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Abstract 

Background

In this paper, we focus on an efficient and easy method for solving the 
given system of differential-algebraic equations (DAEs) of second 
order.

Methods

The approximate solutions are computed rapidly and efficiently with 
the help of a semi-analytical method known as Adomian 
decomposition method (ADM). The logic of this method is simple and 
straightforward to understand.

Results

To demonstrate the proposed method, we presented several 
examples and the computations are compared with the exact 
solutions to show the efficient. One can employ this logic to different 
mathematical software tools such as Maple, SCILab, Mathematica, 
NCAlgebra, Matlab etc. for the problems in real life applications.

Conclusions

In this paper, we offered a method for solving the given system of 
secondorder nonlinear DAEs with aid of the ADM. We shown that the 
proposed method is simple and efficient, also one can obtain the 
approximate solutions quickly using this method. A couple of 
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examples are discussed for illustrating this method and graphical and 
mathematical assessments are discussed with the analytical solutions 
of the given problems.
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Introduction
The applications of system of differential-algebraic equations (DAEs) occur in many branches of engineering, scientific
and real life applications. For example, these equations arise in circuit analysis, electrical networks, computer aided
design (CAD), optimal control, real-time simulation of mechanical (multi-body) systems, incompressible fluids dynam-
ics, power system and chemical process simulations. DAEs are a combination of algebraic equations and differential
operations, and many mathematical models in different fields are expressed in terms of DAEs. The system of DAEs is a
combination of algebraic and differential equations. In the recent years, several algorithms or methods are introduced by
various researchers, engineers and scientists to solve the linear/nonlinear system of DAEs and many of them are focused
on the numerical solution.7,13,14 In the literature, there are many numerical methods available and these are developed
using various existing classical methods. For example, in the literature, there are numerical methods with help of Padé
approximation method,4,5 there are methods created using implicit Runge-Kutta methods,36 also there are methods
developed using back difference formula (BDF)3,13,35 and etc. Many existing methods are working for low indexed
problems or functions. However, using these methods, many real life applications can be solved. There are many other
algorithms or methods for solving DAEs and also for differential equations available in the literature.20–34 In this paper,
we propose a general numerical method to solve the second-order system of DAEs using Adomian decomposition
method (ADM). There are some general approaches methods available in the literature,18,19,37,38 and these are developed
for solving the first order DAEs.

The main aim of this manuscript is to develop a method that gives us quick approximate solutions of a given system of
second order DAEs. In order to develop the proposed method, we use a powerful technique, namely ADM, to get the
solution of DAEs system. Since 1980, the ADMhas been used widely to solve the nonlinear or linear problems in various
fields. For example, recently, ADM iswidely used as a straightforward powerful tool for solving a large class of nonlinear
equations1,2,8–12,15 such as functional equations, integro-differential equations (IDEs), partial differential equations
(PDEs), algebraic equations, differential equations (DEs), differential-delay equations and different kind of equations
arise in chemical reactions, physics and biology. We use the ADM to obtain a rapid approximation solution of a given
DAEs systems.

This paper is planned as follows: in the next section we recall the ADM to solve the ODEs. The method proposed in this
paper for DAEs systems is presented in the following section. Then a number of numerical examples are presented to
illustrate the method, followed by concluding remarks.

Adomian Decomposition Method: An Overview
In this section, we recall ADM briefly to solve ODEs. More details about the ADM can be found in.2,9,15,17 Consider the
nonlinear DE of the following type

LyþRyþN yð Þ¼ f , (1)

where L is an non-singular linear operator with the largest-order derivative in the DE, the operator R is the combination of
the rest of derivatives in the DE, f is an analytical forcing function and N yð Þ is the nonlinear term.

We can solve (1) for y by applying the inverse operator L�1. Indeed, we have the following solution by solving (1) for Ly
and then apply the inverse operator L�1 on to both sides,

L�1Ly¼ L�1f �L�1Ry�L�1N yð Þ or (2)

y¼ gþL�1f �L�1Ry�L�1N yð Þ, (3)

where g is depending on the degree of differential operator and initial conditions. In particular, if Ly¼ y0 ¼ dy
dx and the

initial condition y 0ð Þ¼ c0, then L�1 ¼ Ð x
0 � dx and L�1Ly¼ y� c0. In this case g¼ c0. If Ly¼ y00 ¼ d2y

dx2
and the initial

condition y 0ð Þ¼ c0 and y0 0ð Þ¼ c1, then L�1 ¼ Ð x
0

Ð x
0 � dx dx and L�1Ly¼ y� c0� c1 x�0ð Þ. In this case g¼ c0þ c1x.
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To apply the ADM to (3), let y be the solution of (1), and it can be expressed in the form of infinite series as follows,

y¼
X∞
n¼0

yn, (4)

where the required components of solution yn, n¼ 0,1,2,… can be computed using the ADM. The term N yð Þ can be
expressed in terms of the Adomian polynomials Nn, see for examples,10–12,36 as

N yð Þ¼
X∞
n¼0

Nn y0,y1,…,ynð Þ: (5)

Now, choose y0 as

y0 ¼ gþL�1f , (6)

and rewrite the equation (3) using the equations (4) and (5), we obtain

X∞
n¼0

yn ¼ y0�L�1R
X∞
n¼0

yn�L�1
X∞
n¼0

Nn: (7)

On comparing the general terms of (7), we obtain the following equation for the ADM

yn ¼�L�1Run�1�L�1Nn�1, n≥1: (8)

We have y0 from (6), and using (8)we can generate the components yn for an approximate solution. Further, we can obtain
the exact solution of (1) if the series (4) converges. The K-order approximation solution is obtained as

y tð Þ¼
XK
n¼0

yn: (9)

The next section presents a method for DAEs systems using the ADM.

Proposed Method using ADM
Consider a system of second-order DEs as follows

y001 ¼ f 1,

y002 ¼ f 2,

⋮
y00n ¼ f n,

(10)

where y00i is the second order derivative of yi respected to the independent variable x, and f 1, f 2,…, f n are n unknown
functions.

We can rewrite the system (10), as follows:

Lyi ¼ f i, i¼ 1,2,…,n, (11)

where L¼D2 ¼ d2

dx2
is the differential operator, and its inverse operatorD�1 ¼I¼ Ð x

0 � dx. Hence L�1 ¼I2 is the secon-
order inverse operator. Now we define the integral or inverse operator for the anti-derivative as follows

If xð Þ¼
ð
0

x

f ξð Þ dξ,

andwe haveDIf ¼ f , that isDI¼ 1. The higher-order of integral operatorIn is defined in the simple way, and eachInf
must be continuous. In particular,

I2f xð Þ¼
ðx
0

ðx1
0
f ξð Þ dξ dx1:
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From replacement lemma,16 we have the following equation. The replacement lemma helps us to convert the double
integral into a single integral as given below,

I2f xð Þ¼ x

ðx
0
f ξð Þ dξ�

ðx
0
ξf ξð Þ dξ: (12)

Thus, (12) can be expressed in terms of integral operator I as follows

I2f xð Þ¼ xIf �Ixf ,

and in operator notation, we haveI2 ¼ xI�Ix. One can easily verify thatD2I2 ¼ 1 and alsoD2 xI�Ixð Þ¼ 1.We call
xI�Ix, the normal form of the integral operator I2.

Using the inverse operator on (11), we get

yi ¼ yi 0ð Þþ y0i 0ð Þxþ x

ðx
0
f i dx�

ðx
0
xf i dx, i¼ 1,2,…,n: (13)

Applying ADM, we have the solution of (13) in the series sum,

yi ¼
X∞
j¼0

f i,j, (14)

and the integrand in (13), as the sum of the following series:

f i ¼
X∞
j¼0

Ai,j f i,0, f i,1,…, f i,j
� �

, (15)

where Ai,j f i,0, f i,1,…, f i,j
� �

are called Adomian polynomials.10–12,36 Putting (14) and (15) into (13), we get

X∞
j¼0

f i,j ¼ yi 0ð Þþ y0i 0ð Þxþ x

ðx
0

X∞
j¼0

Ai,j f i,0, f i,1,…, f i,j
� �

dx

�
ðx
0
x
X∞
j¼0

Ai,j f i,0, f i,1,…, f i,j
� �

dx,

(16)

from (8) we define, for n¼ 0,1,…,

f i,0 ¼ yi 0ð Þþ y0i 0ð Þx,
f i,nþ1 ¼ x

ðx
0
Ai,n f i,0, f i,1,…, f i,n

� �
dx�

ðx
0
xAi,n f i,0, f i,1,…, f i,n

� �
dx:

(17)

Since f i,0 are known, we can use f i,nþ1 to generate the approximate solution components.

Numerical Examples
Example 1. Let us consider the following system of second order DAEs with initial conditions to illustrate the proposed
method.39

y001 � xy02 ¼ 2y1þ y2,

y2 ¼ ex,
(18)

and initial conditions are y1 0ð Þ¼ y2 0ð Þ¼ y02 0ð Þ¼ 1,y01 0ð Þ¼ 0. The exact solution of this system is

y1 ¼ 2þ
ffiffiffi
2

p� �
e

ffiffi
2

p
xþ 2�

ffiffiffi
2

p� �
e�

ffiffi
2

p
x� xþ3ð Þex,

y2 ¼ ex:
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In order to apply the proposed method, we rewrite the given system (18) as follows

y10 0 ¼ xy20 þ2y1þ y2,

y2 ¼ ex:

On simplifying above equations, we have y001 ¼ 2y1þ xþ1ð Þex. Following procedure as given in (13), we get

y1 ¼ y1 0ð Þ þ y01 0ð Þxþ x

ðx
0
2y1 þ xþ 1ð Þexð Þ dx�

ðx
0
x 2y1 þ xþ 1ð Þexð Þ dx

¼ 1þ x

ðx
0
2y1 þ xþ 1ð Þexð Þ dx�

ðx
0

2xy1 þ x2 þ x
� �

ex
� �

dx

¼ 1þ x

ðx
0
xþ 1ð Þex dx�

ðx
0

x2 þ x
� �

ex dxþ 2x
ðx
0
y1 dx� 2

ðx
0
xy1 dx:

Use the alternate algorithm to find the Adomian polynomials as given in,6,10–12 the Adomian method is as following:

y1,0 = 1 + x

ðx
0
x + 1ð Þex dx�

ðx
0

x2 + x
� �

ex dx = 2 + xex � ex,

y1,n + 1 = 2x
ðx
0
y1,n dx� 2

ðx
0
xy1,n dx:

We have iterations (approximate solutions components) from above equations as follows

y1,0 ¼ 2þ xex � ex,
y1,1 ¼ 2xex þ 2x2 � 6ex þ 4xþ 6,

y1,2 ¼ 16xþ 4xex þ 1
3
x4 þ 4

3
x3 þ 6x2 þ 20� 20ex,

y1,3 ¼ 48xþ 16
3
x3 þ 8xex þ 1

45
x6 þ 2

15
x5 þ x4 þ 20x2 þ 56� 56ex:

Now we have the approximate solution after three steps

yapx3 ¼
X3
j¼0

f 1,j ¼ 84þ15xex�83exþ28x2þ68x

þ4
3
x4þ20

3
x3þ 1

45
x6þ 1

15
x5:

After nine steps, we have the solution

yapx9 ¼ 17412þ 16388xþ 1023xex � 17411ex þ 7684x2 þ 17
24324300

x13

þ 1
89100

x12 þ 1
347351004000

x17 þ 1
10216206000

x16 þ 7
44550

x11

þ 19
9450

x10 þ 43
1890

x9 þ 29
126

x8 þ 1
510810300

x15 þ 214
105

x7 þ 706
45

x6

þ 1538
15

x5 þ 1666
3

x4 þ 1
6252318072000

x18 þ 7172
3

x3 þ 1
24324300

x14:

Graphical assessment of the analytic solution with the approximate solution after three steps is visualized in Figure 1 and
the comparison of the exact solution with approximate solution after nine steps is shown in Figure 2. From these figures,
we can observe that the approximate solutions are near to the analytic solution. A greater number of steps gives us amore
accurate solution (the graphs are drawn using Maple 16.0).

Numerical results of the exact solution, approximate solution yapx3 after three steps, approximate solution yapx9 after nine
steps and absolute error are given in Table 1. From the numerical values in Table 1, one can observe that the solution
yapx9 is closer to the exact solution y1. To get more appropriate solution of the given system, we increase the number of
iterations.
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Example 2. Consider a DAEs system of second order.39

y001 �2xy30 � y1�2y2 ¼ 0,

y002 þ y2�2y3 ¼ 2ex,

y3 ¼ cosx,

(19)

Figure 1. Assessment of yapx3
with Exact solution y1.

Figure 2. Assessment of yapx9
with Exact solution y1.
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with initial conditions y1 0ð Þ¼ 0,y01 0ð Þ¼ y2 0ð Þ¼ y02 0ð Þ¼ 1. The analytical solution of this system is
y1 ¼ xex,y2 ¼ exþ xsinx,y3 ¼ cosx. After simplifying the system (19), we get

y001 ¼ y1þ2y2�2xsinx,

y002 ¼�y2þ2exþ2cosx,

y3 ¼ cosx:

Following the procedure of the proposed method, similar to Example 1, we get

y1 ¼ y1 0ð Þ þ y01 0ð Þxþ x

ðx
0
y1 þ 2y2 � 2x sin xð Þ dx�

ðx
0
x y1 þ 2y2 � 2x sin xð Þ dx

¼ x� 2x
ðx
0
x sin x dxþ 2

ðx
0
x sin x dxþ x

ðx
0
y1 þ 2y2ð Þ dx�

ðx
0
y1 þ 2y2ð Þ dx,

y2 ¼ y2 0ð Þ þ y02 0ð Þxþ x

ðx
0
�y2 þ 2ex þ 2 cos xð Þ dx�

ðx
0
x �y2 þ 2ex þ 2 cos xð Þ dx

¼ 1þ xþ 2x
ðx
0
ex þ cos xð Þ dx� 2

ðx
0
x ex þ cos xð Þ dx� x

ðx
0
y2 dxþ

ðx
0
y2 dx:

Using the alternate algorithm for computing the Adomian polynomials, we have

y1,0 ¼ x� x

ðx
0
2x sin x dxþ

ðx
0
2x2 sin x dx ¼ x� 4þ 4 cos xþ 2x sin x,

y2,0 ¼ 1þ xþ 2x
ðx
0
ex þ cos xð Þ dx� 2

ðx
0
x ex þ cos xð Þ dx ¼ 1� xþ 2ex � 2 cos x,

y1,nþ1 ¼ x

ðx
0

y1,n þ y2,n
� �

dx�
ðx
0

y1,n þ y2,n
� �

dx,

y2,nþ1 ¼ �x

ðx
0
y2,n dxþ

ðx
0
y2,n dx:

Table 1. Mathematical results for Example 1.

x y1 xð Þ yapx3
xð Þ yapx9

xð Þ jy1 xð Þ�yapx9
xð Þj

�2:0 9:977284737 9:862668553 9:977273565 1:117�10�5

�1:0 2:503779856 2:503370315 2:503780041 1:850�10�7

�0:5 1:355157416 1:355155845 1:3551542 3:216�10�6

0:5 1:442726178 1:442724586 1:4427204 5:778�10�6

1:0 3:31280240 3:312391255 3:312807041 4:641�10�5

1:5 8:38448291 8:373436300 8:384502002 1:909�10�5

2:0 20:85383714 20:73558235 20:85388357 4:643�10�5

2:5 50:16639112 49:39270508 50:16642510 3:398�10�5

3:0 117:0950239 113:3495974 117:0950934 6:950�10�5

3:5 266:6334832 251:7748955 266:6334147 6:850�10�5

4:0 595:1225779 543:7981055 595:1220909 4:870�10�4
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Now, we can get iterations from above equations as follows

y1,0 ¼ x� 4þ 4 cos xð Þ þ 2x sin xð Þ,
y2,0 ¼ 1� xþ 2ex � 2 cos xð Þ,

y1,1 ¼ �4x� 1
5
x3 � x2 � 4 cos xð Þ � 2x sin xð Þ þ 4ex,

y2,1 ¼ 4þ 2x� 1
2
x2 þ 1

6
x3 � 2ex � 2 cos xð Þ,

y1,2 ¼ �12þ 1
120

x5 � 1
6
x4 þ 12 cos xð Þ þ 2x sin xð Þ þ 4x2,

y2,2 ¼ �2x� 2x2 � 1
3
x3 þ 1

24
x4 � 1

120
x5 þ 2ex � 2 cos xð Þ,

⋮

After five steps, we have the solution

y1,apx5 ¼ �12� 11xþ 12ex � 1
1008

x7 � 1
10080

x8 � 1
120

x6 � 7
120

x5 � 1
3
x4

�5x2 � 1
120960

x9 � 3
2
x3 � 1

39916800
x11 � 1

1814400
x10,

y2,apx5 ¼ 13þ x� 12 cos xð Þ þ 1
5040

x7 þ 1
8064

x8 � 1
144

x6 þ 1
120

x5 þ 3
8
x4

� 9
2
x2 þ 1

362880
x9 þ 1

6
x3 þ 1

39916800
x11 � 1

3628800
x10:

In Figure 3 and Figure 4, we show the graphical comparisons of the exact solutions y1 xð Þ,y2 xð Þ with the approximate
solution after five steps respectively. From the graphs in Figure 3 and Figure 4, one can observe that the approximate
solutions are very close to the exact solution. Higher number of iterations give us more accurate solution (one can use
Microsoft Excel to draw the graphs).

Figure 3. Assessment of y1,apx5
with Exact solution y1.
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In Table 2 and Table 3, mathematical results of the analytical solution and approximate solutions after five steps
y1,apx5 ,y2,apx5 with absolute errors are given respectively. From these numerical results, one can observe that the
approximate solutions y1,apx5 and y2,apx5 are closer to the exact solution y1 and y2 respectively. For more appropriate
solution of the given system, we increase the number of iterations.

Figure 4. Assessment of y2,apx5
with Exact solution y2.

Table 3. Mathematical results for Example 2.

x Exact value y2 xð Þ y2,apx5
xð Þ jy2 xð Þ�y2,apx5

xð Þj
0:1 1:115154260 1:115154263 3:0�10�9

0:2 1:261136624 1:261136629 5:0�10�9

0:4 1:647592035 1:647592033 2:0�10�9

0:6 2:160904284 2:160904284 0

0:8 2:799425801 2:799425801 0

1:0 3:559752813 3:559752811 2:0�10�9

Table 2. Mathematical results for Example 2.

x Exact value y1 xð Þ y1,apx5
xð Þ jy1 xð Þ�y1,apx5

xð Þj
0:1 0:1105170918 0:1105170950 3:2�10�9

0:2 0:2442805516 0:2442805537 2:1�10�9

0:4 0:5967298792 0:5967298887 9:5�10�9

0:6 1:093271280 1:093271277 3:0�10�9

0:8 1:780432742 1:780432741 1:0�10�9

1:0 2:718281828 2:718281829 1:0�10�9
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Conclusions
In this paper, we offered/presented a numerical method for solving the given system of second-order nonlinear DAEs
with aid of the ADM.We illustrated and shown that the proposed method is simple and efficient, also one can obtain the
approximate solutions quickly using this method. Logic of the method in this paper is straightforward and simple.
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