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Abstract The generation of specialized neural cells in the

developing and postnatal central nervous system is a highly

regulated process, whereby neural stem cells divide to

generate committed neuronal progenitors, which then

withdraw from the cell cycle and start to differentiate. Cell

cycle checkpoints play a major role in regulating the

balance between neural stem cell expansion and differen-

tiation. Loss of tumor suppressors involved in checkpoint

control can lead to dramatic alterations of neurogenesis,

thus contributing to neoplastic transformation. Here we

summarize and critically discuss the existing literature on

the role of tumor suppressive pathways and their regulatory

networks in the control of neurogenesis and transformation.
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Introduction

Neurogenesis is the process by which functional neurons

are generated from neural stem and progenitor cells

(NPCs). Neurogenesis occurs in both developing and adult

brains [1–6].

Control of cell division and cell death during neuro-

genesis is crucial for the generation of new neuronal cells.

Neural stem cells (NSCs) have the ability to self-renew

(expansion) or generate specialized cells, either directly or

via generation of transit-amplifying (or intermediate)

progenitors (differentiation) [4, 7]. Significant progress has

been made over the last decade in the study of almost all

the aspects of mammalian neurogenesis both at embryonic

and perinatal stages [5].

Early in nervous system development, NSCs form a

polarized epithelium, named the ventricular zone (VZ),

whose apical domain delimits the lumen of the neural

tube. As development proceeds, an increased proportion

of stem cells start to switch from symmetrical division,

which generates additional stem cells, to asymmetrical

division [4, 7]. In particular, the switch to asymmetrical

division in the cerebral cortex leads to the generation of

neurons in the cortical plate (CP) and of intermediate

progenitors that leave the ventricular zone and form a

second germinal region, called the sub-ventricular zone

(SVZ) [4, 7–11].

Despite the fact that most precursors are exhausted by

the end of the development to generate neurons and glia, a

minor proportion of NPCs have also been found within

two well-described neurogenic niches: the subventricular

zone (SVZ) of the lateral ventricles and the subgranular

zone (SGZ) in the dentate gyrus [12–14]. In addition,

recent studies suggest that NSCs may also reside in non-

canonical neurogenic niche of the adult brain, including

the cerebellum [15], substantia nigra [16, 17], and retina

[18, 19].

Within the nervous system, cellular and environmental

determinants tightly control the expansion and the differ-

entiation of NSCs [7]. In this respect, self-renewal

programs rely on complex regulatory networks that balance

the function of proto-oncogenes (promoting self-renewal),

gate-keeping tumors suppressor (limiting self-renewal),

and care-taking tumors suppressors (maintaining genomic

integrity) [11, 20, 21]. As a result, proliferation, self-

renewal, and genomic stability are tightly controlled in
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both embryonic and adult stem cells [22, 23]. A defect in

self-renewal, division, or differentiation of stem cells can

lead to developmental defects, premature aging phenotype,

failure to repair injured tissue, as well neoplastic trans-

formation [24, 25].

The focus of this review is on the role of tumor sup-

pressive pathways in regulation of neurogenesis in the

mammalian brain. Alterations of tumor suppressive control

in NSCs can lead to transformation and tumor development

in both the embryonic and adult nervous system. It is

therefore fundamental to dissect mechanisms underlying

tumor suppressive function in the CNS as they may provide

insights into its pathophysiology.

We will critically review the existing literature on two

main tumor suppressors, retinoblastoma (Rb) and p53, and

the stem cell factor Bmi1 (Fig. 1). As shown in Fig. 1, the

main point of intersection between the two tumor

suppressive pathways is represented by cyclin/cyclin-

dependent kinases (CDKs) and their inhibitors (CKIs). p53

positively regulates CKIs, whereas CDK-complexes nega-

tively regulate Rb. The Polycomb protein Bmi1 controls

stem cell self-renewal by suppressing expression of CKIs,

thus leading to Rb inactivation. Integration of these regu-

latory modules regulates the balance between expansion

and differentiation in the developing CNS and adult neu-

rogenic niches.

G1/S checkpoint: cyclins, cyclin-dependent kinases,

and their inhibitors

In mammalian cells, proper progression through the cell

cycle is monitored by checkpoints that sense possible

defects during DNA duplication and chromosome segre-

gation. Physiological activation of these checkpoints

induces cell cycle arrest through modulation of cyclins

and cyclin-dependent kinases (CDKs; Fig. 1) [34, 35].

The control of G1/S transition is primarily achieved

through the coordinated action of two main cyclin/CDK

complexes containing D-type and E-type cyclins. Cyclin

D bind CDK4/6 early during the G1/S transition, whereas

Cyclin E/Cdk2 complexes are active slightly later.

Cyclin/cdk complexes are negatively regulated by CKIs,

the main executers of the G1/S checkpoint. These are

divided into two families: the Ink4/Arf type (p16Ink4a,

p15Ink4b, p18Ink4c and p19Ink4d) and the Cip/Kip type

(p21Waf1/Cip1, p27Kip1 and p57Kip2) [36]. For more in-depth

analysis of the role of CDK and CKIs in regulation of the

cell cycle, the reader can refer to a number of comprehen-

sive review articles by leading laboratories in the field

[8, 37, 38].

With respect to the role of cyclin/CDK complexes and

CKIs in cell-fate regulation during neurogenesis, extensive

literature suggests that the latter promote differentiation,

Fig. 1 Tumor suppressive

factors and cell cycle control in

the developing CNS and adult

neurogenic niches. In neural/

progenitor stem cells, a complex

interplay of different tumor

suppressors, downstream

effectors, and regulatory

networks controls self-renewal

and differentiation
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whereas the former play an inhibitory role [11, 39, 40]. For

example, the anti-proliferative gene p27 has long been

proposed to act as part of clock control for oligodendrocyte

differentiation by limiting the number of divisions before

the onset of differentiation [41]. Other studies have shown

that CDK2 is required for S-phase entry and cell progres-

sion in NPCs isolated from both embryonic and early post-

natal brain [42, 43]. In this contest, CDK2 has also been

shown to be dispensable for NPC proliferation, differenti-

ation, and survival of adult-born DG granule neurons in

vivo [44]. More recently, work by Calegari and coworkers

showed that CDK4/cyclin D1 overexpression inhibited

neurogenesis, but at the same time it promoted the gener-

ation and expansion of basal progenitors, resulting in

thicker SVZ and overall larger cortical surface area [9]. A

subsequent study from the same group reported an impor-

tant role of CDK4/Cyclin D1 also in the control of adult

neurogenesis in the hippocampus [45]. Finally, Beukelaers

and colleagues implicated CDK6 as a major regulator of

adult neurogenesis [46]. Specifically, CDK6 deficiency

prevents the expansion of neuronally committed precursors

by lengthening duration of the G1 phase, thus reducing

concomitantly the number of newborn neurons [46]. Further

studies are needed to fully dissect the role and interplay of

G1/S checkpoint members in regulation of neurogenesis.

p53 and its family

p53 (also known as tumor protein 53, tp53) was first

identified over 30 years ago as a cellular protein associated

with the SV40 T-antigen oncoprotein [47–49]. Although it

was originally described as an oncogene, p53 is a tumor

suppressor inactivated in more than 50 % of human can-

cers [50–55]. As a ‘‘guardian of the genome’’, p53 induces

cell cycle arrest and cell death after DNA damage, thus

contributing to the maintenance of genomic stability [56].

p53 is found in both the nucleus and the cytoplasm [57].

Nuclear p53 acts as a sequence-specific transcription fac-

tor, which regulates the expression of a vast number of

genes involved in many different cellular processes from

cell cycle checkpoint control to programmed cell death

and metabolism (for extensive review of the literature see

[57–61]. In particular, the CKI p21 is a major p53 target

and plays an important role in p53-mediated regulation of

G1/S transition (Fig. 1). In the cytoplasm, p53 promotes the

activation of programmed cell death by directly regulating

proapoptotic players such as Puma [57]. In addition, cyto-

plasmic p53 can repress autophagy, an intracellular

degradation pathway involved in regulation of metabolism

and survival [62]. In contrast, nuclear p53 has been proposed

to induce autophagy via upregulation of the autophagy-

associated factor DRAM1 [63]. Thus, p53-dependent

regulation of autophagy varies dependent on its subcellular

distribution.

In the CNS, p53 plays a key role in regulating pro-

grammed cell death in postmitotic neurons [64]. Evidence

is emerging that p53 controls neurogenesis in the devel-

oping as well as in adult brain [65, 66]. In this respect, the

tumor suppressor p53 has been shown to be abundant, both

at RNA and protein levels, in regions of active proliferation

during development and in adult neurogenic niches such as

the SVZ and the SGZ [66–68] (Box 1). While p53 is found

in post-mitotic neurons of the cerebral cortex and hippo-

campus of the developing brain, its expression is enriched

in cycling progenitor/stem cells (NPCs) [65, 67, 68]. These

data suggested that p53 might play an important role in the

control of NPC proliferation and potentially regulation of

CNS development. Indeed, p53-deficent mice exhibit high-

frequency developmental abnormalities of the nervous

system, in particular exencephaly and/or mild to moderate

hyperplasia in approximately a quarter of p53-KO embryos

[69, 70]. The partial penetrance of these phenotypes may

be related to the existence of compensatory mechanisms

probably mediated by the other members of the p53 family,

p63 and p73 [71–75]. In the postnatal SVZ, p53 loss leads

to over-production of NPCs, along with an expansion of

neuronal and glial lineages [65, 76]. In accordance with the

in vivo phenotypes, NPCs derived from the p53-null mice

display enhanced self-renewal capacity, altered differenti-

ation and reduction in apoptosis [65, 76].

Analysis of the transcriptome of p53 KO NPCs provided

cues on the underlying mechanisms. In this respect, the

known p53 targets p21Cip1/Waf1 and p27Kip1 are down-

regulated in p53-null neurospheres [65]. These CKIs are

regulated by p53 in a direct [77] as well as indirect manner

[27, 78]. Their loss was shown to significantly affect NPC

proliferation/differentiation [25]. In the absence of either

p21Cip1/Waf1 or p27Kip1, proliferating NPCs fail to exit

the cell cycle, thus eventually leading to their exhaustion

[79, 80]. Subsequent studies have suggested that p53-

dependent induction of p21Cip1/Waf1 results in lengthening

of the cell cycle and decreased expansion of NPCs within

the developing [81] as well as the adult brain [82, 83]. With

respect to p27Kip1, Doetsch and coworkers [79] showed that

its loss does not affect the number of NPCs in the adult

SVZ. Instead, the pool of transient amplifying cells

increased, accompanied by a reduction in neuroblast num-

ber [79]. Thus, in the adult brain, p27Kip1 appears essential

for the transition from transit-amplifying cells to neuro-

blasts. Other studies have confirmed a role for p27Kip1 in

regulation of neurogenesis in the RMS, olfactory bulb (OB),

and cerebellum of the postnatal mouse [84, 85]. In the

developing cerebral cortex, p27Kip1 is expressed strongly by

the post-mitotic neurons of the CP, and in mature granule

cells (GCs) of the cerebellum but only weakly in
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proliferating neuroblasts of the SVZ [86] and in granule cell

precursors (GCPs) of the cerebellum [85]. The different

phenotypes observed in p27Kip1 and p21Cip1/Waf1 KO animals

suggest that they may function at different stages of neu-

rogenesis. Alternatively, they may control cell fate through

different mechanisms. In this respect, it is important to note

that p27 regulates neuronal migration in the developing

cortex in a cyclin-independent manner [87, 88]. Finally, a

recent study by Gil-Perotin and coworkers [89] demon-

strated a non-redundant role of p27Kip1 and p53 in regulation

of proliferation of SVZ NPCs and even an antagonistic

effect on the generation of adult neuroblasts. Overall, these

data suggest that the role of p27Kip1 in regulation of neu-

rogenesis may be more complex than previously thought.

Evidence in the literature suggests that p53 cooperates

with the phosphatase and tension homolog (PTEN) in

regulation of NPC expansion. In particular, proliferation of

NPCs lacking p53 is further enhanced by concomitant

PTEN inactivation [90]. Phosphatase and tension homolog

is a major tumor suppressor antagonizing the oncogenic

function of class I phosphoinositide 3-kinase (PI3K). Loss

of PTEN results in increased PI3K signaling and aug-

mented proliferation of NPCs [91]. Interestingly, although

p53-deficient NPCs are still able to respond to differenti-

ation cues, this property is completely abrogated when both

p53 and PTEN are deleted in GFAP? astrocytic progeni-

tors, thus leading to neoplastic transformation and tumor

development [92, 93]. Mechanistically, increased c-Myc

expression and activity in double-KO NPCs contributes to

the tumorigenic phenotype [92, 93]. Inactivation of the

neurofibromatosis gene 1 (NF1) also cooperates with p53

loss in promoting overproliferation, inhibition of differen-

tiation, and ultimately glioma development (Fig. 2) [94].

Notably, a recent study by Zhu and colleagues [95]

revealed that loss of p53 transcriptional function via dele-

tion of part of its DNA binding domain induces pleiotropic

accumulation of cooperative oncogenic alterations that in

turn drive gliomagenesis (Fig. 2). It remains to be

determined why a loss of p53-dependent transcription is a

stronger tumorigenic signal than its complete genetic loss.

One potential explanation would be that cytosolic, tran-

scription-independent function of p53 could contribute to

cancer development. Alternatively, the above-mentioned

p53 mutant could bear gain-of-function activity and regulate

transcription via DNA binding-independent mechanisms.

It is worth noting that accumulation of mutant p53

within the SVZ gives rise to uncontrolled proliferation of

Olig2? transient-amplifying progenitor-like cells, thus

suggesting that this subpopulation, rather than more truly

stem cells, may drive brain cancer development (Fig. 2)

[95]. A recent study using a mouse genetic mosaic system

showed that indeed Olig2? Nf1/p53 DKO progenitors act

as cell of origin for the proneural subtype of glioma

(Fig. 2) [96]. It is therefore possible that acquisition of an

oligodendrocytic precursors fate is required for develop-

ment of this glioma subtype. Overall, these data implicate

the tumor suppressor p53 in the control of NPC expansion,

differentiation, and transformation. One of the remaining

outstanding questions is whether p53 could control neu-

rogenesis also via mechanisms not related to its role in cell

cycle regulation. In particular, it would be important to

study the impact of p53 metabolic function on neural stem

cell fate and transformation. This could extend beyond

regulation of survival. In this respect, it is conceivable that

p53-mediated regulation of metabolism and cellular redox

could contribute to the control of self-renewal, which has

been shown to be sensitive to changes in ROS levels.

However, p53 is not the whole story. In the late 1990s,

two novel p53 family members were identified, termed

respectively p63 [97, 98] and p73 [99]. The full-length

isoforms of these proteins, called TAp63 and TAp73,

respectively, function as pro-apoptotic proteins [98, 100–

104], whereas naturally occurring N-terminal truncated

variants of p63 (DNp63) and p73 (DNp73) act as pro-

survival proteins, at least partially by antagonizing the

full-length family members [105–109]. Could the TA

Box 1 Neurogenic niche

Stem cell niche References

It is defined as the microenvironment in which stem cells are found. There are two neurogenic niches in the adult brain, where

under physiological conditions NPCs give rise to new neurons and macroglia: (1) the subventricular zone (SVZ), a germinal

area situated within the walls of the lateral ventricles where NPCs generate cells that migrate into the olfactory bulb (OB); (2)

the subgranular zone (SGZ) of the dentate gyrus (DG), where newly generated granule cells become integrated into the local

network. These two areas have similar structural organization and tight association with the local vasculature

[29] and [30–

32]

Adult progenitors

A population of multipotent neural cells mainly present in the two specialized niches of the adult mammalian brain (SVZ and

SGZ). They maintain neurogenesis throughout adult life. SVZ progenitors derive directly from radial glia (RG) and are called

type-B NSCs (astrocyte-like GFAP-positive NSCs). Type-B NSCs are in intimate contact with all the other SVZ cell types,

including the rapidly dividing transit-amplifying type-C cells and the lineage-committed migratory neuronal type-A cells. The

SGZ contains type-B NSCs (astrocyte-like GFAP-positive NSCs) and GFAP-negative type-D cells. Thus, in both germinal

regions of the mammalian postnatal brain, astrocyte-like cells represent the main pool of multipotent progenitors

[29, 33]
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isoforms bear tumor-suppressive properties like p53?

Research in this area has been in part disappointing, as only

a small percentage of human cancers display mutations in

p63 and p73 [110]. However, Tyler Jack’s laboratory

proposed that p63 and p73, rather than being redundant,

contribute to p53 activation and tumor suppressive function

[111]. A subsequent study showed that dual inactivation of

p63 and p73 results in increased tumor susceptibility,

which is further enhanced upon inactivation of p53 [112].

Although p53 family members appear to act synergistically

in controlling tumor suppression, their inactivation leads to

distinct developmental phenotypes [106, 113, 114]. In this

respect, mice lacking all p73 isoforms display severe

defects in CNS development [114], including congenital

hydrocephalus and hippocampal dysgenesis, but fail to

show exencephalic outgrowth. Loss of p73 results in

decreased NPC self-renewal during both embryonic and

adult neurogenesis, thus suggesting that p73 is a novel

regulator of NPC function [102, 115–117]. One of these

studies [102] also demonstrates a correlation between the

reduced proliferation capacity of p73-/- NPCs and

expression levels of the transcription factor Sox2, an

essential player in the maintenance of NSC self-renewal

property. It is currently unclear what is the effect of p73

loss on p53 activation in NPCs. Finally, isoform-specific

inactivation of either TA- or DN-p73 fails to fully reca-

pitulate the CNS phenotypes observed in p73-/-, thus

suggesting a degree of redundancy between the two iso-

forms [118].

The third member of the family, p63, is a known regu-

lator of self-renewal during development/homeostasis of

epithelial tissues. With respect to its role in neurogenesis,

p63 shorter isoform, DN-p63 has been implicated in

regeneration of the olfactory bulb (OB) epithelium [119]. In

particular, it regulates quiescence in horizontal basal (stem)

cells (HBC), thus inhibiting their differentiation to fully

mature olfactory neurons and/or other cell types [120].

These observations suggest that DN-p63 acts as a molecular

switch controlling self-renewal and differentiation of OB

stem cells. DN-p63 may also regulate survival in embryonic

cortical NPCs by antagonizing p53 pro-apoptotic function

[121]. Thus, tuning the balance between DN-p63 and p53

may dictate the survival of embryonic NPCs. However, a

separate study failed to report abnormal development of

either brain or spinal cord in p63-/- mouse embryos [117].

Further work is needed to address these discrepancies

between the abovementioned studies and fully dissect the

role and interplay of p53 family members in regulation of

neurogenesis.

Rb and the pocket protein family

The retinoblastoma gene (Rb or Rb1) was the first tumor

suppressor to be identified on the basis of its involvement in

tumorigenesis [122–125]. In this respect, germline muta-

tions in the Rb gene (chromosomal location 13q14)

predispose to the ocular tumor retinoblastoma (Fig. 2), a

rare childhood cancer of the retina that initiates during

development [126–128]. Subsequent studies led to the

demonstration that affected individuals develop retinal

tumors as a consequence of the loss of the second Rb allele

[125]. Additional evidence for a tumor suppressive role of

the Rb gene came from the discovery of the absence of

functional Rb in virtually all retinoblastoma tumors exam-

ined and its frequent inactivation in other human cancers,

such as brain tumors, small-cell lung carcinoma, and oste-

osarcoma [129–131].

Studies examining the transformation mechanisms of

DNA tumor viruses started to shed new light on the role of

Rb as a major regulator of cell proliferation. Rb is a target of

several viral oncoproteins, such as adenovirus E1A

[129, 132], simian virus 40 (SV40) large T antigen (Tag)

[133, 134], and the E7 proteins of human papillomavirus

Fig. 2 Neurogenesis and

transformation. Nervous system

neoplasms are believed to

originate from different stages

of the neurogenesis process. The

figure summarizes the current

knowledge. Please refer to the

text for more details information

and references
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(HPV-16) [135]. Importantly, mutation of the Rb binding

region of any of these viral oncoproteins abrogated viral

transformation [136]. Subsequent studies revealed a key role

played by Rb in regulation of the G1/S transition (Fig. 1). In

particular, Rb encodes a 110-kDa nuclear phosphoprotein

(Rb) that is able to bind and inhibit members of the E2F

transcription factor family, thus repressing transcription of

genes important for S-phase entry and progression [128,

137, 138]. Retinoblastoma phosphorylation by CDKs

relieves repression of E2F transcriptional activity, thus

promoting cell cycle progression [139, 140]. Retinoblastoma

can actively repress transcription [141] of E2F target genes

through recruitment of histone deacetylase (HDAC), thus

directly affecting their epigenetic status [141].

More recently, in addition to its role in regulating the

G1-to-S-phase transition, Rb has been shown to mediate

both accurateness and timing of DNA replication and to

control proper segregation of chromosomes in mitosis

[142–144]. Using gene targeting, Coschi and coworkers

demonstrated that Rb facilitates chromosome condensa-

tion, independently to its role in DNA replication [142].

Further studies reported that Rb is also required for regu-

lation of centromeres. In this respect, Rb mediates the

proper condensation and orientation of centromeres on

duplicated chromosomes and thus their attachment to the

spindle [143]. When Rb function is compromised, the level

of chromosome mis-segregation increases dramatically and

becomes comparable to tumor cells [143]. Finally, mouse

embryo fibroblasts (MEFs) lacking functional Rb and its

related proteins p107 and p130 (see also below) have been

shown to be more prone to chromosome breakage [144].

Together, these data suggest that the chromosome insta-

bility (CIN) resulting from the inability of Rb to maintain

sister chromatid cohesion represents another important

function of Rb as tumor suppressor [143, 145].

Insights into the importance of Rb as a regulator of cell

cycle and differentiation in vivo and in particular in the

central nervous system came from the analysis of Rb

knockout animals. Rb is necessary for embryo development,

as Rb-/- embryos die by embryonic day 15 (E15), exhib-

iting dramatic neural tube defects and skeletal muscle

defects [146–149]. In particular, these abnormalities were

accompanied by a partial failure of differentiation, increased

apoptosis, as well as ectopic cell cycle [146–148, 150].

Further studies showed that part of the described neural

phenotypes, including increased apoptosis, were due to a

non-cell autonomous effect of Rb inactivation [151]. Con-

ditional inactivation of Rb in the CNS confirmed the

increased ectopic mitosis in the developing cortex. How-

ever, Rb-/- NPCs were able to survive and differentiate,

thus leading to increased brain cellularity [152]. Conditional

inactivation of Rb in the cerebellum and the retina revealed

its key role in regulation of development also in these CNS

structures [153, 154]. Finally, Rb was shown to regulate

migration of newborn interneurons in the embryonic cortex

in a cell-autonomous fashion, thus suggesting a role of Rb

beyond cell cycle control [155]. Interestingly, this pheno-

type is observed also in p27-/- embryos, although it is still

unclear whether [87] p27Kip1 function in this context

appears independent of cell cycle regulation [87]. It is

presently unclear whether p27Kip1 and Rb regulate neuronal

migration through similar mechanisms.

The Rb protein is a member of a family of three closely

related mammalian proteins that includes p107 (also

known as retinoblastoma-like 1) and p130 (retinoblastoma-

like 2). Together they are known as ‘‘pocket proteins’’ due

to shared sequence homology in the pocket A/B domain,

which mediates interactions with transcription factors and

oncoproteins [138, 156–160]. Although the three ‘‘pocket

protein’’ family members have been shown to bear distinct

binding properties for the various E2Fs [161], overex-

pression experiments have indicated functional similarities

in the regulation of the cell cycle as well as development

[127, 162]. For example when overexpressed, all three

family members cause G1 phase arrest via repression of

E2F-mediated gene transcription. Moreover, all Rb pro-

teins are phosphorylated by CDKs [127, 163]. p130-/- and

p107-/- mice survive to adulthood without overt pheno-

types, unlike those observed in Rb-deficient animals

[164, 165]. The lack of severe phenotype in the p107-/-

and p130-/- mice may be due to the compensatory activity

of Rb. Vice versa, Rb loss was accompanied by compen-

satory upregulation of p107 [166, 167]. Additional

evidence for redundancy within the pocket family came

from the observation that inactivation of Rb only is not

sufficient to cause retinoblastoma in mice. In contrast, loss

of all three members is sufficient to transform retinal cells

and lead to metastatic retinoblastoma [168]. As human

retinoblastoma is predominantly associated with loss of Rb

only, it is possible that mouse retinoblastoma pathogenesis

differs from human retinoblastoma (Fig. 2). In this respect,

human retinoblastoma is believed to originate from cone

cell precursors (Fig. 2), whereas postmitotic neurons act as

cell of origin of retinoblastoma in pocket family knockout

mice [128, 169]. Interestingly, in human retinoblastoma,

Rb deficiency is associated with Mdm2 amplification,

which in turn impairs p53 activation downstream Rb loss,

thus providing an additional oncogenic signal for full

transformation [169]. Notably, Rb loss cooperates with p53

loss in promoting glioma as well as medulloblastoma

development in NPCs [170, 171], two tumors displaying

genetic and/or functional inactivation of both tumor sup-

pressive pathways in humans (Fig. 2). Finally, glioma can

be induced by inactivation of pocket family members via

overexpression of SV40 [172]. Overall, these studies sug-

gest that redundancy among pocket family members act as
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tumor suppressive barrier, unless the p53 pathway is

inactivated. Mechanisms underlying this phenomenon

remain unexplored.

Despite the observed redundancy, pocket family mem-

bers may have specialized function. In this respect,

expression of p107, unlikely Rb and p130, appears

restricted to cycling NPCs in the SVZ, and is downregu-

lated as NPCs differentiate into neurons [173]. p107 may

regulate the decision of NPCs to exit the cell cycle and

commit to neuronal fate [174]. Accordingly, p107-deficent

cortices display increased proliferation associated with

augmented Hes1 expression and impaired neurogenesis

[173, 174]. p107 may also be acting through the FGF

growth factor signaling pathway. Like Hes1, the expression

of Fgf2 is increased in neural progenitor of p107-deficent

mice to promote proliferation of NPCs [175].

Regulators of the Rb and p53 in the CNS

PML

Tumor suppressors appear to work in a complex network of

functional interactions, which finely tune their activities in

regulation of cell fate and transformation. Among them, the

promyelocytic leukemia protein (PML) and the Polycomb

group protein Bmi1 have been shown to play important

roles in regulation of the p53 and Rb pathways.

The PML gene was originally identified at the t(15;17)

chromosomal translocation breakpoint of acute promyelo-

cytic leukemia (APL), a subtype of acute myeloid leukemia

[176–181]. This translocation generates the oncogenic

fusion gene PML/retinoic acid receptor-a (PML/RARa),

which drives APL in humans and mice [177, 178, 182, 183].

Promyelocytic leukemia protein/retinoic acid receptor-a
exerts its oncogenic effects in part by blocking normal PML

function [184, 185]. Promyelocytic leukemia protein is

localized within discrete nuclear structures referred to as

PML-nuclear bodies (PML-NBs), of which it is the essential

component [184, 186–188].

To date, PML has been shown to influence and/or reg-

ulate several cellular processes, including transcription,

cell cycle and cellular senescence. In this respect, we will

largely refer to the many comprehensive review articles by

our laboratory and others. Several studies have implicated

PML in the regulation of Rb and p53 through multiple

mechanisms (Fig. 1) [184, 189–194].

Our more recent work has described a functional inter-

action between Rb and PML in NPCs during neocortex

development. We proposed that PML-mediated regulation

of Rb occurs at least in part via its direct targeting, along

with the protein phosphatase 1 alpha (PP1a), to the

PML-NBs, thus favoring Rb dephosphorylation [195]. As a

result, loss of PML leads to Rb hyperphosphorylation and

inactivation of G1–S checkpoint. In vivo, PML loss pro-

motes increased cycling in cortical NPCs, thus leading to

the expansion of the VZ. This effect appears restricted to a

specific NPC subtype, radial glial cells (RGCs). Expansion

of RGCs is accompanied by a reduced number of more

committed intermediate progenitor cells (IPCs), thus sug-

gesting that PML via Rb regulates transition from RGCs to

IPCs. This is particularly interesting as little is known abut

the molecular mechanisms regulating the generation of

IPCs from RGCs. Promyelocytic leukemia protein-defi-

cient embryos show smaller brains with a prominent

reduction in neocortical wall thickness, although the

overall layered structure of the cortex remains unaffected.

Thus, PML plays an important role in regulation of cell fate

and corticogenesis.

It remains to be investigated whether PML works solely

through Rb or if other Rb family members are involved. In

this respect, the phenotype of PML-deficient brains

resembles the one observed in p107-/- mice [173, 174],

thus suggesting that PML could affect the function of other

pocket proteins. In addition, it is currently unclear whether

PML regulates p53 in NPCs. Finally, our recent work has

shown that the PML-interacting protein, DAXX, acts as

chaperone for the histone variant H3.3 in neurons, thus

regulating chromatin remodeling and transcription upon

neuronal activation [196]. As both H3.3 and DAXX are

found in PML-NBs in cycling cells [197], these new find-

ings raise the exciting possibility that PML may control cell

fate in neural stem cells via regulation of DAXX-mediated

H3.3 loading [196]. Interestingly, PML also colocalizes

with ATRX, which is part of the DAXX chaperone complex

[198]. ATRX has been shown to regulate transition through

mitosis in the developing brain. Mutations of ATRX cause

the ATR-X syndrome, which is characterized by brain

retardation and thalassemia. Furthermore, a number of

disease-associated mutants of ATRX are impaired in their

ability to localize to PML-NBs [199].

A number of recent studies have also highlighted a more

general role of PML in the control of stem cell function. For

instance, recent work from Pandolfi’s group has implicated

PML in the regulation of stem cell quiescence in the

hematopoietic system [200]. As a result, PML loss affects

self-renewal of hematopoietic stem cells (HSCs) potentially

through its action on the mTOR pathway. Interestingly, the

tumor suppressor p53 and its target gene p21 have recently

been shown to control the cell fate in HSCs [201]. Another

recent study has shown that PML loss skews the balance

between different progenitor subtypes in the mammary

gland and affects its development, although the underlying

mechanisms have not been investigated [202].

The role of PML in the regulation of NPC expansion and

differentiation could have obvious implications for cancer
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research, as alterations of these processes can lead to the

development of brain tumors [203]. In this respect, PML

expression is substantially decreased in human cancers of

multiple histologic origins, including a small subset of tumor

medulloblastoma [204]. However, a comprehensive study of

PML expression in brain cancer is still missing. PML inac-

tivation is not sufficient to cause cancer [11, 95, 193], but it

can promote tumor progression in the context of other

oncogenic lesions, such as loss of PTEN. It is therefore

conceivable that also in brain cancer PML downregulation

could act in concert with loss of other tumor suppressor

and/or oncogenic activation. One could hypothesize that

decreased PML expression could affect tumors where the

p53 or Rb pathways are not genetically inactivated. In this

respect, a number of medulloblastomas and gliomas

do not present genetic loss of either tumor suppressive

pathway [205]. In these tumors, PML could contribute to

p53 and/or Rb functional inactivation potentially in con-

junction with other regulators, such as Mdm2 or G1/S

cyclins.

Finally, modulation of PML expression could be used to

modulate expansion and differentiation of neural stem cells

for regenerative medicine-related applications. In this

respect, regulation of PML stability can be achieved also

via pharmacological means using arsenic trioxide, which

targets PML for proteasomal degradation either directly or

indirectly via increased PML oxidation [206, 207]. How-

ever, it is important to note that arsenic trioxide has rather

pleiotropic effects in the cell, thus suggesting that PML

could be only one of its targets.

The Polycomb group protein Bmi1

The embryonic and postnatal development of the CNS

requires a fine balance between cell proliferation and dif-

ferentiation. This is in part achieved by maintenance of an

active or repressed state at discrete loci through epigenetic

regulation. The family of Polycomb group (PcG) proteins

regulate gene expression by forming large complexes at

specific chromosomal sites called Polycomb response ele-

ments (PREs) and inducing chromatin remodeling. There

are two main PcG complexes, Polycomb regulatory com-

plex 1 and 2 (PRC1 and PRC2). The B cell-specific

Moloney murine leukemia virus integration 1 (Bmi1)

Polycomb ring finger oncogene is the first functional PcG

member identified [208]. The B cell-specific Moloney

murine leukemia virus integration 1 is part of PRC1, which

mediates histone ubiquitylation. The activity of PRC1 is

regulated by interaction with H3K27me3, which is cata-

lyzed by PRC2. However, recent findings suggest that the

PRC1 can also work in an H3K27me3-independent manner

[209]. In mammals, the main targets of PcG proteins during

embryogenesis are homeobox (Hox) genes, which regulate

key developmental processes including self-renewal and

maintenance of developmental potential of neural stem/

progenitor cells [210]. Polycomb-group proteins generally

act as repressors, but based on a recent study, they can also

promote transcriptional activation of genes involved in

metabolism through association with a specific RNA

polymerase II variant [211].

Bmi1 is ubiquitously expressed in mammalian tissues,

but higher levels are detected in thymus, heart, testis,

embryonic stem cells (ES), and embryonic and postnatal

neural stem cells [212, 213]. The first evidence of a possible

role of Bmi1 in the CNS was revealed by the study of Bmi1

knockout mice, which showed, in addition to hematopoietic

and skeletal abnormalities, neurological symptoms mani-

fested by an ataxic gait and sporadic seizures within a

month after birth [213]. In this respect, histopathological

analysis of the Bmi1-/- brain revealed an overall reduced

size, in particular a reduced cellularity of the granular and

molecular layer of the cerebellum [73]. Despite these

changes in brain size, the overall brain architecture was not

affected [73]. To gain insight into the molecular mechanism

underlying this phenotype, Jacobs and colleagues [73] used

primary mouse embryonic fibroblasts (MEFs) derived from

Bmi1-/- embryos and found that expression of the tumor

suppressors p16Ink4a and p19Ink4d (p14Arf in human), which

are encoded by the ink4a locus [214], was markedly raised

in Bmi1-deficient cells (Fig. 1). As discussed above,

p16Arf4a directly inhibits the cyclin D1 and cyclin-depen-

dent kinase 4/6 (Cdk4/6) complex, thus leading to Rb

activation and inhibition of G1/S progression [215]. In

contrast, p19Ink4d expression leads to p53-mediated cell

cycle arrest and apoptosis [216, 217]. p19Ink4d attenuates

mouse double minute 2 (Mdm2)-mediated degradation of

p53, which then activates the transcription of several

growth suppressive and apoptotic genes such as Bax, Puma,

and another CDKi, p21Waf1/Cip1 [216, 218]. Conversely,

increased expression of Bmi1 leads to fibroblast immor-

talization and down-regulation of p16Ink4a and p19Ink4d

[219]. ink4a loss dramatically reduced the neurological

defects observed in Bmi1-deficient mice, indicating that

ink4a was a critical in vivo target of Bmi1 [73]. The B cell-

specific Moloney murine leukemia virus integration 1 also

represses the expression of p21Waf1/Cip1 through direct

binding to its promoter [220, 221] or via cooperation with

Forkhead box protein G1 (FoxG1; [222]—see also below).

In agreement with its role downstream Shh [223, 224],

Bmi1 is essential for cerebellar development and contrib-

utes to medulloblastoma genesis [223, 224] (see below). In

conclusion, these in vitro and in vivo studies identify

the CKIs p16Ink4a, p19Ink4d, and p21Waf1/Cip1 as critical
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downstream targets of the PcG protein Bmi1 for regulation

of development and tumorigenesis.

Stem cells persist throughout life in numerous tissues

including the central nervous system (CNS) [6, 225–227]

and peripheral nervous system (PNS) [228]. Interestingly,

reduction of self-renewal in Bmi1-deficient neural stem

cells leads to their postnatal depletion via up-regulation of

the p16Ink4a and p19Ink4d CKIs [212]. Arf deficiency, but

not Ink4a deficiency, partially rescued cerebellum devel-

opment, thus demonstrating regional differences in the

sensitivity to loss of p16Ink4a or p19Ink4d [229].

Loss of Bmi1 in hematopoietic stem cells (HSCs) and

thymocytes results in a marked increase of the intracellular

levels of reactive oxygen species (ROS) and subsequent

engagement of the DNA damage response pathway [230].

The increased levels of ROS occur through de-repression of

targets genes (other than the Ink4a/Arf locus or p21)

involved in ROS generation and via impaired mitochondrial

function. Similarly, it has been shown that in Bmi1-

deficient neurons increased p19Ink4d/p53 levels and co-

repressors at promoter regions of antioxidant genes results

in a repressed chromatin state and antioxidant gene down-

regulation, which in turn leads to increased ROS levels and

cell death [231]. Interestingly, NPCs and HSCs seem to

differ with respect of dependence on ROS levels. In this

respect, HSCs appear to require low ROS to self-renew

[232]. In contrast, NPCs seem to thrive in higher ROS levels

[233]. It would be important to determine whether the

Bmi1-mediated regulation of genes involved in redox

control is as pronounced in NPCs as in HSCs. Interestingly,

a context-specific role of Bmi1 has been reported in the

nervous system. In particular, the dramatic increase in NPC

self-renewal seen in CNS NPCs upon Bmi1 overexpression

is not observed in spinal cord progenitors, which do not

express FoxG1, thus suggesting that the Bmi1/FoxG1/p21

axis is critical for Bmi1 function [222]. In addition, one

could hypothesize that Bmi1-mediated suppression of

Ink4a/Arf locus is more important for postnatal NPCs as

opposed to inhibition of p21Waf1/Cip1 and/or cooperation

with FoxG1 during development.

As mentioned above, Bmi1 can contribute to CNS can-

cer development. In addition to medulloblastoma [224],

Bmi1 is highly expressed in human glioma [234, 235],

where its copy numbers are increased [236]. In particular,

Bmi1 accumulates in glioma stem cells and promotes their

self-renewal [237]. While no studies have reported that

Bmi1 overexpression is sufficient to induce tumor initia-

tion in the CNS, Bmi1 genetic loss impairs Shh-driven

medulloblastoma initiation [238]. Furthermore, Bmi1

downregulation in primary medulloblastoma [239] and

glioma cells [240, 241] limits their tumorigenic capacity in

vivo. Interestingly, Bmi1 appears to regulate glioma stem

cell-induced tumorigenesis also in an Ink4a/Arf-indepen-

dent manner, thus suggesting that other Bmi1 targets are

important for glioma progression [240]. In this respect, the

role of Bmi1 in regulation of ROS levels in glioma has not

been investigated. Overall, these studies suggest that Bmi1

may contribute to tumor development, but it remains to be

established why Bmi1 overexpression is not sufficient to

promote transformation. One possibility is that higher

levels of Bmi1 may activate tumor suppressive check-

points, which can in turn lead to differentiation and/or

death instead of self-renewal. Furthermore, there is an

urgent need to produce genome-wide studies analyzing

Bmi1 target genes in normal and neoplastic stem cells and

their association with selected epigenetic traits. This fun-

damental work will shed light on the role of Bmi1 in

normal development/tissue homeostasis and cancer patho-

genesis in the CNS.

Conclusions

Several lines of evidence indicate that the p53 and Rb

tumor suppressive pathways are key regulators of neural

stem cell function. Importantly, their regulatory networks

(Bmi1, PML, and others) have several points of intersec-

tion, thus further strengthening the concept that a complex

integration of intracellular (and extracellular) cues is what

dictates the final outcome, i.e., expansion, death, or dif-

ferentiation. Among the many outstanding questions, we

believe it will be crucial to determine the role of the p53

and Rb pathways and their regulatory networks at the

different stages of neurogenesis. This could have implica-

tions for our understanding of the transformation process in

the central nervous system. For instance, inactivation of a

growth suppressive checkpoint could have completely

different effects on self-renewal and differentiation in a

stem cell versus a committed progenitor. Another impor-

tant question is to define the effect of defective tumor

suppressive control on genomic stability and its conse-

quences on cell fate decisions, particularly in view of the

differentiation-inducing effect of DNA damage in non-

neural stem cells. Future research aimed at addressing these

questions will have to rely more and more on an integrated

approach to tackle the complexity of cell fate regulation in

neural stem cells as well as other stem cell types.
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Glossary

Neural stem

cells (NSCs)

Neural stem cells are the self-renewing,

multi-potent stem cells of the nervous

system. Neural stem cells have the

potential to give rise to offspring cells

that grow and differentiate in neurons

and glia cells.

Transit amplifying

cells

Transit amplifying cells are mitotic

cells of the neural lineage with a fast

dividing cell cycle that retain the ability

to proliferate and to give rise to

terminally differentiated cells but are

not capable of indefinite self-renewal.

Neural precursor

cells (NPCs)

Neural precursor cells (NPCs) general

term to identify any neural stem or

progenitor cells.

Note Controversy about the exact

definition remains and the concept

is still evolving [1, 26–28].

Self-renewal The process by which a stem cell

divides asymmetrically or

symmetrically over an extended

period of time (for example, during

the life-span of an animal) to

generate one or two daughter stem

cells that have a developmental

potential similar to the mother cell.

Self-renewal is used by neural stem

cells to expand during development,

within niche of the adult brain, and

upon brain injury.

Quiescent cell A cell whose cell cycle has been

temporary arrested, although, strictly

speaking, it might still be cycling but

with a particular long cell cycle.

Note! Adult neural stem cells can be

quiescent.

Post-mitotic cells A cell that is incapable of proliferation,

such as a neuron, in which cell cycle is

irreversibly blocked.
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