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Abstract 

Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, 
as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. 
Current treatment methods primarily include traditional approaches like spinal canal decompression and internal 
fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-
spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal 
regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration 
and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy 
is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon 
monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas 
molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating 
oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic 
administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult 
to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve 
targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research 
directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope 
and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research 
progress of gasotransmitters and nanogas in the treatment of SCI.
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Graphical Abstract

Introduction
With the ongoing growth of the construction, 
transportation, and sports industries, the incidence of 
SCI has been steadily increasing, particularly among 
young men. Approximately 30 million individuals 
worldwide are currently living with SCI, and an 
additional 250,000–500,000 new cases emerge each year, 
imposing a significant economic burden on society [1]. 
SCI is categorized as primary or secondary based on the 
course of the disease. Primary SCI is the result of direct 
action by external forces, such as compression, tearing, 
acute stretching and distraction, which are neither 
unpredictable nor prevented Following the primary 
injury, a cascade of detrimental secondary pathological 
processes is triggered, including ischemia, apoptosis, 
necrosis, inflammatory response, edema, free radical 

damage, mitochondrial dysfunction, oxidative stress, 
and glial scar formation [2]. Although current dominant 
therapies for SCI include surgical decompression, 
hormonal shock therapy and stem cell transplantation, 
they are limited by efficacy and often associated with 
various complications, restricting the regression and 
prognosis of patients with SCI [3].

Gasotransmitters, comprising a group of small gaseous 
molecules that can freely pass through biological 
membranes, are essential compounds within the body.
They are generated in  vivo from specific substrates 
by rate-limiting synthetic enzymes and carry out 
physiological functions within a specific concentration 
range, which can be replicated by external donors 
[4]. Currently, hydrogen sulfide (H2S), nitric oxide 
(NO), and carbon monoxide (CO) are the recognized 
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gasotransmitters that exert diverse biological functions 
through specific cellular and molecular targets. 
Moreover, recent researches have indicated that 
hydrogen (H2) and hyperbaric oxygen (HBO) also play 
crucial roles in the nervous system and are considered 
novel gasotransmitters [5]. Abnormal gas signaling 
pathways are indicative of the initiation and progression 
of inflammation and disease [6, 7]. Previous studies have 
demonstrated that gases such as H2S, NO, CO and H2 
primarily possess anti-inflammatory and antioxidant 
properties and their beneficial biological effects can 
be harnessed to aid in the treatment of central nervous 
system-related conditions [8]. This review will introduce 
the application of different Gasotransmitters and 
nanogases in SCI diseases.

Intervention and regulatory effects of hydrogen 
sulfide on SCI
H2S is a colorless gas with a characteristic rotten egg 
odor and has long been recognized as a toxic gas and 
environmental pollutant. Research indicates that H2S has 
participated in various physiological and pathological 
processes [9].H2S play an important role in the nervous 
system, cardiovascular system and immune system, and 
participates in a variety of cellular metabolic functions, 
including the regulation of mitochondrial function, 
glucose and lipid metabolism, oxidative stress response 
[9].

The biosynthesis and functional roles of H2S
In the presence of cysteine reductants, endogenous H2S 
is generated through a direct enzymatic dehydration 
reaction catalyzed by cystathionine beta-synthase 
(CBS) and cystathionine gamma-lyase (CSE), as well 
as an indirect desulfuration reaction catalyzed by 
3-mercaptopyruvate sulfurtransferase (3-MST). CBS is 
predominantly present in the central nervous system and 
liver, while CSE is mainly found in the cardiovascular 
system, and 3-MST is located in the mitochondria, 
working in coordination with cysteine aminotransferase 
(CAT) to produce H2S [10].

Research has found that H2S, similar to CO and NO, 
plays an important role in anti-inflammatory and anti-
apoptotic effects in oxidative stress reactions [11, 12]. 
H2S and its donor, sodium hydrosulfide (NaHS), have 
protective effects on the spinal cord and related diseases 
[13, 14]. H2S is also effective in the treatment of SCI-
induced complications, such as osteoporosis [15]. 
The lack of H2S can lead to defects in the osteogenic 
differentiation of bone marrow mesenchymal stem cells, 
while exogenous H2S inhibits the activity of osteoclasts, 
alleviating osteoporosis. Exogenous H2S increases the 
number of osteoblasts in the tibia, as well as the levels 

of osteocalcin in the serum and femur, promoting the 
recovery of osteoblast activity in SCI rats [16]. As an 
H2S donor, NaHS effectively reduces the degradation of 
Tight Junction(TJ) and Adherens Junction(AJ) proteins, 
inhibits endoplasmic reticulum stress and related 
autophagy, prevents an increase in Blood-Spinal Cord 
Barrier(BSCB) permeability, protects the spinal cord 
against secondary injury, and promotes the recovery of 
spinal cord function [17]. NaHS achieved its protective 
effect on SCI rats 1 h after clamping by reducing various 
oxidative indicators and increasing antioxidants and 
their regulators [18]. Additionally, H2S exerts anti-
inflammatory, antioxidant and neuroprotective effects by 
activating the nuclear factor erythroid 2-related factor 2 
(Nrf2) signaling pathway, increasing Nrf2 protein levels 
[19].

H2S inhibits the immune‑inflammatory response 
and promotes axon growth of neuronal cells
H2S has a protective effect on the nervous system, 
which can improve the symptoms of neuritis, reduce the 
secretion of inflammatory factors, nerve cell apoptosis 
and oxidative stress response, and protect neurons 
from secondary neuronal damage [20]. In the early 
stages, neutrophils (peaking at day 1 post-injury) and 
macrophage/microglia (peaking at day 7 post-injury) 
are the main components of the inflammatory response 
in SCI [21]. H2S as immune modulator promotes the 
expression of the anti-apoptotic B cell lymphoma-2 (Bcl-
2) [22], inhibits the expression of the pro-apoptotic Bax 
protein (Bcl-2 Associated X), and reduces the release 
of interleukin-1 (IL-1) and tumor necrosis factor-α 
(TNF-α). At the same time, the release of IL-1 and 
TNF-α is reduced, ultimately leading to the weakening 
of the Nuclear Factor Kappa-B (NF-κB) pathway p65 
and enhancing protein kinase B phosphorylation [23], 
thereby exerting anti-inflammatory effects. In addition, 
H2S promotes axon growth of neuron [24] and acts 
as neuroprotectant to treat spinal cord ischemia–
reperfusion injury by inhibiting the miR-30c expression 
and activating autophagy proteins (Beclin-1 and LC3II) 
[25].

H2S and donors exert protective effect in models 
of neurological disorders
Studies have shown that inhalation of H2S effectively 
prevents the degeneration of spinal motor neurons in 
the ventral horn of the spinal cord and delayed-onset 
paralysis in mice after transient spinal cord ischemia 
[26]. However, H2S gas is toxic, flammable, and 
explosive, and inhalation of H2S has drawbacks, mainly 
in terms of gas storage, safe drug delivery, and targeting. 
Compared with traditional anti-inflammatory drugs, 
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H2S-releasing nonsteroidal anti-inflammatory drugs 
(ATB-346) produced a more significant therapeutic effect 
in restoring motor function and reducing inflammation 
and apoptosis after SCI [27]. Fe3S4 hydrogel releases H2S 
slowly at a concentration of 10  μM, exhibiting excellent 
anti-inflammatory and neurotrophic effects. The dual 
effects of immunomodulation and anisotropy of Fe3S4 
FFH make it a promising drug candidate for the treatment 
of SCI [28]. The H2S sustained-release donor (ADT-OH) 
can promote self-renewal and anti-apoptotic capabilities 
of neural progenitor cells (NPCs), maintaining normal 
brain function. It is a promising pharmacological agent 
for regulating neurogenesis in NPCs, with potential for 
clinical research and application [29].

Research Progress on the Protective Effect of Nitric 
Oxide on SCI
Biosynthesis and Functional Roles of Nitric Oxide
NO as endogenous bioregulators, has been demonstrated 
to participate in physiological and pathological events 
in the central nervous system and other types of tissues. 
The synthesis of endogenous nitric oxide is regulated by 
nitric oxide synthase (NOS), which has three isoforms: 
Induction type (iNOS/NOS2), nervous system type 
(nNOS/NOS1), and endothelial type (eNOS/NOS3). 
NO reacts with oxygen as a radical to form peroxynitrite 
and other reactive nitrogen, which are involved in lipid 
peroxidation, demyelination, neuronal apoptosis, and 
oligodendrocyte loss, inducing oxidative damage and 
leading to neuronal loss [30]. Hamada et  al. reported 
that NO produced by inducible nitric oxide synthase 
(iNOS) has neurotoxic effects [31], while NO produced 
by constitutive nitric oxide synthase (cNOS) has 
neuroprotective effects.

Double‑Edged Role of Different Typed Nitric Oxide 
in Neurological Diseases
iNOS is involved in delayed neuronal and glial cell death, 
and the inhibition of iNOS activity after SCI can alleviate 
secondary SCI neuronal apoptosis [32]. At 6  weeks 
post-SCI, the iNOS-CKO group shows less white and 
gray matter compared to the control group, with fewer 
axons and peri-lesional blood vessels in the injury area. 
Research has reported that photobiological regulation 
reduces the expression of iNOS and STAT3, promoting 
motor function recovery in mice with SCI [33]. 
Nanoparticles loaded with iNOS inhibitors effectively 
reduce spinal cord inflammation and oxidative damage, 
significantly restoring motor function in SCI rats [34].

cNOS is divided into neuronal nitric oxide synthase 
(nNOS) and endothelial nitric oxide synthase (eNOS). 
The level of NO produced by nNOS reaches its 
maximum immediately after SCI, about 5 times that of 

the uninjured spinal cord, and starts to decline after 12 h 
post-injury. From 24  h to 3  days post-injury, NO levels 
increase for the second time, approximately twice that of 
the control group. The NO content gradually decreases 
until 14 days post-injury [35]. nNOS causes neurotoxicity 
after cerebral ischemia through the strong oxidant 
peroxynitrite, inhibiting the improvement of neurological 
symptoms after SCI. During the subacute phase of mild 
SCI, eNOS is activated, leading to a significant increase 
in spinal cord blood flow at the site of injury, and 
participating in protective and repair responses [36]. 
Metformin promotes vascular regeneration in the injured 
spinal cord and improves neurological function in SCI 
mice by activating the AMP-activated protein kinase/
eNOS pathway [37]. Studies in the SCI mice indicate that 
nNOS-CKO or iNOS-CKO improved motor recovery 
[38, 39].

A gene silencing strategy based on small interfering 
RNA (siRNA), siRNA-chitosan NPs, reduces the 
expression of iNOS in M1 macrophages after SCI and 
decreases NO production through high transfection 
efficiency [40]. This induces systemic depletion of 
L-arginine, resulting in a local decrease in arginine levels 
and a reduction in NO concentration, thereby reducing 
NO-mediated cytotoxicity and neuronal apoptosis [41]. 
Although there are substantial research on inhibition 
methods targeting iNOS induced NO production, NO 
also plays crucial physiological roles. Apart from its 
prominent role in regulating cerebral blood flow and 
intercellular communication in the brain, NO has been 
found to be an effective antioxidant. At present, it is 
believed that the neurotoxicity of SCI is associated with 
the accumulation of low concentrations of NO derivatives 
such as nitrate and nitrite, rather than NO [42].

Research progress on the protective effects 
of carbon monoxide on SCI
Biological synthesis and functional roles of carbon 
monoxide
CO as bio-signaling molecule that is produced in living 
organisms during the degradation of hemoglobin by 
heme oxygenase (HO). The average CO generation rate 
in the human body is approximately 20  μmol/h. HO is 
an inducible enzyme for endogenous CO, and its activity 
accounts for 80–86% of endogenous CO production 
[43]. Biochemically, HO belongs to the heat shock 
protein (HSP) family and has three isoforms: HO-1, 
HO-2, and HO-3 [44]. HO-1 and CO are important 
for the maintenance of endogenous homeostasis, 
messenger transduction, and cytoprotection, have 
desirable therapeutic value [45]. Once the organism is 
challenged by stress, such as inflammation, cells increase 
the production of HO and CO to restore homeostasis 
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and protect tissues [46, 47]. HO-1 is a widely expressed 
inducible enzyme that degrades hemoglobin into CO, 
ferrous ions (Fe2+), and biliverdin [48].

Exogenous CO is typically considered a toxic gas 
with a high affinity for hemoglobin (Hb). It forms 
carboxyhemoglobin (COHb) by binding with Hb, which 
in turn impairs oxygen delivery to tissues. The action 
of CO is similar to NO, activating soluble guanylate 
cyclase and increasing the production of cyclic guanosine 
monophosphate (cGMP). It inhibits platelet aggregation, 
reduces leukocyte adhesion and cell apoptosis, and 
lowers the production of pro-inflammatory cytokines 
[48]. CO, as a product of heme degradation, has been 
shown to have various biological functions such as anti-
inflammatory, anti-apoptotic and antioxidant at low 
concentrations [48, 49]. The safe dose of CO promotes 
neuro-regeneration by triggering the sGC/cGMP/
MAPK signaling pathway and a cascade between the 
HO-CO, HIF-1α/VEGF, and NOS pathways [50, 51]. The 
safe dose of CO inhalation therapy has been shown to 
reduce cell death in various organs, including the brain, 
spinal cord, heart, retina, kidneys, and lungs [51–54]. 
It promotes functional recovery in models of trauma, 
cerebral ischemia, myocardial infarction, and ischemia–
reperfusion injury [51–54]. Inhalation of CO successfully 
promoted the recovery of locomotor function in SCI rat 
[55]. Due to the non-tissue-specific nature of inhaling 
CO, a portion of CO is delivered in vivo through plasma 
and carboxyhemoglobin (COHb), leading to hypoxia 
and toxic reactions in some tissues. Therefore, novel 
systems capable of controlled delivery and release of CO 
are referred to as carbon monoxide-releasing molecules 
(CORMs) [56]. In addition to inhaled CO, CO can also 
be delivered in the form of exogenous CO donors such as 
CORM1 or CORM3 [57].

Functional roles of carbon monoxide and carbon 
monoxide‑releasing molecules in SCI
Mechanical shock to the spinal cord during SCI leads 
to vascular rupture and tissue destruction, which may 
subsequently increase hemoglobin production (from 
dead cells or Hb). Meanwhile, the expression and activity 
of HO-1 are upregulated compared to the uninjured 
spinal cord [58]. Studies indicate that SCI increases 
the expression of HO-2, inducing an increase in CO 
production, leading to cell damage [59]. Brain-derived 
neurotrophic factor (BDNF) has neuroprotective effects 
in SCI, and its mechanism involves attenuating CO 
production by downregulating the expression of HO-2 
[60].

COHb was maintained at a safe concentration of 6% 
throughout the 24-day dosing period and remained 

stable via intraperitoneal injection of CORM-3 (40  mg/
kg/day) [61].

Exogenous administration of CORM-3 increases the 
concentration of CO in spinal cord tissue and alleviates 
neuronal necrosis after SCI. The mechanism may be 
related to the regulation of the inflammasome signaling 
pathway mediated by inositol-requiring enzyme 1 (IRE1) 
[62]. Exogenous CO prevents the denaturation of tight 
junction proteins and infiltration of neutrophils through 
increased CORM-3, thereby inhibiting BSCB injury and 
promoting motor recovery after SCI [63]. CORM-3 is 
a potential therapeutic approach for the treatment of 
SCI by inhibiting inflammatory vesicle activation and 
pyroptosis in neurons, improving histopathological and 
functional outcomes, and attenuating neuronal death 
after SCI [57, 64]. The release half-life of CO is very short 
(about 1  min), and a solid lipid nanoparticle (CORM-
2-SLN) containing CORM-2 has been developed to 
achieve slow release of CO, improve its solubility, and 
achieve good therapeutic results in BSCB disruption and 
endothelial cell death after SCI [65].

Research progress on the protective effects 
of hyperbaric oxygen on spinal cord injury
Biofunctional effects of hyperbaric oxygen
Hyperbaric Oxygen Therapy (HBOT) refers to the 
administration of pure oxygen at a pressure higher than 
one atmosphere for the treatment of various diseases 
such as SCI, Alzheimer’s disease, cognitive improvement, 
diabetes, and hard-to-heal wounds [66–70]. Low-
pressure, low-oxygen environments can have an impact 
on human systems such as the respiratory, circulatory 
and digestive systems and high concentrations of oxygen 
in the blood may decrease brain tissue hypoxia, thus 
preventing neuronal cell death [71]. Hypoxia leads to 
increased oxidative stress, resulting in the production 
of oxygen and nitrogen reactive free radicals, which are 
extremely toxic and lead to cellular damage, death, and 
apoptosis.

Research on the application of hyperbaric oxygen in SCI
HBOT helps to correct the hypoxic environment by 
increasing oxygen delivery to improve antimicrobial 
activity and attenuating hypoxia-induced factors [71]. 
HBOT is commonly used in the early stages of trauma 
and has achieved effective therapeutic effects [69]. 
Administering HBOT immediately after SCI is effective 
and has antioxidative, anti-apoptotic, and anti-inflam-
matory effects [72, 73]. Meanwhile, HBOT can enhance 
neurological function recovery and early rehabilitation 
exercise after SCI. Its mechanism may involve regulat-
ing macrophage polarization, suppressing inflammation 
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related to SCI rat, protecting neural function, and 
promoting muscle movement recovery [74]. HBOT 
increases the oxygen content in the blood on one hand 
and enhances the diffusion distance of oxygen on the 
other hand. Simultaneously, it dilates small arteries, 
and improves local microcirculation, thereby reduc-
ing the degree of ischemic-hypoxic injury and edema 
around the spinal cord [75]. HBOT increases the oxy-
gen levels of tissues to promote capillary angiogenesis, 
reduce inflammatory responses in damaged tissues, and 
accelerate tissue healing [74].

HBOT reduces SCI-induced spinal cord edema, 
stabilizes BSCB, and promotes neurological recovery by 
up-regulating vascular endothelial growth factor (VEGF) 
and down-regulating IL-6, matrix metalloproteinase-2 
(MMP-2), and MMP-9 [76]. HBOT reduces levels of 
spinal cord superoxide dismutase (SOD), glutathione 
peroxidase (GPX), NOS, and NO [77], thereby 
decreasing secondary damage caused by inflammatory 
responses and promoting neurological function repair 
[76]. Early administration of HBOT in SCI reduces 
the synthesis of IL-1β and TNF-α cytokines, decreases 
neuronal apoptosis and glial cell density in injured 
rats, and promotes functional recovery [78]. HBOT in 
combination with methylprednisolone, human placental 
mesenchymal stem cell-derived exosomes, or quercetin 
produces synergistic neuroprotective effects, reduces 
inflammation at the site of spinal cord trauma, improves 
motor function, and accelerates SCI healing [73, 79, 80]. 
HBOT promotes the recovery of sensory and motor 
functions in SCI [69, 81, 82], effectively inhibits the 
expression of monocyte chemotactic protein-1 (MCP-
1) in the damaged spinal cord, reduces neutrophil 
infiltration and secondary inflammatory responses, 
and promotes neurological function recovery [83, 84].
In the spinal cord tissue of the HBOT group in the SCI 
model, there is an increase in the expression of Bcl-2, 
accompanied by decrease in Bax levels and reduction 
in the number of apoptotic cells, contributing to the 
improvement of motor function in the SCI model [85].

Functional role of hyperbaric oxygen in SCI complications
HBOT improves bone turnover index and promotes bone 
formation in SCI rats, and its mechanism is associated 
with improved morphology and biomechanical 
properties of bone trabeculae and collagen [86]. HBOT 
enhances oxidative capacity, reduces the accumulation 
of reactive oxygen species (ROS), maintains diaphragm 
muscle fiber size and contractility, and enhances 
respiratory function recovery after SCI [87]. HBOT is 
used for clinical degenerative disc disease, with anti-
inflammatory and pain relief effects [88]. The latest 

clinical studies have shown that the neurocervical 
spine scale (NCSS) has improved significantly in the 
HBOT group in patients with cervical hyperextension 
SCI without fractures. HBOT also improved ASIA and 
Frankel grading, motor function, as well as psychological 
status among SCI patients [69, 89, 90].

Research progress on the protective effect 
of hydrogen on SCI
Functional roles of hydrogen gas
Hydrogen (H2) is a non-toxic, colorless, odorless, 
diatomic gas with minimum density and not easily 
soluble in water, as a newer therapeutic antioxidant with 
reducing properties. H2 is inexpensive, easy to prepare, 
safe to use, and has a wide range of applications in clinical 
therapy.

In recent years, H2 has been found to be a medical 
gas molecule with anti-inflammatory, antioxidant, and 
anti-apoptotic effects, which can easily pass through 
the blood–brain barrier and cells while scavenging free 
radicals in the body, and has shown good therapeutic 
effects in a variety of disease models and clinical trials 
[91–95]. H2 does not easily undergo chemical reactions 
with other substances, and its properties are stable 
at room temperature. However, when conditions are 
altered, such as using a catalyst or heating, it can undergo 
corresponding chemical reactions. Extensive research 
and experiments have not found hydrogen to be toxic 
to the human body. Currently, the methods of using 
H2 can be broadly categorized as follows: inhalation of 
H2, drinking of H2-dissolved water, intraperitoneal or 
intravenous injection of hydrogen-rich physiological 
saline. It can also produce H2 by inducing large intestinal 
bacteria in  vivo and play a corresponding therapeutic 
effect H2 is currently showing favorable results in the 
treatment of many diseases such as diabetes, sepsis, 
atherosclerosis, hypertension, cancer and other diseases 
[96–98].

Study on the function of hydrogen in SCI
In the rat cerebral ischemia–reperfusion model, H2 
selectively eliminates ROS and exhibits a protective effect 
[99]. In the rabbit spinal cord ischemia–reperfusion 
model, H2 increases the activities of catalase and 
superoxide dismutase, reduces cell apoptosis, improves 
the pathological features of spinal cord tissue, and 
increases the number of motor neurons [100]. High 
concentrations of H2 produce a neuroprotective effect 
by reducing ROS production, mitigating mitochondrial 
damage, and inhibiting cell apoptosis [101]. Both 
inhalation of H2 and intraperitoneal injection of saturated 
hydrogen solution have a protective effect on spinal cord 
ischemia–reperfusion injury [100, 102]. This effect is 
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associated with a significant increase in BDNF levels and 
a decrease in oxidative stress levels [103]. Inhalation of 
H2 has a concentration-dependent protective effect on 
ischemia–reperfusion injury in the spinal cord. This may 
be achieved by increasing the expression of glutamate 
transporter-1 and inhibiting extracellular glutamate to 
reduce neuronal damage [104]. The latest study found 
that H2 significantly enhanced the therapeutic effect of 
bone marrow mesenchymal stem cells (BMSC) on SCI, 
promoted the migration and proliferation of BMSC, and 
repaired SCI [105].

Patients with SCI often experience residual sensory 
and motor function impairments. Activation of 
astrocytes post-SCI impedes axonal regeneration, 
while scar formation from proliferating and activated 
astrocytes inhibits their repair function to some extent. 
In the SCI rat, intraperitoneal injection of hydrogen-
rich saline is found to reduce the production of ROS 
and improve locomotor scores [103]. Additionally, the 
levels of IL-6, TNF-α, and the quantity of apoptotic 
cells in the hydrogen-rich saline treatment group are 
significantly lower than those in the SCI group [106]. 
Moreover, after the injection of hydrogen-rich saline into 
the subarachnoid space, there is a significant decrease in 
inflammatory cell infiltration, serum malondialdehyde 
levels, serum SOD activity, and immunoreactivity 
of calcitonin gene-related peptides. This leads to an 
improvement in motor function [107]. Hydrogen-
rich saline alleviates spinal cord ischemia–reperfusion 
injury by activating the mitochondrial ATP-sensitive 
potassium channels(mitoKATP), reducing oxidative 
stress, inflammatory cytokines, and cell apoptosis. It 
promotes neuronal survival post-SCI and enhances 
the regeneration of injured axonal myelin sheaths by 
increasing BDNF [102, 103]. Reducing the release 
of reactive oxygen species(ROS) and related pro-
inflammatory factors, inhibiting excessive proliferation of 
astrocytes post-SCI, and protecting neuronal growth by 
suppressing the formation of glial scars [108].

The application of nanotechnology therapy in SCI
At the present stage, the clinical gas therapy is mainly 
carried out by inhalation, which is easy to induce body 
poisoning and difficult to realize the on-demand gas 
release in the lesion area, seriously restricting the applied 
range [109]. In recent years, the rapid development 
of nanotechnology has laid the foundation for precise 
delivery and controlled release of gases in vivo, providing 
a new perspective for precise gas therapy [110, 111]. 
The application of nanocarrier in nerve-related diseases 
is now reviewed to provide ideas for the clinical 
translational application of gas therapy.

Exogenous responsive controllable release of gases
Among exogenous sources of stimulation, light-
controlled gas release is a common route of controlled 
drug delivery. Most photoresponsive Gase Releasing 
Molecule (GRMs) prodrugs are sensitive only to UV or 
visible light [112, 113].The limited tissue penetration 
depth of UV and visible light and its tendency to cause 
phototoxicity severely limit the use of photoresponsive 
gas release in  vivo. Building upon this, near-infrared 
(NIR) light has greater tissue penetration depth 
and lower phototoxicity. Even NIR light itself has a 
promoting effect on the recovery of motor function and 
neural regeneration after spinal cord injury [114]. NIR 
light-responsive gas release holds broader prospects 
for applications. The strategy of altering the optical 
properties of molecular structures to modify their 
light-controlled gas release behavior is of significant 
guiding importance for the design and synthesis of novel 
photosensitive GRMs molecular compounds.

Ultrasound can focus on local areas within the tissue 
(with a focal size of up to micrometers) and has a stronger 
tissue penetration (the tissue penetration depth of 1 MHz 
sound waves can reach 20  cm). Therefore, ultrasound-
responsive gas-controlled release is an advantageous 
drug delivery method [115]. Research on the release 
of therapeutic gases using ultrasonic stimulation is 
currently focused only on liposome-type nanomedicines 
that encapsulate gases. Nanomedicines constructed using 
liposome microbubbles encapsulating gas molecules 
are crushed by cavitation of ultrasonic waves, thereby 
releasing gas molecules encapsulated therein. However, 
the disadvantages include low gas loading capacity, poor 
stability, inability to achieve controllable and uneven size 
particles [116].Therefore, developing a novel ultrasound-
responsive nanomedicine with excellent therapeutic 
performance and achieving safe and controllable release 
of therapeutic gases in the body is currently a challenging 
problem in the research of acoustically responsive 
materials.

X-rays have a very high penetration rate in living 
organisms, and low-dose X-rays can trigger the release 
of gas. Highly penetrating X-rays can be used to precisely 
control the release of medication in deep-seated lesion 
areas. By adjusting the X-ray radiation dose and duration, 
on-demand gas release can be achieved [117]. The 
disadvantage of this system is that the gas release is poorly 
controllable, and in the absence of X-ray irradiation, 
NO is still released slowly and spontaneously, which 
is mainly due to the instability of the SNO prodrugs 
in the physiological environment. Therefore, how to 
improve the stability of X-ray responsive nanodrugs and 
the controllability of X-ray controlled release gases are 
important issues that need to be addressed.
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Endogenous responsive controllable release of gases
Endogenous stimulus-responsive controlled gas 
release primarily involves the utilization of specific 
microenvironments within the body, where 
nanomedicines release gas under the stimulation of these 
microenvironments. Compared to exogenous stimulation 
sources such as optical and acoustic stimulation, 
endogenous stimulation is a non-invasive, green way to 
mediate gas release, with the advantages of unlimited 
depth of penetration in the body and in  situ targeted 
release without invading normal tissues and cells.

It has been found that spinal cord injuries and tumors 
are similar in that hydrogen peroxide (H2O2) levels are 
significantly higher than in normal cells, and thus a class 
of hydrogen peroxide-responsive nanomedicines can be 
designed to take advantage of the high H2O2 expression in 
tumor cells [118]. H2O2-responsive gas release primarily 
involves utilizing H2O2 in the microenvironment of 
spinal cord injuries to trigger the therapeutic gas release 
from nanomedicines, thereby rescuing neuronal cells. 
And one of the main approaches to achieve hydrogen 
peroxide-responsive gas release is to develop hydrogen 
peroxide-responsive gas prodrugs.

The mildly acidic environment of inflamed tissues 
can be controlled by acid-responsive gas release. An 
acid-degradable carrier, MSN-CaP, was used to load 
NO gas prodrugs and realize acid-responsive NO gas 
release [119]. The calcium phosphate (CaP) coating 
serves the purpose of protecting the loaded prodrug and 
facilitating acid-responsive dissolution. At lower pH, the 
CaP coating dissolves, exposing the loaded NO prodrug, 
2-nitrobenzaldehyde (NBA), which spontaneously 
decomposes to generate NO gas. However, the highly 
unstable NBA prodrug may lead to instability of the 
nanomedicine. The key challenge that urgently needs 
to be addressed is how to achieve controlled gas release 
in a mild acidic microenvironment, ensuring the high 
stability of nano gas drugs under normal physiological 
conditions and preventing gas leakage.

Targeted gas release
In order to eliminate the disadvantage of rapid free 
diffusion of gases, it is essential to realize targeted gas 
transport. By introducing targeted nanocarriers to load 
gas prodrugs, novel targeted nanogas drugs can be 
constructed for targeted transportation of gases. The 
targeting of nanomedicines can be achieved primarily 
through two approaches: passive targeting and active 
targeting. Passive targeting means that particles below 
100  nm in size can passively accumulate in the spinal 
cord injury region through a tumor-like "enhanced 
permeation and retention" effect (EPR effect). Thus, in 

order to achieve targeted gas transport in spinal cord 
injury, the size of the nanomedicine should be kept below 
100 nm.

Active targeting is mainly achieved through ligand 
recognition (such as chondroitin sulfate proteoglycan) 
and external field guidance (such as magnetic field 
targeting). By constructing a magnetic iron tetroxide-
NORMs-silica nanoparticles, magnetically guided 
accumulation of nanoparticles under in  vitro simulated 
conditions is achieved by a magnetic targeting strategy 
[120]. However, there are still few reports of targeted 
nanomedicines for gas therapy.

Gasotransmitters are highly membrane-permeable 
and can easily transmit signals by autocrine or paracrine 
means, and are the most active class of substances in 
the regulation of cellular homeostasis. Gas therapy is an 
emerging and highly promising strategy for anticancer 
treatment. The application of nanotechnology in the field 
of gas therapy will have far-reaching implications [121]. 
Nanogas therapy focuses on addressing two key scientific 
issues: controlled gas release and targeted gas transport. 
Controlled gas release and targeted gas transport are two 
critical factors in nano gas therapy. Although it is still 
difficult to carry out the implementation of nanomedicine 
into clinical trials, the future of its translation to the clinic 
is more promising.

Prospects
There are special gasotransmitters such as H2S, NO, 
CO, O2, and H2. They play a role in regulating the 
nervous system, cardiovascular system, musculoskeletal 
system, and immune-endocrine system. At the same 
time, these gasotransmitters can also regulate various 
physiological functions of the human body system by 
specifically binding to multivalent transition metals 
[109, 122, 123], which has an important influence on 
the normal operation of human physiological processes 
and the effective regulation of pathological processes. 
Exogenous supplementation of such gasotransmitters has 
a significant therapeutic effect when the organism is in 
the midst of a major disease (e.g., inflammatory response, 
ischemic damage to organ tissues, cardiovascular disease, 
cancer, etc.) [109, 122, 123].

The use of gas therapy has provided new ideas for the 
treatment of various diseases, but its gaseous nature and 
potential toxicity have hindered its widespread clinical 
use. The perfect combination of nanomaterials and 
gasotransmitters optimizes the targeting of therapeutic 
gases to the site of injury and maintains therapeutic 
concentrations to harness their anti-inflammatory, 
antioxidant and tissue-protective effects. Gas therapy 
requires smarter synergistic control of the released 
nanomaterials to respond to different stimuli for various 
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types of diseases. Designing multifunctional combined 
anti-inflammatory and antioxidant therapeutic platforms 
based on careful consideration of material design, 
construction, performance, and safety, the gaseous 
nanoplatforms will have a promising application.

How to prepare nanomaterials into multifunctional 
gas molecule donor materials to achieve the release of 
therapeutic gas molecules and metal ions with pro-neural 
vascular growth at the site of SCI, so as to achieve the 
dual functional effects of inhibiting inflammation and 
neurovascular regeneration. Promoting regeneration of 
axons and injured neuro-vessels after SCI are the goals of 
further researches to optimize therapeutic strategies for 
different types of SCI in the clinic.
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