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Abstract A biological network exhibits a modular organ-
ization. The modular structure dependent on functional
module is of great significance in understanding the organi-
zation and dynamics of network functions. A huge variety
of module identification methods as well as approaches to
analyze modularity and dynamics of the inter- and intra-
module interactions have emerged recently, but they are
facing unexpected challenges in further practical applica-
tions. Here, we discuss recent progress in understanding
how such a modular network can be deconstructed spati-
otemporally. We focus particularly on elucidating how
various deciphering mechanisms operate to ensure precise
module identification and assembly. In this case, a system-
level understanding of the entire mechanism of module
construction is within reach, with important implications
for reasonable perspectives in both constructing a modular
analysis framework and deconstructing different modular
hierarchical structures.
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Introduction

Modularity is a ubiquitous phenomenon in various net-
work systems [1]. A functional module, composed of many
types of interacting molecules, is a discrete entity whose
function is separable from those of other modules [2]. Its
members have more relations or interactions among them-
selves than with members of other modules [3], and many
cellular functions are carried out by modules [2]. Modu-
lar organization has been observed in metabolic [4], tran-
scriptional regulation [5], and protein—protein interaction
(PPI) [6] networks. Moreover, the exploration of modular
structure has been proposed as a key factor in understand-
ing the complexity of biological systems [7]. Some disease-
specific functional modules have been identified in the
human disease network [8]. Causative genes for the same
or phenotypically similar diseases may generally reside in
the same biological module [9]. It is proposed that a dis-
ease is a result of the breakdown of a particular functional
module [10], and it has been demonstrated that the modu-
lar structure is of great significance in aiding the diagno-
sis, prevention, and therapy of deadly diseases, especially
in cancer research [11, 12]. In pharmacological research, a
novel concept of modular pharmacology (MP) has emerged
recently [13]. Therefore, it is extremely important and nec-
essary to identify functional modules in networks. Further-
more, much of a cell’s activity is organized as a network
of interacting modules [14], and altering the connections
between different modules may affect changes in cellu-
lar properties and functions [2]. Thus, it is also essential
to analyze the interactions between modules, and prefer-
ably, even to quantify the inter-modular interactions [15].
Additionally, increasing studies indicate that there is a pro-
found interaction between network structure and dynamics,
and the dynamic properties of network motifs contribute
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to biological network organization [16]. For this reason,
understanding modularity in molecular networks requires
dynamics [17].

Currently, researchers have proposed a wide variety of
module identification or network decomposition methods,
and on the basis of module identification, researchers have
also presented some approaches for analyzing the inter-
module relationships as well as the interactions between
network modularity and dynamics. Analyses using these
methods seem to have reported good results, but in light of
the huge number of available methods and a lack of system-
atic, reasonable classification criteria, there are still many
challenges that need to be addressed for practical applica-
tion. Consequently, this review aims to summarize these
methods (or algorithms) proposed in the existing literature,
identify the difficulties and challenges we are facing, and
thereby attempting to provide potential and reasonable per-
spectives on the development of more robust methods for
deconstructing complex biological systems.

Classification of module identification methods

The first step in understanding the organization and dynam-
ics of cell functions is to identify multiple modules in
complex networks. Generally, identifying functional mod-
ules from high-throughput data can be formulated as an
optimization problem. From an algorithmic viewpoint, the
existing computational methods can be classified into two
groups: heuristic approaches and exact approaches [18].
These methods rely on a scoring function for subnetworks/
modules and an algorithm to find high-scoring subnetworks
[19, 20]. Ideker et al. [21] proposed a scoring function
(Z-score calculation) and simulated an annealing algorithm
to search for high-scoring subnetworks. Dittrich et al. [22]
presented a scoring function based on aggregated p values
and identified optimal-scoring subnetwork and suboptimal
solutions by integer-linear programming (ILP). The differ-
ence lies in the fact that exact approaches are able to find
optimal and suboptimal subnetworks while heuristic algo-
rithms can only identify high-scoring subnetworks [18],
but cannot guarantee to identify the highest scoring sub-
network, that is, heuristic methods do not guarantee to find
the optimal solution and are unable to assess the solution
quality [22]. Moreover, exact approaches compute optimal
solutions without computationally demanding parameter
optimization, while this is usually necessary in heuristic
approaches [22]. Currently, many different approaches pro-
posed to identify modules can be broadly classified into six
major categories as listed in Table 1. We describe the char-
acteristics of these methods briefly below.

Traditional clustering algorithms, including hierarchi-
cal clustering [23] and partitional clustering, e.g., k-means
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clustering [24], are extensively used for identifying highly
connected clusters or modules in biological networks. A
large number of graph clustering-based methods have also
been developed to identify functional modules, including
Molecular Complex Detection (MCODE) [25], Markov
clustering (MCL) [26], affinity propagation [27], Clus-
terONE [28], Super-paramagnetic clustering (SPC) [29],
etc. Additionally, some researchers present a novel graph
entropy-based clustering algorithm that tries to find a parti-
tion with low entropy and keeping in mind the modularity,
and performs well in identifying functional modules/com-
munities [30-32]. The strength of these clustering methods
is that they uncover structures within biological networks,
even when nothing is known about individual proteins;
however, there are still some limitations for clustering
methods; for example, they rely on the available func-
tional annotation of identified modules to interpret biologi-
cal roles, e.g., GO term enrichment analysis [33], and they
depend on certain parameters or measurement criteria that,
when modified, can generate different modules.

Network topological approaches decompose the inter-
action network into subnetworks mainly based on some
topological properties, e.g., degree [34], edge betweenness
in the G-N algorithm [35], or edge-clustering coefficient
[36]. Such a method requires only the structure of the net-
work, and it usually combines graph theory or clustering
algorithms with certain topological properties to identify
modules [37, 38]. Moreover, in consideration of direction-
ality and retroactive connectivity (cyclical or retroactive
interactions between network components) in signaling
and metabolic networks, module detection based on “ret-
roactivity” has also been proposed [39, 40]. However, one
of the shortcomings is that it is very difficult to partition
PPI networks using algorithms based solely on topology
because of a very high degree of inter-module crosstalk
[41].

Besides, modularity optimization is a popular method
for module/community detection. By assumption, high val-
ues of modularity indicate good partitions [23], and thereby
the principle of this method is to maximize the modular-
ity. There have been several suggested algorithms, includ-
ing simulated annealing [42], greedy algorithms [43],
extremal optimization [44], and spectral methods [45]; the
latter three are better suited to deal with very large net-
works (sizes of millions of nodes). The spectral method
is usually combined with modularity optimization to find
the community structure in complex networks, using the
eigenvalues and eigenvectors of the modularity matrix [45,
46]. However, it requires constructing an ensemble of ran-
domized networks to evaluate the statistical significance
of the modularity of each network. Therefore, the modu-
larity maximum of a network reveals a significant modular
structure only if it is appreciably larger than the modularity
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maximum of randomized networks of the same size and
expected degree sequence [23, 42].

In addition, the approaches of seed expansion usually
propose a probabilistic model to assign a weight (probabil-
istic/confidence score) to each interaction or each pair of
genes and extract q-connected seeds, then use a heuristic
algorithm (e.g., greedy algorithm) to optimize the initial
seeds while maintaining their g-connectivity. Finally, these
seeds are expanded into modules by node addition, module
merges, node removal or reassignment [47, 48].

Matrix decomposition/factorization has also been used
to identify modules, such as singular value decomposition
(SVD) [49]. SVD assumes that the data matrix is in the
form with genes in rows and arrays in columns. Given a
cutoff and a direction (positive or negative), a gene group
(i.e., a functional module) that is naturally a co-expression
cluster can be extracted. A main challenge in implement-
ing SVD-based module identification algorithms is how to
choose the cutoffs [49].

Fig. 1 Graphical representa-
tion of the global network and
comparison of MCL, MCODE,
GLay, and affinity propagation
results. a The global network
containing 258 stroke-associ-
ated genes downloaded from
the OMIM. The blue-green
nodes denote the 258 genes we
entered. Average size (avg),
modularity (Q), affinity propa-
gation (AP). b 122 functional
modules identified by MCL
(size >3), average size: 5.041,
maximum size: 45, minimum
size: 3, modularity: 0.726. ¢ 88
functional modules identified by
MCODE, average size: 5.398,
maximum size: 51, minimum
size: 3, modularity: 0.427. d 43
functional modules identified by
GLay (size >3), average size:
11.239, maximum size: 146,
minimum size: 3, modularity:
0.789. e 61 functional modules
identified by affinity propaga-
tion (size >3), average size:
14.985, maximum size: 681,
minimum size: 3, modularity:
0.177

C MCODE modules
clusters: 88, avg: 5.398,
Q: 0.427

a Global network

Given two or more networks, comparative network
analysis is often used to identify modules across networks
or species. There are three modes of comparison: network
alignment is applied to two or more networks of the same
type across species to detect conserved subnetworks; net-
work integration combines several networks of different
types for the same species to study their interrelations; and
network querying is to identify subnetworks in a given net-
work that are similar to the query of interest [S0]. However,
network comparison offers limited coverage compared to
clustering methods, and they are highly dependent on the
graph topology for correct results, thus error rates pose a
special challenge [51].

Next, we would like to give an example to evaluate the
consistency of the results obtained from different iden-
tification methods. We used 258 stroke-associated genes
downloaded from Online Mendelian Inheritance in Man
(OMIM) [52] in February 2012 to construct a global net-
work via the Agilent Literature Search plugin (version 2.77)

b MCL modules
clusters: 122, avg: 5.041,
Q: 0.726

e AP modules
clusters: 61, avg: 14.985,
Q: 0.177

d GLay modules
clusters: 43, avg: 11.239,
Q: 0.789
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in Cytoscape (version 2.8.2), which contained 989 nodes
and 2,167 edges (Fig. 1a). We applied four different meth-
ods successively and independently to identify functional
modules from this network, including MCL (inflation = 2),
MCODE (degree cutoff = 3, haircut = true), Commu-
nity Clustering (GLay) [53], and affinity propagation
[27] (lambda = 0.5, preference = —1.0, iterations = 10).
Finally, modules identified by the four methods were found
to be inconsistent (Fig. 1b—e), and regression analysis of
the four methods’ results showed that there were no signifi-
cant correlations between the number of modules and mod-
ularity, average size of modules and modularity, or average
size of modules and number of modules, indicating that the
four methods are very different from each other depending
on their basic principles.

Overlapping and non-overlapping functional modules

From a structural point of view, there are two forms of
identified modules, i.e., overlapping and non-overlapping
modules. Some of the approaches mentioned above can
produce both overlapping and non-overlapping modules
(Table 1), while other methods tend to generate exclusive
(non-overlapping) modules.

Generally speaking, modular overlaps show that nodes
or links may belong to two or more modules [54, 55]. Sev-
eral common clustering algorithms, including CFinder [56,
571, MCL [26], MCODE [25], DetMod [58], ClusterONE
[28], and MINE [59], permit overlaps between the modules,
or in other words nodes may be assigned to multiple clus-
ters. CFinder is a fast program for locating and visualizing
overlapping dense groups of nodes in networks, based on
the clique percolation method (CPM), which is one of the
most popular methods to identify overlapping communities
[60] and locate the k-clique percolation clusters of the net-
work. Farkas et al. [61] also introduced CPMw for weighted
networks, an extension of CPM that includes an additional
clique filtering step, and both of them allow modular over-
laps. Additionally, Sameith et al. [62] applied iterated simu-
lated annealing to discover potentially overlapping sub-net-
works in a large network of physical interactions. Bachman
and Liu [63] presented a pattern-based network decompo-
sition method by using sub-graph queries, and this method
extracted “shared member” modules matching the topolo-
gies of query patterns. A recent study introduced an integra-
tive method family for determining extensively overlapping
network modules, called ModulLand, which is based on the
novel concept of understanding the overlapping modules as
hills of an influence function-based, centrality-type commu-
nity landscape. The x—y plane of a community landscape is
a conventional 2D visualization of the network, while the Z
axis represents community centrality. Community centrality

@ Springer

represents an integrated measure of the whole network’s
influence to one of its edges or nodes. Hills of the com-
munity landscape correspond to network modules yielding
extensive overlaps [64], and the authors showed the utility
of the ModuLand method family to determine overlapping
modules in a variety of model and real-world networks
[64]. Besides, Nepusz et al. [65] proposed fuzzy com-
munity detection in networks, and their approach allowed
each vertex of the graph to belong to multiple communities
at the same time, determined by exact numerical member-
ship degrees. Furthermore, researchers also analyzed the
importance of detecting overlapping modules in complex
networks. Modular overlaps are the primary transmitters of
network perturbations and signal transduction and are key
determinants of network cooperation [54]. Overlapping
nodes are also the predominant sites of modulation during
cellular adaptation. These properties of modular overlaps all
suggest the importance of these proteins as potential drug
targets, and imply the necessity of multi-target drugs. Thus,
modular overlaps of PPI and signaling networks may be of
key importance in future drug design [54].

On the contrary, some other methods are inclined to
identify non-overlapping modules of genes, and by elimi-
nating their overlap, generate a coherent network structure
describing both the intra- and inter-modular interactions
[66]. Zhang et al. [67] used a hybrid of particle swarm
optimization and recurrent neural network (PSO-RNN)
methods to infer the underlying network among the mod-
ules. Ariel et al. [66] introduced a computational approach
based on the minimum description length principle to con-
struct module hierarchy. Their method allowed to identify
large parent modules with more general functions that
contained sub-modules with more specific functions, and
finally showed that revealing the intra- and inter-modular
interactions enabled insights into the function of cellular
machineries. In another study, the authors developed the
Prism algorithm, which hierarchically clusters interact-
ing genes into modules that have strictly monochromatic
interconnections with each other (i.e., with purely aggra-
vating or purely buffering epistatic links). These results
suggest a new definition of biological modularity, which
emphasizes interactions between, rather than within, func-
tional modules [68]. Additionally, Zhao and Li [69] pro-
posed a concept of “co-module”, which is characterized by
closely related drugs, diseases and genes, and developed a
novel co-module approach to discover drug—gene—disease
relationships.

Ranked modules based on structures or functions

The importance or the weight of each module in complex
networks should not be identical, and some modules may
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Fig. 2 The interaction network of modules. The module interaction
network is constructed using modules identified by MCODE in the
OMIM stroke-associated genes network mentioned in section Clas-
sification of module identification methods. It represents the inter-

play vital roles and take a very central position in a net-
work. Typically, there are two situations: one is that the
identified modules are sorted by a ranking criterion, such
as p value [14], module score [70], module size [48], cross-
validated classification accuracy [62], etc. Georgii et al.
[71] ranked modules by their probability values, and they
claimed their ranking scheme was more principled than
the ranking criterion used by Bader and Hogue [25], which
was the product of size and density.

Considering the relationship between modules, the
other is to reconstruct a module interaction network. In
Fig. 2, we also constructed a module interaction network
using modules identified by MCODE in the OMIM stroke-
associated genes network, which concisely represented a

BN
o ot N\

Union-cluster 39

)2 7 £
N ar

connections among 88 modules with a size >3 nodes identified by
MCODE. The blue-green nodes denote the 258 stroke-associated
genes we entered. Each lilac square denotes a module. Blue edges
denote the inter-module connections and intra-module connections

complete view of the interconnections among the 88 mod-
ules with a size >3 nodes (Fig. 2). This may facilitate to
visualize the high-level relationships among modules
within larger interaction networks [62, 68, 72—74]. In addi-
tion, several important topological concepts involved in the
interactions or interconnections among modules have been
proposed, including bridges, inter-modular hubs, bottle-
necks, etc. All of them connect different modules, occupy
an inter-modular position, and they have been proposed as
attractive drug targets [7]. Commonly, in the module inter-
action network, each module is shrunk into a node, i.e.,
each node represents a module, and each edge denotes the
interaction between modules. Moreover, some approaches
are able to analyze the importance of interacting modules
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quantitatively through assigning a weight to each node or
edge in module networks. Luo et al. [72] constructed an
interaction network of modules based on edge between-
ness scores, and in the network the width and grayscale of
edges reflected the order of edge deletion in the Girvan—
Newman (G—N) algorithm, which also represented relative
relationships among modules. Ulitsky et al. [73] developed
four methods (‘Alleviating’, ‘Correlated’, ‘Alleviating
Connected’, and ‘Correlated Connected’ models) to iden-
tify distinct functional modules, and constructed a map of
modules. The edge width was inversely proportional to the
average S-score between two modules: thicker edges corre-
sponded to stronger aggravating genetic interactions, while
dashed edges corresponded to weaker aggravating genetic
interactions. Yang et al. [74] reconstructed a gene module
network by knowledge-driven matrix factorization (KMF)
algorithm, and each element C;; in the generated C matrix
represented the strength of the interaction between mod-
ules. A higher C;; value, suggesting stronger interaction,
was indicated by a thicker and darker edge line; whereas
a higher ‘sum’ value in the C matrix, suggesting that the
module was more highly correlated with the other modules
and thereby took a more central position in the overall gene
module network, was indicated by a larger and darker node.

In addition, there are other methods based on functional
categories to arrange modules. According to a functional
classification of genes in modules, Singh et al. [75] deter-
mined specific functions which modules were enriched in,
and then arranged modules using distinct functions. Chen
et al. [76] identified different sub-networks representing
key functional units in the co-expression network, and
found that the contributions of each sub-network to com-
plex disease traits were not equal. Only one in five sub-net-
works was very significantly enriched for expression traits
supported as having a causal relationship with all metabolic
traits tested, directly implicating this sub-network as a key
mediator.

Dynamic features of functional modules

Although cellular behaviors are dynamic, most available
biological data are static, or only correspond to snapshots
of cellular activity [77], and thus the majority of approaches
listed in Table 1 have only focused on static properties.
However, it has been demonstrated that the dynamic molec-
ular interactions play a central role in regulating the func-
tioning of cells and organisms [78], and a dynamic perspec-
tive is essential to grouping molecules into modules and
determining their collective function [17]. Therefore, mod-
ular analysis needs to incorporate network dynamics. The
shift from static to dynamic network analysis is essential
for further understanding of molecular systems. Many of

@ Springer

these existing approaches have inferred and analyzed net-
work dynamics by integrating static molecular interaction
data sets, such as PPI network [77] and metabolites pro-
files [79], with other types of dynamic data, such as gene
expression data, coexpression data, phenotypic responses
to perturbations like gene knock-outs or knock-downs, and
information about expression quantitative trait loci (QTL)
[78]. Modules change and vary over ontogenetic and phy-
logenetic time [80], and studies have provided evidence for
dynamic modularity in protein interaction networks [6, 81].
In dynamic functional modules, interactions are not real-
ized at the same time or place, actually the corresponding
physical interactions occur at different times and/or dif-
ferent spaces [6, 29]. Furthermore, phenotypic variation is
often an outcome of modular change [80]. For example, it
has been shown that changes in dynamic network modu-
larity may provide a prognostic signature for patients with
breast cancer [81].

A number of methods and models have been pro-
posed to determine molecular network dynamics, such as
Dynamic Bayesian Networks (DBNs) [82, 83], network
component analysis (NCA) [84, 85], dynamic flux bal-
ance analysis [86], and state space model [87] (Table 2).
Kholodenko et al. [15] proposed a framework of modular
response analysis to determine molecular network dynam-
ics. A series of different perturbations affected each mod-
ule separately. The modular response analysis was able to
quantify the strength of interaction between the modules,
generating a dynamic modular network. Additionally, an
analysis of hubs identified two types of hubs: ‘party’ hubs
(i.e., intramodular hubs), which interact with most of their
partners simultaneously (static hubs), and ‘date’ hubs (i.e.,
intermodular hubs), which bind their different partners at
different times or locations (dynamic hubs). Arguably, hubs
play important roles in network modularity and dynamics
[6, 78, 81, 88].

Conclusions

Modularity is a very important property in genomic com-
plex networks, and modular research can help us better
understand the functions and properties of those networks.
Although researchers have proposed a variety of module
identification approaches, due to the lack of a systematic
and reasonable framework to guide the application of these
methods, and in light of the fact that some methods do not
have a clear scope of application, we still face many dif-
ficulties and challenges in practical applications in the
future. For example, as the number of functional modules
in a given network is unknown in advance, different results
may be generated when different module identification
methods are applied to the same network, like different
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numbers of modules, or different module sizes (Fig. 1).
And even the same method with different parameter set-
tings may also generate different modules; for example,
Markov clustering is dependent on the inflation parameter
used. The value of the inflation parameter strongly influ-
ences the number of clusters. Moreover, with regard to the
overlapping functional modules, some methods are able
to identify overlapping modules, while other methods are
not. However, in reality, most real networks should involve
overlapping modules. The noise and incompleteness of the
available PPI data may increase difficulties in modularity
research. Confronting these challenges, we propose two
potential perspectives listed below.

A reasonable framework is required to guide modular
analysis

Firstly, modular analysis mostly depends on high-through-
put experimental data, especially that PPI data are usually
utilized to construct a background network. The available
PPI data, however, are often noisy and incomplete with
high false-positive and false-negative rates. To address
this problem, one effective solution is data integration.
As shown in Table 1, gene expression data, protein-DNA
regulation, genetic interactions [89], phenotypic profiles
[90], and metabolic information [91] have been integrated
with PPI data to identify functional modules. A lot of other
information from multiple levels, such as protein com-
plexes, pharmacological data, disease information, and
drug targets, can also be incorporated together to construct
background networks, e.g., bipartite networks [42]. There-
fore, integrating diverse data from multiple levels may pro-
vide a reliable foundation for modular analysis.

Secondly, facing such a variety of methods, which one
is more appropriate for identifying modules in a given net-
work? And how does one assess the performance of dif-
ferent algorithms? In the published literature, researchers
usually compare or evaluate the performance of various
algorithms based on benchmark graphs, e.g., the bench-
mark used by Girvan and Newman [35], and the bench-
mark graphs provided by Lancichinetti et al. [92]. How-
ever, these benchmark graphs have been criticized recently
due to their limited capacity to reflect the complexity of
real-world networks [23]. Unlike benchmark networks,
we do not know the “correct” modules of the network in
advance. As a result, it is quite necessary to set up system-
atic and reasonable criteria to guide the application of these
approaches and evaluate their performances in real-world
settings. Since the existing methods are mainly based on
network topology or mathematical relationships, we sug-
gest assessing functional modular analysis by incorporat-
ing the notion of entropy. The entropy of a random variable
quantifies the uncertainty or randomness of that variable

@ Springer

[93]. We consider that the ultimate purpose of module iden-
tification is to find a stable modular state, which should
have the minimum uncertainty. Since the number of mod-
ules in a given network is uncertain in advance, what we
can do is to try to minimize the uncertainty. The minimum
entropy means the minimum uncertainty, and thus we pro-
pose to evaluate the results of module identification in the
light of minimum entropy criteria. As of now, only a few
pertinent reports have been published. For example, in
addition to the graph entropy-based clustering algorithm
mentioned in the section Classification of module identi-
fication methods [30-32], Varadan et al. [94] presented an
approach of entropy minimization to identify modules of
genes directly from gene expression data. Due to the lim-
ited literature available, more research in this area is still
required.

Deconstructing different modular hierarchical structures

Generally speaking, modular structures can be broadly
classified into two categories, i.e., intramodular structure
and intermodular structure. As reflected in network topol-
ogy, the difference between the two is that there are dense
connections within the module, but only sparse connections
between different modules [45], and corresponding to these
structures, two types of hubs are uncovered in the organ-
ized modularity model: “party” hubs (i.e., intramodular
hubs), and “date” hubs (i.e., intermodular hubs). Date hubs
represent a global, or “higher level”, connectors between
modules, whereas party hubs function inside modules at a
“lower level” [6, 81]. Moreover, Arenas et al. [95] defined
the contribution matrix C of N nodes to M modules, the
mathematical object containing all the information about
the partition of interest. The rows of C correspond to nodes,
and the columns to modules, and then they used truncated
SVD to extract the best representation of this matrix in a
plane. The analysis of this projection helped to scrutinize
the skeleton of the modular structure, revealing the struc-
ture of individual modules and interrelations between mod-
ules. In previous sections, we introduced bridges and bot-
tlenecks, which should belong to intermodular structure,
and to some extent, modular overlaps, bridges, inter-mod-
ular hubs, and bottlenecks may reflect the interrelations
between different modules.

Additionally, it is widely accepted that hierarchical
organization is a fundamental characteristic of many com-
plex networks, implying that small groups of nodes organ-
ize in a hierarchical manner into increasingly large groups
[4, 96]. Metabolic networks exhibit hierarchical modularity
in the form of modularized bow-tie units, which are hier-
archically nested and reoccur at different scales and levels,
and then coupled level-by-level into a larger network [4,
97]. A structural module at a higher level should contain
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Fig. 3 Different modular structures. a Hierarchical organization of
the OMIM stroke-associated genes network. The hierarchy of the
OMIM stroke-associated genes network mentioned in section Classi-
fication of module identification methods was constructed, generating
a total of seven hierarchical levels. b Hierarchical organization of the
stroke-associated genes network treated with cholic acid (CA), which
has obvious therapeutic effects in the treatment of cerebral ischemia—

multiple structural modules at lower levels [80]. Some
algorithms, like hierarchical clustering, can destruct this
kind of organization by tuning a cutoff. The ModuLand
method mentioned above can also identify several hierar-
chical layers of modules, where meta-nodes of the higher
hierarchical level represent modules of the lower level [98].
As shown in Fig. 3, we constructed the hierarchy of the
OMIM stroke-associated genes network, generating a total
of seven hierarchical levels (Fig. 3a). In the stroke-associ-
ated genes network treated with cholic acid (CA), which
has obvious therapeutic effects in the treatment of cerebral
ischemia—reperfusion injury, a hierarchy of five levels was
discovered using Pyramabs [99], a complex network anal-
ysis tool. Level 1 comprised one module, and the module
was further divided into four modules at level 2, and so on.
The original network was at the bottom (level 5) (Fig. 3b).
In addition, a recent study also suggested the existence of
spoke-like modules as opposed to the “deterministic hierar-
chical model” [100].

Then, besides the structures mentioned above, are there
any other structures? How to determine the key or core
modules in a modular network mentioned above? And
how to analyze the transformation between key modules
and other modules? All of these questions remain to be
answered. Therefore, functional module identification is
just a start, and it is still necessary to develop correspond-
ing methods to deconstruct different modular structures
and conduct in-depth investigations into the inter-module
relationships.

b Level 1

Level 2

Level 3

Level 4

Level 5

reperfusion injury. The hierarchical levels were constructed using
Pyramabs [99], a complex network analysis tool. There are five lev-
els in the hierarchy. From level 1 to level 4, each circle represents a
module. The original network is at the bottom (level 5). Higher-level
networks are an abstraction of the next lowest network. Vertical rela-
tionships are denoted by blue dashed lines
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