoprotein,1 is
expressed in various human cell types, such as immune
cells, differentiated cells, cancer cells, and so on.2,3 CD44
has numerous ligands, such as hyaluronic acid (HA),4
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osteopontin (OPN),5 and serglycin.6 The extracellular
region of CD44 binding to ligands has been found to
involve various of signaling pathways associated with
physiological and pathological processes,7,8 in particular,
pathways related to carcinogenesis and tumor progres-
sion including proliferation and migration of cells, drug
resistance, as well as epithelial–mesenchymal transition
(EMT).9–11
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Alternative splicing of the CD44 gene produces two
splice isoforms, CD44s and CD44v. Notably, CD44s and
CD44v play an overlapping or distinct role in cancers. In
most cases, CD44s is associated with tumor growth12 and
progression,13 while CD44v, such as CD44v3 and CD44v6,
is associated with invasiveness14 and chemoresistance.15
Accumulating evidence indicates that CD44 can reg-

ulate numerous cancer-associated signaling pathways to
influence cancer cell motility, EMT, and stemness.16–18 In
recent years, a number of novel functions of CD44 and
its associations with cancers have been revealed. Recent
advances in understanding the complex interactions of
CD44 with ligands have led to the development of CD44
not only as an important cancer stem cells (CSCs) marker
but also as a potential cancer therapeutic target.3,19,20 In
neoplastic diseases therapeutic areas, it is very crucial to
clarify the mechanism of CD44 in the signaling pathways,
thereby delaying, treating, and preventing the develop-
ment of tumors through targeting CD44. However, there
are relatively few clinical studies about CD44-targeted
therapies in cancer treatment. Hence, an updated and
comprehensive understanding of CD44 is very crucial,
which contributes to the research and development of
innovative CD44-targeted therapeutic strategies.
In this review, we discuss the structure and ligands of

CD44 briefly. And we focus on the biological functions
of CD44 in different cancers and cancer-related signaling
pathways regulated by CD44 and provide critical assess-
ment of therapeutic strategies and clinical studies through
targeting CD44.

2 THE STRUCTURE OF CD44

CD44 is a nonkinase cell surface transmembrane pro-
teoglycan that includes an ectodomain, a stem region,
composed of standard region and variable region, a trans-
membrane region and an intracellular tail.21 In human, the
gene encoding CD44 protein is on chromosome 11, while
in mice, the gene is on chromosome 2, which comprises
19 exons and 20 exons.22 Comparing with mice, CD44v1,
includes homolog exon 6, is not expressed in humans.23
For the reason that the variable exon 6 of the human
gene has a stop codon that is normally not expressed in
human CD44,24 CD44s is the most common and smallest
CD44 isoform, which includes the constant exons 1−5 and
16−20. Based on the structure of CD44s, CD44v consists
of variable exons 6−15 located in the exon 1−5 and 16−20
regions by alternate splicing or insertion.25 CD44v1–v10
correspond to alternative splicing or insertion of variable
exons 6–15, respectively,26 which have different functions
in neoplastic diseases.27 Moreover, a CD44v isoform could
have more than one variable exon. For example, CD44v8–

10 is based on CD44s structure with the insertion of v8,
v9, and v10, three variable exons.28 The correspondence
between structure and gene arrangement of CD44 in mice
is shown in Figure 1.

3 CD44 IN NEOPLASTIC DISEASES

CD44 has been reported as a classicmarker of CSCs, which
ismainly associatedwith of iron endocytosis-mediated cel-
lular plasticity.29 A recent study has found that in cancer
cell lines, through the endocytosis of iron-bound HA reg-
ulated by CD44, the EMT was enhanced.30 The effects
of the expressing of CD44 on immune cells and cancer
cells in neoplastic diseases are summarized in Figure 2.
Moreover, previous studies have found that the expres-
sion of CD44 isoforms in tumors plays crucial roles.31
Some researchers have demonstrated that part of CD44v
is associated with aggressive tumor progression and drug
resistance,32 whereas CD44s is involved in tumorigenesis
and tumor growth.13 However, recent studies have shown
the inverse result. For instance, CD44s has been shown to
promote migratory, invasive, and lungmetastatic potential
in breast cancer.33 In 3D cultures, CD44 switching from
the standard isoform to the variant 6 isoform was found
to be associated with EMT in gastric cells.34 The differ-
ent or overlapping functions of CD44s and CD44v may
depend on the difference in tumor types. In addition, dif-
ferent induction conditions, accompanied by alternative
splicing of CD44 isoforms, may lead to different expres-
sion of features in tumor cells. The correlation between
different cancers and CD44 are summarized in Table 1.
Moreover, CD44 could also play its biological roles by
interacting with ligands and messenger molecules, such
as HA,35 OPN,36 chondroitin sulfate (CS)37 and growth
factors38 mainly found in the tumormicroenvironment. In
this part, we have not only made a discussion in terms of
different kinds of cancers but also discussed the effects of
CD44 interacting with its different ligands on cancers.

3.1 Brain cancer

It has been shown that overexpression of CD44 is linked
to poor prognosis,39 tumor progression,40 and aggressive
behavior41 of tumors. For instance, CD44 is a possi-
ble CSCs marker in meningioma; the high expression
of CD44 was associated with a shorter progression-free
survival.42 Furthermore, inmeningioma, the level of CD44
expression is correlated with the grade of the tumor
and its invasiveness.43 Moreover, inhibiting CD44 dimer-
ization via verbascoside has been reported to suppress
stem cell-like cell properties and tumor cell growth in
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F IGURE 1 The gene arrangement and structure of CD44 in mice. The full-length CD44 in mice has 20 exons, including constant exons
and variant exons. The exon of S1–5, V1–10, S8, S9–10 corresponding to the standard region, variable region, transmembrane region and
intracellular tail of CD44 respectively. This scheme was generated using Biorender.

glioblastoma.44 Recent studies have found that tumor
cells with high expression of CD44 is associated with
brain metastases. It has been revealed that in lung,
melanoma, and breast cancer patients, the circulating
tumor cells expressing CD44 was a prognostic marker for
brain metastases.45 Moreover, in lung adenocarcinoma,
GPR124-enhanced trans-endothelial migration mediated
brain metastases caused by lung CSCs with high expres-
sion of CD44.46 Furthermore, in breast cancer brainmetas-
tases patients, a retrospective transversal study revealed
that CD44 was associated with worse overall survival.47
In general, CD44 is a promising marker associated with
brain metastases in cancer patients, which provides us
with the new insight into stratification of patients and
therapy clinically.

3.2 Head and neck cancer

It is found that CD44 seems to be a classic CSCs marker,48
which is also associated with tumorigenesis in head and
neck cancer.49 In head and neck squamous cell carcinoma
(HNSCC) CSCsmousemodels, targeting CD44 was shown
to inhibit PI3K–4EBP1–SOX2 signaling and tumor growth
and decrease the number of CSCs.50 Moreover, it is also
suggested that the switch from CD44s to CD44v8–10 was
associated with tumorigenic phenotypes.52 In addition,
CD44+ cells were reported to stimulate tumor angiogene-
sis in HNSCC.53 In the invasion zone of HNSCC, Odenthal
et al.54 found that CD44v6 could express constitutively.
This suggests that targeting CD44v6 could be used to
trustworthy near-infrared detection. Furthermore, Choi

et al.55 has found that the interaction of COL1A1 and
CD44 between fibroblasts and malignant cells was associ-
ated with HNSCC progression. Therefore, CD44 could be
a promising biomarker for clinical diagnosis, and targeting
CD44 could be a treatment strategy for drug resistance and
tumor metastasis.

3.3 Breast cancer

In breast cancer, CD44 plays key roles in aggressive tumor
behavior,56 tumor progression,57 CSCs trait induction,58,59
and prognosis.60 Rokana et al.51 found that aggregated
tumor cells with highly expressed CD44 could promote
tumorigenesis and polyclonalmetastasis.Moreover, deple-
tion of CD44 has been found to effectively prevent the
aggregation of tumor cell and decrease the levels of PAK2.51
Interestingly, CD44s was reported to inhibit breast can-
cer stemness, while the cleaved product of CD44 was
reported to contribute to breast cancer stemness.61 How-
ever, bioinformatics analysis of breast cancer patients
showed the reverse result. Notably, multiple studies have
reported inconsistent results. For instance, CD44s being
positively associated with CSCs gene signatures, while
CD44v exhibited an inverse association.62 Compelling evi-
dence further suggests that the splicing switch of CD44
may play inverse roles in breast cancer. For instance, Yang
et al.63 found that enhanced transformation of CD44high
to CD44low cancer cells induced migration and inva-
sion behavior. Additionally, CD44 isoform switching from
CD44s to CD44v resulted in an increase in the stemness
of triple-negative breast cancer.64 Targeting different CD44
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F IGURE 2 The role of CD44 expressing cancer stem cells and immune cells in neoplastic disease. The expression of CD44 on cancer
cells contributes to stemness mediated by iron, which is associated with EMT, proliferation, aggressive behavior, and drug resistance. On top
of that, CD44 expressing immune cells is associated with adhesion, migration, and the activation of immune cells and immunological
memory. Inhabiting the expression of CD44 could cause immune cells inactivation and thus tumor immune tolerance. This scheme was
generated using Biorender.

isoforms or inducing CD44 alternative splicing may be a
favorable treatment strategy for breast cancer. The specific
effects of CD44v and CD44s need to be further studied.

3.4 Kidney cancer

It is well documented that CD44 could serve as biomark-
ers that reflect poor prognosis65 and cancer risk in
kidney cancer.66,67 In transformed cells within multilay-
ered epithelia, CD44 and collagen XVII were reported to
play a key role in the clonal expansion.68 Moreover, the
ferroptosis-related gene CHAC1 was shown to contribute

to poor prognosis in kidney renal clear cell carcinoma asso-
ciated with the expression of the checkpoint gene CD44.69
Notably, it was reported that silencing CD44, PLOD1, and
PLOD2 genes could inhibit the proliferative and inva-
sive potential of renal cancer cells, which suggested that
these genesmay serve as renal cell carcinoma oncogenes.70
Interestingly, unlike the role of CD44 in other cancer, it was
found to display the opposite effect. In renal carcinoma,
CD44− cancer cells display stem-like properties and show
a higher level of invasiveness.71 All the above results show
that targeting CD44 or inhabiting CD44 expression could
be a promising therapeutic strategy to suppress kidney
progression.
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TABLE 1 The correlation between different cancers and CD44.

Cancer type Role of CD44 in cancer progress References
Brain cancer Poor prognosis, tumor progression, aggressive behavior 39–41

Head and neck cancer Stemness, tumor progression 48,49

Breast cancer Aggressive behavior, tumor progression, stemness, poor prognosis 56–60

Kidney cancer Poor prognosis, aggressive behavior, tumor growth 65–67

Liver cancer Cancer initiation, poor prognosis, stemness 72–74

Pancreatic cancer Tumorigenicity, clinicopathological features, aggressive behavior 80–82

Gallbladder cancer Stemness, aggressive behavior, tumor progression, poor prognosis 91–94

Esophageal cancer Tumor progression, stemness, poor prognosis, aggressive behavior 97–99,101,102

Prostate cancer Tumor progression, stemness, aggressive behavior 104–106,109

Gastrointestinal cancer Tumor progression, stemness, aggressive behavior, CSCs self-renewal
characteristic tumorigenesis

114–117,119

Melanoma Stemness, tumorigenesis, aggressive behavior 122,123,125

Squamous cell carcinoma Aggressive behavior, stemness, tumorigenesis, tumor progression 128–130

Sarcoma Tumor progression, stemness, aggressive behavior, poor prognosis 133–135,138,139

3.5 Liver cancer

CD44 is clearly associated with liver cancer initiation,72
poor prognosis,73 and cancer cells stemness.74 CD44 is
expressed in carcinogen-exposed hepatocytes in a STAT3-
dependent manner.75 Accordingly, CD44v6 was also found
to be a promising biomarker. In patients with grade 1 intra-
hepatic carcinomas and grade 1 hepatocellular carcinomas
(HCCs), TIPRL/LC3/CD133/CD44 also play a key role in
prognosis.76 Furthermore, compelling evidence suggests
that CD44 is related to stemness in liver cancer. CD44-
positive HCC patient-derived organoids were shown to be
obviously resistant to sorafenib via Hedgehog signaling.77
Besides, in CD24+/CD44+ cells, knocking down the sig-
nature gene CTSE was found to significantly inhibit the
self-renewal potential of HCC cells.78 CD44 surface mark-
ers were found in cancer cells with stemness properties,
which indicate that, in HCC, targeting CD44 expressed
in tumorigenic cells through JAK/STAT pathway is a
promising therapeutic strategy79

3.6 Pancreatic cancer

In pancreatic cancer, CD44 is involved in tumorigenicity,80
clinicopathological features,81 and invasiveness.82 In pan-
creatic ductal adenocarcinoma (PDAC) patients with liver
metastasis or poor prognosis, the expression of CD44v6
and complement C1q binding protein was higher.83 More-
over, CD44+ PDAC cells were reduced with nimbolide
treatment.84 A meta-analysis showed that CD44 over-
expression contribute to a poor 5-year overall survival
rate and lymph node invasion.85 On top of that, CD44+
stem cells from the Panc-1 cell line have been found

to be involved in multiresistance and metastasis.86 In
addition, more recent research has demonstrated that
the interaction of HA and CD44 could be used for
drug delivery in pancreatic cancer. HA-based carriers
have been shown to target tumors via interaction with
CD44 in pancreatic cell lines.87 HA-based nanomicelles
loaded with 3,4-difluorobenzylidene curcumin could also
kill CD44+ stem-like pancreatic cancer cells.88 Addition-
ally, HA-conjugated polyamidoamine dendrimers were
revealed to deliver 3,4-difluorobenzylidene curcumin to
pancreatic cancer cells overexpressed CD44.89 Further-
more, Kang et al.90 reported a nanoparticle loaded with
anticancer drug consists of HA, which could target CD44
in pancreatic cancer cells to eliminating tumor-resident
intracellular bacteria. Hence, targetingCD44 drug delivery
systems in cancer cells provide an avenue for pancreatic
cancer treatment. Moreover, decreasing the expression of
CD44 in pancreatic cancer is also a promising therapeutic
strategy.

3.7 Gallbladder cancer

There are few studies on CD44 in gallbladder cancer
(GBC), which mainly focus on the different functions of
CD44 isoforms and the stemness of cancer cells express-
ing CD44.91,92 CD44v9 and CD44s cells were found to
play key parts in the progression and metastasis of GBC
respectively, and the isoform switch triggered EMT.93
Interestingly, a research suggested that CD44v8–10 expres-
sion was closely associated with perineural invasion,
venous invasion, and lymph node metastasis, and in the
clinic, the patients with CD44v8–10+ tumors showed poor
prognosis.94 In addition, the high expression of CD44 as a
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stem cell marker in sphere clones of the human GBC cell
line GBC-SD was further explored.95 Interestingly, in gen-
eral, the stemness of cancer cells is positively correlated
with drug resistance, but the opposite effect is shown in
GBC.96 All the studies indicate that the characteristics of
CD44 in GBC provide some new thought in diagnosis and
treatment of GBC.

3.8 Esophageal cancer

High expression of CD44 plays roles in tumor progres-
sion and stemness in esophageal squamous cell carcinoma
(ESCC).97–99 CD44 is a novel stem cell marker in ESCC
that has been reported to be eliminated by inhibiting
the canonical NOTCH pathway.100 Moreover, CD44v9 was
shown to be strongly associated with EMT and poor prog-
nosis in patients with ESCC.101 Furthermore, microRNA
(miR)-34a suppressed invasion and metastasis in ESCC by
regulating CD44.102 In addition, the latest research has
found that the alternative splicing of CD44 isoform from
CD44s to CD44v8–10 is associated with ESCC metastasis
and poor prognosis in clinic.103 The CD44v isoforms has
similar functions in ESCC, which provide useful insights
for the development of ESCC treatment and prognostic
biomarkers.

3.9 Prostate cancer

CD44 is involved in prostate cancer, and different CD44
isoforms play different roles in tumor progression and
stemness.104–106 A recent study showed that TGF-β1-
mediated alternative splicing could switch CD44v to
CD44s, which enhanced EMT and stemness in human
prostate cancer cells.107 In DU145 and PC3 prostate cancer
cells, the high expression of CD44v4, v5, and v7 medi-
ated by sulforaphane contributed to tumor cell growth
and proliferative activity.108 Furthermore, CD44high stem
cell-like cells have been found to be involved in drug resis-
tance and invasive phenotypes in DU145 and PC3 cell
populations.109 In addition, high expression of CD44 was
reported to be associated with prostate cancer cell migra-
tion and proliferation.110 Accumulating evidence suggests
that CD44 is a stem cell marker in prostate cancer. Trans-
lationally controlled tumor protein (TCTP) was closely
associated with survival factor of stem cells, and the TCTP
inhibitor sertraline highly downregulated the expression
of CD44.111 Enzalutamide has been found to induce stem-
like characteristics to acquire resistance, and CD44 has
been found in enzalutamide-resistant cells.112 Addition-
ally, STAT3 also contributes to the cell stemness and
activation of the CSCs marker CD44 in PC cells.113 In gen-

eral, CD44v isoform is associated with cancer stemness.
However, only some studies have identified the specific
CD44v isoform. The specific CD44v isoforms in other
studies are unclear, which need further study.

3.10 Gastrointestinal cancer

Abundant evidence indicates that CD44 contributes to
tumor progression114 and stemness115 in gastrointestinal
cancer. It was revealed that MUC5AC interacting with
CD44 promoted cell invasive and migrative potential and
decreased apoptosis of colorectal cancer (CRC) cells via
Src signaling.116 In addition, PD-L1 was found to increase
the population sizes and the tumorspheres forming abil-
ity in CD133+CD44+ cell, which resulted in colorectal
CSCs self-renewal.117 A previous study revealed that CD44,
a stem cell marker in gastric cancer (GC) lines, could
be suppressed by DAXX.118 Interestingly, CD44 was also
found to play either different or overlapping roles in dif-
ferent gastrointestinal cancers, which may be related to
the species of CD44 and its isoforms. A previous study
revealed that CD44v8–10, but not CD44s, expressing could
restore the tumor-initiating potential of GC cells reduced
by silencing total CD44.119 Moreover, CD44v8–10 also
plays an important part in regulation of ROS defense
and tumor growth by p38 (MAPK) and p21 (CIP1/WAF1)
in human gastrointestinal cancer cells.120 CD44v6 was
found to be a stem cell marker, and its overexpression
promoted migration and metastasis in colorectal CSCs
by activating Wnt/β-catenin.14 In addition, accumulating
evidence suggests that miRs binding to CD44 plays key
roles in drug resistance, tumor growth, and stemness. For
instance, miR-302a binding to CD44 was shown to sup-
press CSCs-like properties and restore cetuximab (CTX)
responsiveness in CRC.121

3.11 Melanoma

CD44 is a CSCs marker122 in melanoma cancer and par-
ticipates in tumor initiation progression.123 Wei et al.124
found that downregulated RNF128-activated Wnt signal-
ing induced cellular EMT and stemness by ubiquitinating
and degrading CD44/cortactin. Additionally, the depalmi-
toylation of the prometastatic cell adhesion molecule
CD44 was shown to result in increased melanoma inva-
sion viaWnt5a.125 Compelling evidence suggests that drugs
targeting CD44 in melanoma is a promising strategy for
melanoma treatment. For instance, expressing BMP4/7-
dependent Id1/3 protein was reported to decrease the
survival rate inmelanomapatients promoted byHA–CD44
interactions with BMPR.126 Moreover, nanodrug based on
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CS could target CD44 to treat melanoma by inducing
mitochondrial apoptosis.127

3.12 Squamous cell carcinoma

CD44 plays a role in various squamous cell carcinomas
and has been shown to be mainly involved in EMT128 and
cancer stemness.129 In HNSCC, HA binding to CD44 was
found to increase CSCs numbers by PI3K–4EBP1–SOX2,
whereas CD44 binding to VCAM-1 contribute to invasive-
ness by ezrin/PI3K. Moreover, the switch from CD44v8–10
to CD44s was reported to promote EMT and participate
in tumor invasion,52 which is contrary to the results in
ESCC of Yu et al.102 In mouse and human squamous cell
carcinoma, it has been demonstrated that induction of
a hybrid EMT state contributes to tumor initiation, pro-
gression, invasiveness, stemness, and metastasis by acti-
vating the CAMK2–CD44–SRC axis.130 Moreover, in ESCC
patients, SOCS6 has been shown to significantly decrease
the population of CSCs expressing the surface biomarker
CD24low/CD44high to overcome radioresistance.131 Fur-
thermore, in CD44high OSCC cells, TGF-β1 was found to
induce amoeboid-to-mesenchymal transition (AMT) via
activating ERK and phosphorylating Cofilin-1.132 In sum-
mary, the role of CD44 in squamous cell carcinoma could
serve as a vital area for drug development and tumor
marker.

3.13 Sarcoma

Compelling evidence suggests that the overexpres-
sion of CD44 in most sarcomas participates in tumor
progression,133,134 stemness,135 and dissemination.134
CD44 was found to increase the resistance of osteosar-
coma cells to doxorubicin by upregulating multidrug
resistance 1 protein expression.136 The human osteosar-
coma cell lines MNNG/HOS and 143B were both highly
metastatic, and CD44 was reported to be knocked out by
CRISPR/Cas9. Additionally, inhibiting cell proliferation
and tumor sphere formation cultured in 3D environment
was found to depend on CD44 inactivation.137 Further-
more, in a mouse fibrosarcoma model, the increased
expression of human CD44s was shown to promote
micrometastasis events.138 Moreover, in osteosarcoma,
CD44v6 is an important prognostic factor of patient
prognosis.139 In sarcomas, research on the roles of CD44
is conductive to understanding the pathogenesis of these
rare cancers.

3.14 Effects of CD44 interacting with
HA on cancers

HA, a linear glycosaminoglycan (GAG),140 binds to the
N-terminus of the extracellular domain of all CD44
isoforms.141 Aruffo et al.142 first proposed the relationship
between CD44 and HA. Through endocytosis mediated
by iron,143,144 the interaction between CD44 and HA
plays crucial role in the progression,145 invasion,146 and
chemoresistance147 of cancer cells. As reported, patients
with CD44s-positive tumors may gain a survival bene-
fit from HA–irinotecan, which is a formulation of HA
and irinotecan.148 In tumors with increased expression of
CD44, the using of HA-based nanocarriers was reported
to have the benefits in the enhancement of drug deliv-
ery, the increase therapeutic efficacy with low cytotoxicity,
the inhibition of tumor growth, as well as the high poten-
tial for targeted chemotherapy.149 Moreover, kynureninase
associated with the onset and development of breast can-
cer was found to be upregulated by CD44, which was
induced and activated by HA.141 In addition, CD44 iso-
forms also regulate the uptake and expression of HA. It
has been revealed that the expression of cancer cells with
CD44v can negatively influence the uptake ofHA,whereas
cells expressing CD44s has positive correlations with the
uptake and expression of HA. Moreover, the ability of
HA uptaking varies across the cell lines. CD44shigh can-
cer cells could uptake HA more efficiently compared with
CD44slow human dermal fibroblasts.87 In summary, the
interaction of CD44 with HA and different CD44 isoforms
regulates the ability of HA uptaking and expression have
effect on cancer, which provides important advances with
respect to cancer treatment strategies based onHA and the
of selection of different CD44 isoforms as a target.

3.15 Effects of CD44 interacting with
OPN on cancers

OPN, a phosphorylated glycoprotein, which expressed in
the mineralized extracellular matrix (ECM) of bone in
normal tissues cells such as fibroblasts, osteoblasts, and
osteocytes.150,151 As one of the classical and important lig-
ands of CD44, OPN affects the proliferation and invasion
of tumor cells as well as inflammation in normal cells, by
regulating related signaling pathways.150,152 Activation of
the JUN N-terminal kinase pathway has been shown to
contribute to the promotion of clonogenicity and tumor
growth in a xenograft model via OPN secreted by tumor-
associated macrophages.153 In PC3 cells, OPN binds to
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CD44 receptors that could inhibit the c-RaF andERK1/2 by
activating the AKT pathway, thereby inhibiting cell cycle
arrest.154 Additionally, Yang et al.155 found that the inter-
action of CD44 with OPN could promote tumor-associated
mesenchymal stem cells formation, leading to lung cancer
cells invasion and migration. Moreover, decreased expres-
sion of interferon regulatory factor 8 in colon carcinoma
was reported to increase the expression of OPN, which
is associated with lower patient survival rate. This phe-
nomenon is associated with the interaction of OPN with
CD44 leading to immune escape.156 Taking together, high
expression ofOPNcould promote immune escape of tumor
cells, which may be related to regulate T cells activa-
tion through OPN interacting with its receptor CD44 and
compensating for the function of PD-L1.157

3.16 Effects of CD44 interacting with
serglycin on cancers

Serglycin has been shown to be a ligand for CD44. Pre-
vious studies have found that the binding of CD44 to
serglycin is implicated in tumorigenesis and prognosis.158
The attachment of GAGs to serglycin could facilitate this
binding.159 For instance, the proteoglycan serglycin was
reported to promote the migration of non-small cell lung
cancer cells via the binding of its GAG motif to CD44.160
Moreover, serglycin binding to CD44 was shown to reg-
ulate the expression of CD44 in a β catenin-dependent
manner, a finding that might improve the poor prognosis
in triple-negative breast cancer.161 In addition, the inter-
action of serglycin with CD44 was revealed to promote
tumorigenesis in giant cell tumors of bone via activating
focal adhesion kinase.162 There are few studies on serglycin
andCD44 in tumors, but for the important role of serglycin
binding to CD44 in tumorigenesis, it is believed that there
will be more therapeutic strategies based on the regulating
the binding of the two in future studies.

3.17 Effects of CD44 interacting with CS
on cancers

In recent years, the studies onCD44 andCSmainly focused
on the nanodelivery systems based on the specific binding
between CD44 and CS.163 Accumulating evidence sug-
gests that CS modifies the drug delivery of nanoparticles
that target CD44 into tumor cells with low cytotoxicity.164
Nanoparticles composed of CS, doxorubicin, and bovine
serum albumin targeting CD44 were reported to suppress
4T1 tumor growth.165 Additionally, a nanosystem target-
ing CD44, composed of d-α-tocopherol polyethylene 1000

glycol succinate and CS dual-modified lipid-albumin, was
found to deliver paclitaxel into multidrug-resistant tumor
cells, thereby overcoming drug resistance.166 Moreover,
Chu et al.167 found that suppressing the expression of
CD44 and integrin β1 could reduce the invasiveness of
glioma cells by suppressing CS synthase 1. All the evi-
dence shows that CD44 plays an important role in cancer
treatments by nanoparticles modified by CS and other
drugs.

3.18 Effects of CD44 interacting with
matrix metalloproteinases on cancers

Matrix metalloproteinases (MMPs) is a large family of zinc
endopeptidases whose members can interact with CD44.
The binding of CD44 to MMPs has also been reported to
mediate tumor growth, stemness, as well as the aggressive
behavior.168,169 It has been shown that hybrid nanopar-
ticles targeting CD44 or MMPs have antitumor efficacy
in 4T1 breast tumor,170 MCF-7, and MDA-MB-231 cells171
by inhibiting the expression and activity of MMPs. Also,
polyphenols extracted from Artemisia annua L. showed
anticancer effects by suppressing CD44 and MMP9 in
radio-resistant MDA-MB-231 human breast cancer cells.172
Interestingly, CD44 has been shown to be both posi-
tively and negatively correlated with the expression of
MMPs.173 For instance, the overexpression of CD44 was
reported to reduce the levels of MMPs for the mainte-
nance of ECM homeostasis.174 In Papadopoulou’s study,175
the increase in MMP1 and MMP13 expression followed
by the decreased expression levels of CD44 was found
to promote tumor growth. Another study also showed
that MMP2 activation contributed to decrease the number
of CD44+/CD24− cells in MDA-MB-231 cells after nor-
mothermicmicrowave treatment.176 In contrast, inhibiting
the expression of MMPs also inhibited the expression of
CD44, for instance, DSPP/MMP20 gene silencing resulted
in downregulation of CD44, a marker of oral squa-
mous cell carcinoma (OSCC), and increased sensitivity
to cisplatin.177 Moreover, CD44 was shown to promote
lungADCcell invasion by regulatingMMP-2 expression.178
Also, in PC3 cells and breast carcinoma cells, the intracel-
lular domain of CD44 was found to form a complex with
the RUNX2 protein, which mediated cancer metastasis,
migration, and progression through activation of MMP-
9.179 In encapsulated papillary carcinoma (EPC), the high
expression of CD44s induced high expression of MMP2
associated with invasion.180 Overall, the complex relation-
ship between CD44 and MMPs expression provides us
with more ideas for selecting different targets in cancer
therapeutic strategies.
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3.19 Effects of CD44 interacting with
fibronectin on cancers

It was revealed that fibronectin (FN) in the ECM could
interact with CD44, which is involved in cell metastasis,181
migration,182 adhesion,183 and survival.184 In endothelial
cells, spacemicrogravitywas found tomodulate the expres-
sion of CD44 and restrain collagen I and FN deposition,
which involved cellular adhesion.185 Additionally, by using
a CD44 antibody to partially inhibit extracellular FN sig-
naling, a significantly decrease in adhesion and survival
of melanoma cells was obversed.186 Furthermore, FN type
III domain-containing protein 3B circular RNA increased
migration and invasion in GC with a decline in CD44.187
Although there are few studies on regulating the interac-
tion of CD44 with FN to treat cancer, owing to the key role
of FN in cell migration and adhesion, this aspect may be a
promising therapeutic strategy in cancer metastasis.
The relationship in neoplastic diseases between CD44

and its ligands is complex, and the expression of the two
may be positively or negatively correlated. The main stud-
ies is about CD44 rather than a specific CD44 isoform
interacts with its ligands. Together, CD44 interacts with
its ligands plays key roles in cancer progression. All the
abovementioned studies provide new insights into can-
cer therapy by interfering the interaction of CD44 with its
ligands.

4 CANCER-ASSOCIATED PATHWAYS
REGULATED BY CD44

Activation and deactivation of CD44 isoforms regulate
the activities of the components of signaling pathways,
including enzymes,188 protein kinase pathways,189,190 and
transcription factors,191 which have been found to be asso-
ciated with tumor initiation progression and aggressive
behavior.192,193 Moreover, CD44 is also found to be a com-
ponent in some cancer-associated signaling pathways.194
Some signaling pathways associated other cancers regu-
lated by CD44 are summarized in Figure 3. Moreover, the
biological functions of different CD44 isoforms in cancer
are summarized in Table 2

4.1 MAPK signaling pathway

The activity of the MAPK signaling pathway by CD44 has
been associated with the growth of cancer cells.195 In CRC
patients, miR-302a binding to CD44 was shown to restore
CTX responsiveness by suppressing CSCs-like properties
via EGFR-mediated MAPK and AKT signaling.121 Fur-
thermore, MCF-7-A2B1 cells with a high proportion of

CD44+/CD24−/low CSCswere reported to activate theAKT
andMAPKpathways via the expression ofHNRNPA2B1.196
Moreover, although there are few studies on the regu-
lation of CD44 on p38 in cancer, it is well documented
that CD44 regulates cancer progression via activation of
p38.197,198 In a transgenic mouse model of GC, ablation of
CD44v was reported to suppress tumor growth via acti-
vation of p38 signaling.120 In prostate cancer cells, CD44
collaborates with ERBB2 to contribute to the radioresis-
tance of cancer cells via p38 phosphorylation. In breast
cancer cells, CD44v10 was found to facilitate cell prolif-
eration via activating ERK/p38 MAPK and AKT/mTOR
signaling.199 Cell cycle arrest and inhibition of the survival,
proliferation, and migration of PC3 cells expressing CD44
and CD133 isolated from prostate cancer by inhibiting
p-p38, p-ERK, NF-κB, and PARP.200 Furthermore, CD44-
regulated ERK signaling is mostly described as stemness
and aggressive behavior of tumors.201,202 Yokoyama et al.132
found that OSCC cells highly expressing CD44 had been
shown to be associated with AMT via activation of ERK.
In glioblastomamultiforme cells, high expression of CD44
was found to induce cancer stemness and EMT features via
KRAS/ERK signaling activation.203 In addition, the high
expression of CD44was capable of inducingERKphospho-
rylation, which affects themigratory and invasive potential
of lung cancer cells.204

4.2 Hippo signaling pathway

In the Hippo pathway, CD44 plays key role in cancer
stemness and aggressive behavior.205–207 In lung adeno-
carcinoma, EDH1 interaction with CD44 was shown to
promote CSCs-like traits, EMT, and metastasis via inhi-
bition of the Hippo pathway.208 CD44 upregulation can
also confer CSCs-like properties to malignant mesothe-
lioma cells by activating YAP via Hippo signaling pathway
inactivation.209 In addition, in docetaxel-resistant prostate
cancer cells, CD44 was reported to promote cell migra-
tion and invasion via induction ofHippo–YAPpathways.210
Moreover, knockdown YAP partially abolished the stem-
ness of CD44+ retinoblastoma stem-like cells.211

4.3 Hedgehog signaling pathway

CD44+ CSCs is a more appreciated subset which plays
key roles in conventional stemness-related Hedgehog
signaling activation.212,213 In CD44+ HCC, suppressing
Hedgehog signaling was reported to reverse sorafenib
resistance.77 On top of that, in patients with CRC, CD44-
high tumors have been shown to be enriched for the
Wnt/β-catenin andHedgehog signaling pathways.214 Addi-
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F IGURE 3 CD44-mediated cancer-associated signaling pathways. CD44 can contribute to cancer invasion, migration, and metastasis
through Hippo–YAP, HIF-1α, and Wnt–FoxM1–Twist signaling. CD44v3 binds to CHI3L1, resulting in metastasis of GC via the
ERK–AKT–Wnt pathway. Silencing of CD44v6 blocks PI3K/AKT/GSK3β signaling pathway, EMP1-affected CD44 expression inhibits the
PI3K/AKT signaling pathways, CD44 inhabits the phosphorylation of AKT/mTOR, HA-induced CD44 interaction with C-Src-activated Twist
can result in inhibiting cancer aggressive behavior. The TWIST1–CD44–MMP13 axis involves in tumor aggressiveness through EMT.
MiR-302a binds to CD44, resulting in suppressing CSCs-like properties via EGFR-mediated MAPK and AKT signaling. CD44high CSCs
activate the AKT and MAPK pathways via the expression of HNRNPA2B1, CD44 activates KRAS/ERK signaling, EDH1 interaction with CD44
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TABLE 2 Biological functions of different CD44 isoforms in cancer.

CD44 isoforms Biological functions References
CD44s Tumorigenesis, tumor growth, aggressive behavior, micrometastasis events,

inhabiting stemness, CSCs characteristics, EMT

13,52,61,62,93,107,138,180

CD44v Invasiveness, stemness, tumor growth 62,64,120

CD44v3 Metastasis, EMT 221

CD44v4, v5, and v7 Growth and proliferative activity 108

CD44v6 EMT, aggressive behavior, poor prognosis, 34,54,139,223

CD44v8–v10 Tumorigenic phenotypes, aggressive behavior, poor prognosis, restoration of
tumor-initiating potential, tumor growth

52,76,83,94,103,119,120

CD44v9 Progression and metastasis, poor prognosis, EMT 14,93,101

CD44v10 Cell proliferation 199

tionally, a bladder CSCs subpopulation with the stem
cell-likemarkerCD44was responsive to inhibition of Sonic
Hedgehog signaling.215 Overall, regulation of the Hedge-
hog signaling pathway is a promising therapeutic target in
CD44+ CSCs. CD44+ CSCs is associated with activation of
Hedgehog signaling.216

4.4 PI3K-AKT signaling pathway

A number of studies have also highlighted the effect of
CD44 on AKT in relation to cancer cell growth, motil-
ity, invasion and stemness.217–219 Thanee et al.220 found
that silencing CD44 inhibited cholangiocarcinoma pro-
gression and aggressiveness, as well as AKT and mTOR
phosphorylation. As demonstrated by GC cell lines and an
experimental animal model, chitinase-like protein CHI3L1
binding to CD44v3 was a specific inducer of activation
of ERK, AKT, and β-catenin signaling and enhancement
of GC transfer.221 Moreover, studies of in vitro and in
vivo found that CD44 promoted HCC migration and
extrahepatic metastases mediated by the AKT/ERK sig-
naling CXCR4 axis.222 In addition, more recent researches
have demonstrated that activation of the PI3K signal-
ing pathway is positively associated with tumor growth
and aggressive behavior. In HNSCC, targeting CD44 was
found to decrease tumor growth and CSCs by inhibiting

PI3K–4EBP1–SOX2 signaling.52 Furthermore, in OSCC,
silencing CD44v6 diminished invasion/metastasis poten-
tial by blocking the PI3K/AKT/GSK3β pathway.223 Finally,
inhibiting the PI3K–AKT signaling pathway contribute to
inhabit invasion and proliferation of glioma cell medi-
ated by epithelial membrane protein 1 (EMP1), which was
affected by the expression of CD44.224

4.5 Twist signaling pathway

Twist is mainly related to EMT in cancer cells,225 and
CD44 is found to play a key part in the adaptive plastic-
ity of cancer cells by regulating Twist signaling.226 CD44
was reported to promote lung CSCs metastasis through
Wnt–FoxM1–Twist signaling.227 In addition, in colon CSCs
with CD133+ and CD44+ markers, triptolide inhibited
cell death, apoptosis and altered cell cycle distribution
by inhibiting snail slug and Twist expression, which has
been reported to be associated with EMT.228 Moreover, in
ESCC, the TWIST1–CD44–MMP13 axis has been shown
to be involved in tumor aggressiveness and EMT.229 On
top of that, T mutant allele of CD44 (rs8193C>T) could
trigger PKC–Twist, PKC–Nanog, andNanog–Stat signaling
pathways through binding to PUM 2, which is related to
prediction of prostate neoplasms and prognosis factor in
prostate neoplasms.230

inhabiting Hippo pathway, the upregulation of CD44 activates YAP through inactivation of Hippo signaling pathway, CD44ICD binding to
HIF-2α via activation of HIF-targeting genes, and the ubiquitination and degradation of CD44/cortactin via activating Wnt/β-catenin
signaling can result in cancer stemness and EMT features. Ablation of CD44v via activation of p38 signaling and Vitamin D receptor-induced
inhibition of CD44 via Wnt/β-catenin signaling can result in inhabiting tumor growth and cell proliferation. CD44v10 activates ERK/p38
MAPK and AKT/mTOR signaling, the TM4SF5/CD44 interaction via activating c-Src/STAT3/Twist1/Bmi1 signaling can result in facilitating
cell proliferation. Reducing the glycolytic phenotype of cancer cells through the c-Src/AKT/LKB1/AMPKα/HIF-1α signaling pathway can
silence CD44 to regulate cell proliferation. CD44 collaborates with ERBB2 to promote the radioresistance of cancer cells via p38
phosphorylation. CD44+ cancer cells reverse sorafenib resistance via suppressing Hedgehog signaling. Upregulation of CD44 confers
chemoresistance via β-catenin/p53/p21, which is associated with the secretory mucin MUC5AC. This scheme was generated using Biorender.
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4.6 HIF signaling pathway

Both HIF-1α and HIF-2α play roles in tumor
stemness,231,232 progression,233 and metabolism.234
Researches found the expression of CD44 could affect HIF
signaling pathway. In glioma, CD44ICD binding to HIF-2α
(but not HIF-1α) induced stemness via activation of
HIF-targeting genes.235 Interestingly, Yang et al.236 found
HIF-1α is also associated with MDA-MB-231 and 468 cells
stemness through Coenzyme Q0 treatment to decrease
the expression of CD44. Moreover, in TE10 and TE11 cells,
the expression of SET domain-containing 5 could increase
the expressing level of cancer stemness-related protein
HIF-1α and CD68 expression, which is associated with
the coexpression of CD44 and SET domain-containing
5.237 The multiple effects of HIF may associated with the
type of cancers, which expressing different interacting
factors affected by CD44. In the human gastric cell lines
SGC-7901 and BGC-823, hypoxia-increased expression of
CD44 was found to increase cell viability and invasion
associated with high expression of HIF-1α.238 Additionally,
in human breast cancer cells, silencing CD44 was also
shown to decrease the glycolytic phenotype of cancer
cells via regulating c-Src/AKT/LKB1/AMPKα/HIF-1α
signaling.239

4.7 c-Src signaling pathway

In recent years, although few studies have investigated the
c-Src signaling pathway in cancer regulated byCD44, accu-
mulating evidence suggests that activation of c-Src plays a
key part in tumor progression.240,241 In human breast can-
cer cells, CD44 knockdown suppressed both the mRNA
and protein expressing of c-Src and its downstreamMAPK
signal.242 Moreover, in breast cancer cells, HA-induced
CD44 interacting with c-Src-activated Twist resulted in
downregulation of tumor suppressor protein, Rho GTPase
ROK activation and tumor cell invasion, which are critical
prerequisite steps for obtaining metastasis.243 Addition-
ally, the TM4SF5/CD44 interaction of metastatic HCC
cells activated c-Src/STAT3/Twist1/Bmi1 signaling, which
caused spheroid formation.244

4.8 Wnt signaling pathway

CD44 is a target gene in the Wnt signaling pathway245 and
plays a key part in activation of theWnt pathwaymediating
chemoresistance,246 EMT,247 and tumor progression.248
In CRC cells, upregulation of CD44, positively associ-

ated with the secretory mucin MUC5AC, was reported
to confer chemoresistance via β-catenin/p53/p21.116 More-
over, downregulation of RNF128 led to the ubiquitination
and degradation of CD44/cortactin, inducing cellular EMT
and stemness via activating Wnt/β-catenin signaling.124
Furthermore, in human GC cells MKN45 and KATO III,
vitamin D receptor-induced suppression of CD44 was
shown to suppress cell growth, probably via inhibition of
Wnt/β-catenin signaling.249

5 ANTICANCER THERAPEUTIC
STRATEGIES BASED ON TARGETING
CD44

5.1 Antibodies, peptides, and aptamers

It has been shown that suppressing the expression of
CD44250 or blocking its interactionwith other ligands251,252
is a promising strategy in cancer therapy. Antibody against
CD44 has been reported to be used in this way in
CD44-positive cancer. For instance, in the human bladder
cancer cell line EJ, a novel mouse monoclonal antibody
(mAb) KMP1 inhibited proliferation, migration, and adhe-
sion as well as suppressed the xenograft tumor growth
in nude mice by blocking CD44.253 In OSCC, a defu-
cosylated anti-CD44 mab 5-mG2a-f was found to have
antitumor effects both in vitro and in vivo.254 Apart from
antibodies, another antitumor strategy is to take advan-
tage of synthetic peptides to selectively bind CD44 to
inhibit its functions or block the interaction of CD44
and its ligands. In mice harboring tumors, intravenously
administered CNLNTIDTC and CNEWQLKSC peptides
targeted tumors and inhibited metastasis by binding to
CD44v6.255 Moreover, it has been demonstrated that a syn-
thetic IGFBP-3 peptide (215-KKGFYKKKQCRPSKGRKR-
232) can inhibit the viability of A549 cells as a result
of CD44 competing with the HA receptor.256 Indeed, a
research suggested that CD44 aptamers exert antitumor
effects by targeting CD44. In ovarian cancer, an RNA-
based bispecific CD44–EpCAM aptamer was shown to
inhibit cell growth and to induce apoptosis by blocking
CD44 and EpCAM simultaneously.257 Moreover, follow-up
experiments identified the inhibition of orthotopic glioma
growth by AS1411 aptamer coloading shikonin and doc-
etaxel targeting CD44-overexpressing glioma.258 Of note,
the anticancer effect of antibodies, peptides, and aptamers
depends on their binding affinity and specificity to CD44.
This suggests a direction for targeted therapy targeting
CD44 isoforms and highlights the different roles of the
stroma in tumors.
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5.2 Pharmacological inhibition

Other than directly targeting CD44, several natural com-
pounds and chemotherapeutic agents are also important
anticancer agents in cancer cells and CSCs express-
ing CD44.259–261 In glioma cells, galangin was found to
inhibit EMT and angiogenesis by suppressing the expres-
sion of CD44.262 Similar results are further supported by
Jobani et al.,263 who demonstrated that combination treat-
ment with allicin and all-trans retinoic acid significantly
reduced the IC50 value in CD44 expressing melanoma
cells CD44. Additionally, in the breast cancer cell line
MDA-MB-231, ivermectin was shown to preferentially
inhibit the CD44+/CD24− CSCs subpopulation. Overall,
these data suggest that pharmacological therapy that sup-
presses CD44 expressing in cancer cells is a promising
strategy.

5.3 Gene therapies

MiRNAs can directly bind to CD44 to silence gene expres-
sion at the RNA level, which has been shown to regulate
CSCs characteristics and tumor progression.264–266 For
example, in colon cancer cells, miR-145 and antagomir-21
were found to suppress CSCs proliferation by inhibit-
ing the expression of CD44.267 In addition, another
study found that in CRC cells, CTX responsiveness could
restored by miR-302a by inhibiting CD44-induced CSCs-
like properties.121 Moreover, Liu et al.268 found miR-34a
could directly target CD44 and miR-34a inhibited prostate
CSCs and metastasis by negatively regulating the expres-
sion of CD44. On top of that, Feng et al.269 found that
miR-373 and miR-520s could affect the growth and inva-
siveness of glioblastoma cells through interacting with
CD44 to decrease its expression. In papillary thyroid can-
cer, miR-205-5p/GGCT was found to inhabit its growth
and metastasis through regulating the expression of
CD44.270
On the other hand, it is worth noting that short interfer-

ing RNAs (siRNAs) have been shown to knockdown the
expression of CD44 via repression of translation to sup-
press EMT, drug resistance, and growth in tumors.271–273
In colorectal CSCs, siRNA inhibited EMT-induced pro-
liferation and invasion by silencing the expression of
CD44.274 In addition, in the human breast cancer cell
line MDA-MB468, siRNA-mediated silencing of CD44
was shown to enhance doxorubicin chemosensitivity.275
In addition, in the EGFR wild-type non-small cell lung
cancer cell line H460, knocking down CD44 by siRNA
has been found to reduce cell growth and induce cell
apoptosis.276

Overall, recent developments support the implementa-
tion of gene therapy as a new component in therapeutic
agents targeting CD44.

5.4 Cell therapies

Recently, CD44 isoforms have been found as an promising
target for chimeric antigen receptor T cells (CAR T cells)
to eliminate CD44 expressing cancer, which is a novel and
specific treatment.277,278 CD44v6 is found to be associated
with tumor progression and aggressive behavior.279 Hence,
CD44v6 CAR T cells is an attractive therapy to control
tumor growth. For instance, CD44v6–CAR T cells were
found to specifically lyse CD44v6+ acutemyeloid leukemia
cells associated with cytokine release.280 Moreover, Haist
et al.281 showed a positive link between CD44v6 expres-
sion levels and the cytotoxicity of CAR T cells and found
that CD44v6–CART cells specifically eliminated CD44v6+
HNSCC. Furthermore, minicircle DNA-mediated CD44–
CAR T cells were shown to suppress HCC.282 Token
together, little research has been done on CAR T cells tar-
geting CD44 expressing cancers cells, but it is being rolled
out and is a novel therapeutic strategy. CAR T cells target-
ing CD44s or other CD44v expressing cancer cells require
further study, for the reason that highly customized CART
treatments could focus on the differences of CD44 isoforms
expressing in cancer cells to improve their specificity and
off-target effect.

5.5 Biological materials

Robust evidence supports that antitumor agents con-
jugated by biomaterials show good antitumor effects
and targeting activity through a ligand–receptor-mediated
targeting mechanism.283–285 For instance, CS-conjugated
doxorubicin poly(lactic-co-glycolic acid) (PLGA) nanopar-
ticles were found to directly target CD44 with low cardiac
toxicity and strong antitumor ability.286 Moreover, an HA-
labeled PLGA nanoparticle encapsulating both paclitaxel
and focal adhesion kinase siRNA was reported to bind to
CD44-positive epithelial ovarian cancer cells to overcome
chemoresistance.287 In addition, novel HA cross-linked
zein nanogels were developed to deliver curcumin into
CT26 cells expressing CD44, which showed high anti-
cancer activity.288 In conclusion, biomaterial coupling of
antitumor agents shows good target activity and low
toxicity, which is a promising therapeutic strategy in can-
cer treatment. Moreover, a recent research has found
a self-crosslinkable chitosan–HA dialdehyde nanoparti-
cles could target the delivery of siRNA to T24 bladder
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TABLE 3 Clinical studies using CD44-targeting therapies for cancer treatment.

Form of drug Cancer applications Interventions Phase NCT No.
Gene-engineered T cells CD44v6+ cancer CD44v6 CAR T cells I/II NCT04427449

Breast cancer Her2, GD2, and CD44v6 CAR T cells I/II NCT04430595
CD44v6+ acute myeloid leukemia
and multiple myeloma

Drug: MLM-CAR44.1 T cells I/II NCT04097301

Humanized mAb CD44v6+ breast neoplasms Drug: Bivatuzumab mertansine I NCT02254005
NCT02254031

CD44+ malignant solid tumors Drug: RO5429083 I NCT01358903
CD44v6 inhibitor Malignant solid tumor Drug: AMC303 I NCT03009214

CD44+ ovarian epithelial cancer Drug: SPL-108 I NCT03078400
CD44 binding peptide Chronic lymphocytic leukemia and

small lymphocytic lymphoma
Drug: A6 I NCT02046928

Data sources: ClinicalTrials. Gov.

cancer cells, which could affect bladder cancer through the
interaction of CD44 and HA.289

6 CLINICAL STUDIES

Although accumulating evidence suggests that CD44 plays
a key role in the clinicopathological features of numer-
ous cancers,290,291 there are relatively few clinical studies
designed to evaluate the efficacy of CD44-targeted thera-
pies in cancer treatment.
To date, 16 clinical studies have been registered on Clin-

icalTrials. Gov to assess the anticancer effects of targeting
CD44. The summary content is shown in Table 3. Among
them, three trials are designed to evaluate CD44v6-specific
CAR T-cell therapies; two trials are using humanizedmAb
drugs for the treatment of CD44+ cancer; two trials are
aimed at inhibiting the expression of CD44 in cancer; and
one trial is about a drug designed to bind to CD44 for
the treatment of chronic lymphocytic leukemia and small
lymphocytic lymphoma.However, a phase I trial of an anti-
CD44 humanized antibody, RG7356, in CD44 expressing
solid tumor patients was failed.292 The study was termi-
nated early because RG7356 does not have a relationship
with clinical and/or pharmacodynamic dose–response. On
the one hand, in plasma, the RG7536 was converted to a
binding-impaired molecule that cannot result in sufficient
antibody levels due to the deamidation of asparaginases
in the complementarity determining region of intact anti-
body. One the other hand, the expression of CD44s or
CD44v in patient tumor is crucial. Some CD44s expressing
tumor patients (four out of nine) showed tumor shrink-
age which was not observed in CD44v expressing tumor
patients. This phenomenon may be associated with the
iron endocytosis is recompensated by transferrin receptor,
resulting in the reducing of drug specific uptake of tumor
cells.293,294,30

Together, treatments targeting CD44 are promising, and
it is expected that more translational studies will be con-
centrated on targeting different kinds of CD44 isoforms.
Moreover, due to the dominant advantage of combination
regimens,295,296 more clinic trials about combination reg-
imens should be considered to overcome potential tumor
escape or drug resistance.

7 CONCLUSIONS

In recent years, there has been an increasing awareness
of the complex functions of CD44. A systematic review
of landmark CD44-related studies could facilitate a bet-
ter understanding of the functional role of CD44 in cancer
development and progression and thus will contribute to
the development of novel strategies to circumvent their
disadvantage and acquire optimal clinical efficacy. Here,
we encapsulate the present understanding of the structural
and functional roles of CD44 in neoplastic diseases as well
as CD44-regulated signaling pathways. We also discuss
current targeting CD44 therapeutic strategies as well as
prospective directions for future expansion and highlight
existing clinical data supporting its use.
Overall, high expression of CD44, regardless of isoforms,

is mainly positively associated with the development of
neoplastic disease. Extensive studies have revealed that
CD44 mediates cancer initiation and progression through
interactions with its ligands, including but not limited to
HA, OPN, serglycin, CS, the MMPs family, and FN. As
one of the important functions of CD44, its regulation
of cancer-related pathways is pleiotropic, including can-
cer initiation, aggressive behavior, and stemness. CD44
promotes activation of MAPK, p38, and so on, which
is associated with cancer cell stemness, growth, radia-
tion resistance, and cell proliferation. Moreover, CD44
interacting with proteins such as YAP in the Hippo



XU et al. 15 of 24

signaling pathway can regulate the stemness and aggres-
sive behavior of cancer. On top of that, as a classical
CSCs marker, CD44 regulates cell plasticity through iron
mediation.
Expansive evidence indicates that anticancer therapeu-

tic strategies based on targeting CD44 are effective meth-
ods, including antibodies, peptides, aptamers, natural and
synthetic inhibitors, gene and cell therapy and biomateri-
als, depending on the interaction of CD44 with its ligands.
Among these methods, targeting CD44–CAR T cells is
promising. Although it has few applied clinically, its good
targeting and durability in CD44 expressing patients show
CART treatment is worthy of further study. However, clin-
ical trials on CD44 in the treatment of cancer are limited,
concentrating on targeting CD44v6, an isoform associ-
atedwithmetastasis and invasiveness. Further studiesmay
focus on other isoforms. On top of that, it is expectable
that more translational studies will be conducted to focus
on chelating iron or regulate iron concentration to deplet-
ing CSCs through regulating the expression of CD44. In
addition, clinical evidence suggests that highly expressing
CD44 is a potential biomarker, including poor progno-
sis, tumor grade, and potential malignancy. However, the
expression of CD44 was also found to be negatively asso-
ciated with tumor invasiveness and Gleason grades, which
is mainly related to the switch between CD44s and CD44v
on the cancer cells through alternative splicing of CD44
isoforms. In conclusion, the conflicting data reports indi-
cate that further study calls for exploring the specific
functions of different CD44 isoforms in different kinds of
cancers.
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