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Abstract Links between cancer and stem cells have been

proposed for many years. As the cancer stem cell (CSC)

theory became widely studied, new methods were devel-

oped to culture and expand cancer cells with conserved

determinants of ‘‘stemness’’. These cells show increased

ability to grow in suspension as spheres in serum-free

medium supplemented with growth factors and chemicals.

The physiological relevance of this phenomenon in estab-

lished cancer cell lines remains unclear. Cell lines have

traditionally been used to explore tumor biology and serve

as preclinical models for the screening of potential thera-

peutic agents. Here, we grew cell-forming spheres (CFS)

from 25 established colorectal cancer cell lines. The

molecular and cellular characteristics of CFS were com-

pared to the bulk of tumor cells. CFS could be isolated

from 72 % of the cell lines. Both CFS and their parental

CRC cell lines were highly tumorigenic. Compared to their

parental cells, they showed similar expression of putative

CSC markers. The ability of CRC cells to grow as CFS was

greatly enhanced by prior treatment with 5-fluorouracil. At

the molecular level, CFS and parental CRC cells showed

identical gene mutations and very similar genomic profiles,

although microarray analysis revealed changes in CFS

gene expression that were independent of DNA copy-

number. We identified a CFS gene expression signature

common to CFS from all CRC cell lines, which was pre-

dictive of disease relapse in CRC patients. In conclusion,

CFS models derived from CRC cell lines possess inter-

esting phenotypic features that may have clinical relevance

for drug resistance and disease relapse.
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AP-HP, Hôpital Saint-Antoine, Tumorothèque CancerEst,
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Cancer’’, Hôpital Saint-Antoine, 184, rue du Faubourg

Saint-Antoine, 75571 Paris cedex 12, France

e-mail: ada.collura@inserm.fr

A. Duval

e-mail: alex.duval@inserm.fr

Cell. Mol. Life Sci. (2013) 70:729–742

DOI 10.1007/s00018-012-1160-9 Cellular and Molecular Life Sciences

123

http://dx.doi.org/10.1007/s00018-012-1160-9


Abbreviations

5-FU 5-Fluorouracil

CFS Cell-forming-spheres

CIN Chromosomal instability

CRC Colorectal cancer

CSC Cancer stem cells

DFS Disease-free survival

MMR Mismatch-repair

MSI Microsatellite instability

MSS Microsatellite stability

Introduction

The cancer stem cell (CSC) theory has generated much

interest in both the research and clinical communities,

notably for colorectal cancer (CRC) [1–3]. According to

this hierarchical model, CSCs are defined by their ability to

self-renew indefinitely, while also being able to differen-

tiate and generate both tumorigenic and non-tumorigenic

daughter cells that constitute the bulk of the tumor [4].

CSCs are thought to have a low rate of division and pro-

liferation that helps them resist various chemotherapies and

radiation. Both these forms of treatment preferentially

affect highly proliferative cells, thus potentially making

CSCs a major reason for the failure of anticancer treatment

[5]. In tumors including CRC, the presence and survival of

CSCs has been suggested as a key mechanism underlying

chemoresistance and disease relapse [6, 7]. This original

interpretation of the CSC theory has recently been chal-

lenged, however. Some authors have highlighted the

plasticity of the CSC phenotype and suggested that it could

be induced through dedifferentiation processes influenced

by the tumor cell environment [8].

Cancer cell lines have been widely used to explore

tumor biology and as preclinical models for the screening

of potential therapeutic agents. They are a valuable

resource that can be used repeatedly and have also been

well characterized with respect to mutational and gene

expression profiles [9]. Similar frequencies of gene muta-

tion have been reported in primary tumors and in cancer

cell lines derived from the same primary site. Cancer cell

lines are not contaminated with stromal tissue, which can

sometimes affect the interpretation of data obtained from

primary tumors [10]. Furthermore, cancer cell lines often

faithfully represent the tumor from which they were iso-

lated [11, 12]. It remains to be determined whether cancer

cell lines are relevant biological tools to study the role of

CSCs in tumorigenesis. A number of authors have

hypothesized the existence of cancer stem-like cells in

these cellular models [13, 14]; however, their phenotype is

still poorly characterized. Moreover, it is not known

whether cancer stem-like cells from cell lines have any

clinical relevance [15, 16].

In order to study cells from cancer cell lines that could

display a stem-like phenotype, the first requirement is to

have a system in which they can be propagated. The ability

to grow in suspension as spheres in serum-free medium

supplemented with specific growth factors and chemicals

has been described for the expansion of neuronal stem cells

[17]. Sphere culture has also been proposed as a valuable

method for isolating cancer cells with conserved stemness

determinants that are able to propagate in defined media

[18–21]. In the present study, we have used this method to

grow cell-forming spheres (CFS) from a panel of 25 CRC

cell lines. These cell lines were selected to reflect the

heterogeneity of CRC in terms of showing microsatellite

stability (MSS) or instability (MSI). CRC is a complex

tumor entity that includes distinctive molecular phenotypes

associated with different clinical features, including

response to chemotherapy [22–24]. We investigated the

cellular and molecular phenotypes of CFS derived from

this panel of CRC cell lines, with particular reference to

treatment resistance and CSC features.

Materials and methods

Tissue collection and preparation of xenografts

Human colon tissue fragments were obtained in accordance

with the ethical standards of the institutional committee on

human experimentation from 15 patients undergoing a

colon resection for CRC at the Saint-Antoine hospital in

Paris. A biobank collection of 30 tumors stored at -80 �C

was used to obtain fresh tumor tissue after engraftment in

5-week-old female nude mice (nu/nu). Tumor implantation

procedures were performed as previously described [38].

Twelve tumor xenografts were grown for between 1 and

4 months after engraftment. Cancer tissues were inten-

sively washed four times in PBS solution containing

antibiotics and then incubated overnight in DMEM/F12

(PAA) containing penicillin (500 U/ml), streptomycin

(500 lg/ml), amphotericin B (0.25 lg/ml), and ceftazidime

(50 lg/ml). Enzymatic digestion was performed using

collagenase (1.5 mg/ml; Sigma) and hyaluronidase (20 lg/

ml; Sigma) in PBS for 1 h. These digests were used for

FACS analysis.

Cell culture

Colon cancer cell lines were cultured in DMEM media

supplemented with 10 % FCS (20 % for Caco-2 cell line),

100 U/ml penicillin G, and 100 lg/ml streptomycin. For

the culture of CFS, cell lines were grown in serum-free
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DMEM/F12 media supplemented with 100 U/ml penicillin

G, 100 lg/ml streptomycin, 6 g/l glucose, 1 mg/ml

NaHCO3, 5 mM HEPES, 2 mM L-glutamine, 4 lg/ml

Heparin, 4 mg/ml BSA, 60 mmol/l putrescine, 20 nmol/l

progesterone, 30 nmol/l sodium selenite, 25 lg/ml, insulin,

100 lg/ml apo-transferrin, and human recombinant EGF

and FGF-2 (Sigma), both at a final concentration of 20 lg/

ml (sphere-medium).

CFS formation assay

The CFS capacity of colon cancer cell lines tested in this

study was derived from monolayer culture or floating

culture (for Colo320 colon cancer cell line). It was assessed

by plating 2 9 105 cells in a T25 flask (8,000 cells/cm2). In

CFSPositive cell lines, CFS were observed 3–7 days after

plating. To obtain pure CSC-like cells, the culture period in

sphere-medium was extended to 10 passages. To evaluate

the CFS capacity of sorted CD166?CD44?EpCAMhigh or

CD166-CD44-EpCAMlow HCT116 cell subpopulations

(see Fig. 4c, below), 1,000 cells/well were plated in

96-well culture dishes in 200 ll of sphere-medium. The

number of CFS in each well was evaluated after 5 days.

Proliferation and chemosensitivity assay

Rates of proliferation and sensitivity to 5-FU were assessed

using the cell proliferation reagent WST-1 (Roche).

Briefly, 104 cells of each cell line or from CFS cultures

were plated per well in 24-well plates in 2 ml of media

with or without 5-FU. After 5 days, WST-1 reagent was

added at a 1:10 final dilution and incubated for 4 h at

37 �C. The relative survival fraction of cells was compared

between treated and untreated cells.

CFS assay following 5-FU treatment

Inoculation of 2 9 106 cells into a T75 flask was made with

different concentrations of 5-FU to obtain 10 % cell survival

after 5 days of incubation. Cells were then washed detached

and 105 cells were inoculated into a T25 flask with sphere-

medium (4,000 cells/cm2). After 3 days observation, photo-

graphs were taken to determine the proportion of CFS

amongst the 5-FU resistant cells. For experimental controls,

untreated cells were plated at the same concentration in

sphere-medium.

Chemical screening

The multi-step strategy used to screen the Institut Curie/CNRS

chemical library is shown in Fig. 3a (see below). This bank

contains 8,560 compounds in a 96-well format at 10 mg/ml in

DMSO (i.e. mean concentration 10 mM). Screening was

performed at 10 and 1 lM final concentrations in 96-well

plates and in a final volume of 200 ll of medium. CRC cell

lines were incubated with the chemical bank at 700 cells/well

for 5 days in standard culture conditions. The Wst-1 assay was

used to indirectly estimate cell survival according to the

indicated procedure (Roche). Confirmation of the 15 com-

pounds (validation step) was obtained by starting with drug

powders in order to reach the correct initial concentration and

then performing a cell survival test in 24-well plates with 2 ml

of medium. CRC cell lines and CFS were incubated with the

chemical bank at 700 and 1,500 cells/well, respectively, for

5 days in standard culture conditions.

Subcutaneous transplantation of colon cancer cell lines

Colon cancer cell lines and CFS were suspended in 200 ll PBS-

Matrigel (1:1) mixture. They were injected subcutaneously in

the flank of 5-week-old nude mice (nu/nu; 1 injection/flank).

Experiments were performed in triplicates (3 mice/each sam-

ple). Tumor formation was evaluated using a caliper starting on

the third week after injection and then weekly for 4 weeks.

Animals were sacrificed when the tumor size was between 15

and 20 mm in diameter, or 7 weeks after the injection.

Microsatellite analysis

Non-coding microsatellite repeat markers were used to

detect instability in five microsatellites (NR27, NR21,

NR24, Bat25, and Bat26 comprising the pentaplex PCR

system) in CRC cell lines and their CFS counterparts, as

previously described [39]. The TGFBR2, BAX, MSH3, and

MSH6 genes containing coding repeats were amplified as

previously described [40]. Four other genes containing

coding mononucleotide repeat were also amplified with

specific primers (sequences available on request). Ampli-

fied PCR products were run on an Applied Biosystems

PRISM 3100 Genetic Analyzer automated capillary elec-

trophoresis DNA sequencer. Allelic sizes were estimated

using gene mapper software (Applied Biosystems).

RNA and DNA extraction

Total RNA from CFS and CRC cell lines was extracted

using Trizol (Invitrogen) and DNA was extracted using a

standard phenol–chloroform procedure. Both RNA and

DNA were assessed for integrity and quantity following

stringent quality control criteria (CIT program protocols

http://cit.ligue-cancer.net).

Flow cytometry

Flow cytometry was performed on adherent cell lines or

CFS cultures after dissociation with accutase (PAA). Cells
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were washed once in PBS supplemented with 1 % BSA

(Sigma) and resuspended in PBS/1 % BSA at a concen-

tration of 106 cells/100 ll. Cells were stained with IgG-PE/

PECy5/FITC/APC (BD Biosciences) to detect non-specific

binding of antibodies and autofluorescence. Primary anti-

bodies used were: CD44-FITC 1:75 (clone G44-26; BD

Biosciences), CD133-PE 1:100 (clone AC133; Miltenyi

Biotec), EpCAM-APC 1:200 (clone HEA-125; Miltenyi

Biotec), CD24-FITC 1:100 (clone ML5; BD Biosciences)

and CD29-PECy5 1:100 (clone MAR4; BD Biosciences).

Cells were incubated for 30 min at 4 �C in the dark and

then washed in buffer (PBS, 1 % BSA, 1 mM EDTA).

Expression of cell surface markers was detected with a

FACScan flow cytometer (BD Biosciences). Cell line

suspensions were sorted according to their CD166 and/or

CD44 and/or EpCAM expression with a FACS Coulter

(BD Biosciences). Separated subpopulations were reana-

lyzed for purity.

Genomic and gene expression arrays and analysis

Data preparation

Gene expression analysis using arrays was carried out on

the IGBMC microarray platform (Strasbourg, France).

Total RNA was amplified, labeled, and hybridized to

Affymetrix Human Genome U133 plus2 GeneChips

following the manufacturer’s protocol (Affymetrix, Santa

Clara, CA, USA). The chips were scanned with the

Affymetrix GeneChip Scanner 3000 and raw intensities

were quantified from subsequent images using GCOS 1.4

software (Affymetrix). Data were normalized using the

Robust Multi-array Average method and implemented in

the R package affy [41].

Genomic arrays were performed on the Integragen

Platform (Evry, France). DNAs from 13 CFS/adherent cell

lines (i.e. LIM2405, HCT8, HCT116, HCT15, TC-7,

CO115, RKO, LS411, V9P, HT29, SW620, Colo320, FET)

were hybridized on IlluminaSNP HumanCNV610 chips

according to instructions provided by the array manufac-

turer (Illumina, San Diego, CA, USA). Data were

normalized and processed as described in supplemental

methods [42]. Data are available in the ArrayExpress

database (www.ebi.ac.uk/arrayexpress).

All analyses were performed using R software (http://

www.R-project.org)

Unsupervised analysis of gene expression data

To evaluate the distance between CRC cell lines and CFS,

PCA and consensus hierarchical clustering analysis of the

13 pairs (26 samples) were performed on probe-sets present

[log2 intensity [ log2(3.5)] in at least 5 % of the samples

and having a robust coefficient of variation significantly

different from the median variance of all probe sets

(rCV [ 0.05 and P value variance test \0.01).

CFS signature

Genes differentially expressed between CRC cell lines and

CFS were assessed using Limma paired moderated t test

[43]. Genes having a P value \0.001 define the CFS sig-

nature (n = 359 probe sets).

CFS functional analysis

All KEGG pathways and gene sets functionally related to

stemness from KEGG, Biocarta, GeneOntology, Molecular

Signatures database and Stanford Microarray database

were tested for enrichment of up- and down-regulated

genes in CFS. Enrichment of the top 100–500 up/down

deregulated probe sets was evaluated by computing a

hypergeometric test. The median P value across up/down

top probe set lists was used to select pathways and gene

sets of interest (P value \0.05).

Analysis of deregulated regions

To define up/down regulation regions separately for each

CFS/CRC cell line pair, the genome was segmented into

overlapping windows of 5 Mb. In each window, the enrich-

ment of up- or down-regulated genes (log2(FC)[ 0.5) for the

given pair was assessed by a Fisher test between up/down

genes in the windows and up/down regulated genes in the rest

of the genome. To compute the frequency across pairs, each

region was assigned -1(down-regulated)/0 (not modified)/1

(up-regulated) depending on the significance (P value \0.05)

of the enrichment.

Survival analysis

Two publicly available Affymetrix U133P2 datasets with

Recurrence Free Survival annotations were used: [25] dataset

GSE17536 and GSE17537 comprising 148 samples of Stage

II/III CRC), and [26] GSE14333 comprising 99 samples of

Stage B and C CRC not contained in the previous dataset.

These were normalized by RMA and by clinical center. To

evaluate the survival impact of the CFS signature in those

datasets, a subset of genes from the original signature (see

Supplementary Table S1) was selected based upon their high

fold-change [|log2(CFS/cell line)| [ 0.8; n = 55]. To define a

prognostic CFS signature, the 55-gene signature was reduced

to probe sets significantly associated with prognosis in the first

dataset using univariate Cox models (log rank P value\0.05;

n = 8). For both CFS signatures, an average expression score

per sample was then defined. Normalized intensity values of
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selected genes were each centered to zero by subtracting the

median expression of each gene. Genes that were down-reg-

ulated in CFS were multiplied by (-1), thus both up- and

down-regulated genes can be used in the score. All genes from

the given signature were then averaged. A higher score cor-

responded to a higher deregulation of CSF genes. The score

was then divided into high and low score groups by taking tails

of the score distribution in the considered dataset, i.e. 30 % of

the highest and 30 % of the lowest scores.

Survival curves were calculated according to the Kaplan–

Meier method with an end-point at 5 years. Differences

between curves were assessed using the log-rank test. Uni-

variate and multivariate associations for outcome were

performed using the Cox regression model.

Results

The ability of CRC cell lines to grow as CFS in serum-

free medium enriched with growth factors and chemical

supplements is highly variable

We tested the ability of established MSI and MSS CRC cell

lines (n = 25) to grow as CFS in sphere-medium. CFS

were obtained from 10 MSI and 8 MSS cell lines (total

18/25, 72 %) (Fig. 1a). In the remaining 7 CRC cell lines

(4 MSI, 3 MSS), a small number of cells remained afloat

but died after 1–4 passages (1–6 weeks) in sphere-medium

(data not shown). Morphologically, the CFS were quite

heterogeneous and ranged from densely packed spheres

with almost indiscernible individual cells to more loosely

packed spheres or individual floating cells (Fig. 1b).

CFS display identical clonal genomic alterations

to their parental CRC cells

Extensive analysis using SNP microarrays revealed that

genomic alterations due to chromosomal instability (CIN)

were similar between parental CRC cell lines and their

related CFS. This was observed both with MSI and MSS

CRC cell lines displaying low and high levels of CIN,

respectively. SNP analysis was performed on 13 CFS/

adherent cell lines (LIM2405, HCT8, HCT116, HCT15,

TC-7 CO115, RKO, LS411, V9P, HT29, SW620,

Colo320) (Fig. 2a; and data not shown). The status of

DNA microsatellites that constitute accurate markers of

the ‘history’ of each tumor cell in CRC cell lines dis-

playing MSI was also analyzed. Mutation analysis of

DNA microsatellite sequences in 10 CFSPositive MSI cell

lines (HCT116, CO115, HCT15, HCT8, ISHI, LIM2405,

LS411, RKO, TC-7, TC71) revealed identical patterns of

alteration in non-coding (BAT26, BAT25, NR21, NR25,

NR27) and coding (TGFBR2, RAD50, MSH6, MSH3,

MBD4, BAX, ATR, BLM) repeats between parental cells

and their corresponding CFS (Fig. 2b). Thus, CRC cell

lines and their corresponding CFS progeny are clonally

identical, indicating the CFS phenotype arises from the

selection of pre-existing clones in the parental cell lines

that are able to grow under specific conditions of serum

deprivation.

Acquisition of the CFS phenotype by CRC cells is

associated with specific changes in gene expression

The gene expression profiles of 13 CFSPositive CRC cell

lines (8 MSI: LIM2405, HCT8, HCT116, HCT15, TC-7

CO115, RKO, LS411; 5 MSS: V9P, HT29, SW620,

Colo320, FET) and their corresponding CFS populations

were compared using microarrays. Principal component

analysis of the profiles revealed the CFS grouped together

with their parental CRC cell lines (Supplementary Fig.

S1A). A total of 264 genes displayed significant down- or

up-regulation in CFS (P value \0.001, paired moderated

t test) and are listed in Supplementary Table S1. Specific

signaling and metabolic pathways were associated with

the CFSPositive gene expression signature (Table 1). As

A

CFSPositive cell lines
CFSNegative cell lines

MSI=4

MSS=3 MSI=10

MSS=8

B

HCT116 CO115

SW620

HCT15

SW480 IS1

TC71 FET TC-7

Fig. 1 a Results of the CFS

assay in 25 CRC cell lines

(MSS = 11; MSI = 14).

b Morphological features of

CFS from 9 CRC cell lines

(MSI black, MSS red) grown in

sphere-medium. The

morphology of CFS derived

from T71 is peculiar and these

grow in suspension as single

cells
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expected, a number of genes from this signature reflected

the different culture conditions used for adherent and CFS

cells and were linked mainly to cell metabolism and

growth factor pathways (Table 1). The CFS signature also

included genes related to stemness and to cellular mech-

anisms associated with treatment resistance, such as

transmembrane transporters, apoptosis and DNA damage

(Table 1). Specific chromosomal regions were enriched

with genes from the CFS signature (Supplementary Fig.

S1B). These regions displayed a similar genomic status

(DNA copy-number) in CFS and the parental CRC cell

line, suggesting that gene deregulation occurred via epi-

genetic processes that were independent of DNA copy

number. Regions that were frequently down or up-regu-

lated in CFS ([30 %) are shown in the lower panel of

Figure S1B.

Both CFS and their parental CRC cell lines are highly

tumorigenic and they show similar expression of CSC

markers

Serial engraftments of 8 CRC cell lines (5 CFSPositive:

HCT15, HCT116, LoVo, V9P, RKO; 3 CFSNegative:

LS174T, LIM1215, KM12) were performed in nude

mice. All 8 cell lines tested were found to be highly

tumorigenic, even when only 200 CRC cells were

injected (Fig. 3a). CFS cells derived from HCT116 and

LoVo cell lines were also highly tumorigenic. Low

numbers of injected CFS cells (200 or 500 cells) derived

from both these MSI CRC cell lines were less tumori-

genic compared to the parental cell lines (Fig. 3b; and

data not shown). However, no difference was apparent

when 1000 cells were injected. The expression of

B

Parental
Cell line

CFS

Nr21 Nr24Nr27 Bat25 Bat26

TGFBR2 RAD50 MSH6 MBD4

Control

Parental
Cell line

CFS
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Non-coding microsatellites Coding microsatellites

A
H
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T
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6 
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S

I)
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CFS
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0N 1N 2N 3N  4N

CFS

H
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R
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4
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HCT116 (MSI)

Fig. 2 a Extensive microarray analysis revealed that chromosomal

aberrations due to CIN were similar between 13 parental CRC cell

lines (LIM2405, HCT8, HCT116, HCT15, TC-7, CO115, RKO,

LS411, V9P, HT29, SW620, Colo320, FET) and their corresponding

CFS. Examples of chromosomal instability in HCT116 (MSI cell

line), HT29 (MSS cell line) and their corresponding CFS. b Micro-

satellite instability in HCT116 parental cells and their corresponding

CFS. Mutation analysis of DNA microsatellites showed identical

patterns of alteration in both non-coding (BAT26, BAT25, NR21,

NR25, NR27) and coding (TGFBR2, RAD50, MSH6, MSH3, MBD4,
BAX, ATR, BLM) repeats in the parental CRC cell lines and their

corresponding CFS. This was observed in HCT116 and in 10

CFSPositive MSI CRC cell lines (HCT116, CO115, HCT15, HCT8,

ISHI, LIM2405, LS411, RKO, TC-7, TC71, not shown)
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Table 1 Specific signaling and metabolic pathways significantly associated with the CFS gene signature

C
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S
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G
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e 
S

et
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P
 v
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ue

 u
p

P
 v

al
ue
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ow

n

Overview KEGG Biosynthesis of steroids 2,6E-27 -

Metabolism of Terpenoids and 
Polyketides

KEGG Terpenoid biosynthesis 1,3E-07 -

Energy Metabolism KEGG Reductive carboxylate cycle (CO2 fixation) 2,4E-04 -

KEGG Fatty acid biosynthesis 1,4E-03 -

KEGG Synthesis and degradation of ketone bodies 3,3E-03 -

KEGG Glycerolipid metabolism 3,4E-03 -

KEGG Biosynthesis of unsaturated fatty acids 4,3E-03 -

KEGG Fatty acid metabolism 9,6E-03 -

KEGG Glycerophospholipid metabolism 2,7E-02 -

KEGG Propanoate metabolism 5,6E-03 -

KEGG Pyruvate metabolism 8,6E-03 -

KEGG Citrate cycle (TCA cycle) 3,4E-02 -

Amino Acid Metabolism KEGG Valine, leucine and isoleucine degradation 1,0E-02 -

KEGG Glycosaminoglycan degradation 1,3E-02 -

KEGG Other glycan degradation 1,0E-02 -

Metabolism of Other Amino Acids KEGG Glutathione metabolism 3,9E-02 -

KEGG Adipocytokine signaling pathway 4,0E-03 -

KEGG PPAR signaling pathway 2,9E-02 -

Environmental Information 
Processing

Signal Transduction KEGG MAPK signaling pathway 1,6E-02 -

KEGG Proteasome - 3,6E-06

KEGG Ubiquitin mediated proteolysis - 9,2E-04

KEGG DNA replication - 1,0E-06

KEGG Mismatch repair - 1,4E-04

KEGG Nucleotide excision repair - 1,7E-03

Carbohydrate Metabolism KEGG Glycolysis / Gluconeogenesis - 7,4E-04

Nucleotide Metabolism KEGG Pyrimidine metabolism - 3,6E-02

Cellular Processes Cell Growth and Death KEGG Cell cycle - 1,1E-02

KEGG Hedgehog signaling pathway - 2,7E-02

KEGG TGF-beta signaling pathway - 4,0E-02

MSigDB BHATTACHARYA_EMBRYONIC_STEM_CELL (C2) 3,5E-02 -
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MSigDB CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_3 (C2) 7,3E-09 -
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GO drug transporter activity 9,2E-03 -
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putative colorectal CSC markers (CD44, CD133, CD166,

CD24, CD29, EPCAM, ALDH, OLFM4, LGR5) evalu-

ated using arrays was not significantly different between

13 pairs of CFS cells and their corresponding parental

cell lines (8 MSI: LIM2405, HCT8, HCT116, HCT15,

TC-7 CO115, RKO, LS411; 5 MSS: V9P, HT29,

SW620, Colo320, FET) (Fig. 4a). The expression of 6

putative colorectal CSC markers (CD44, CD166, CD133,

CD24, EpCAM, CD29) was also compared using flow

cytometry in the 25 parental CRC cell lines (Supple-

mentary Table S2). Overall, the expression of these

markers was highly variable and none was expressed

exclusively in CFSpositive cell lines. Moreover, their

expression was highly variable over time, as shown for

CD44 and CD166 expression in cell sub-populations

sorted by FACS from LS174T and HCT116 parental

cells (Fig. 4b). Finally, we quantified the expression of

putative colorectal CSC markers (CD44, CD133, CD166,

CD24, CD29, EPCAM) in 15 primary CRCs and 12

CRC tumor xenografts established from these primary

CRCs and grown in nude mice. Most markers were

expressed at significantly higher levels in CRC cell lines

compared to primary CRCs and/or tumor xenografts

(Fig. 4c). Overall, these results demonstrate that the CFS

phenotype derived from CRC cell lines is only weakly

related to the putative CSC phenotype from primary

tumors. In line with this, a CFS assay showed similar

results using sorted populations of CD166?CD44?Ep-

CAMhigh or CD166-CD44-EpCAMlow HCT116 cells

(Fig. 4d).

The ability of CRC cells to grow as CFS is strongly

increased by prior treatment with 5-Fluorouracil

The ability of LoVo and HCT116 cell lines to grow as CFS

in sphere-medium increased following treatment with the

chemotherapeutic agent 5-Fluorouracil (5-FU) for 5 days at

IC10 % (5 lM for HCT116 and 7.5 lM for LoVo cells)

(Fig. 5a, b; and data not shown). In contrast, 5-FU-resistant

clones from the LIM1215 and LS174T CFSNegative cell

lines remained unable to grow in sphere-medium after

5-FU treatment at IC10 (Fig. 5a). CRC cell lines were also

compared to their CFS counterparts for resistance to 5-FU.

In 6 CRC cell lines tested (FET, HCT116, LS411, V9P,

TC71, LIM2405), the CFS displayed greater resistance to

5-FU than their parental cells (Fig. 5c). Both CFSPositive

and CFSNegative CRC cell lines displayed marked differ-

ences in resistance to this drug (data not shown). LIM2405

showed a strong predilection to grow as CFS in sphere-

medium (data not shown), yet the adherent cells and CFS

showed similar resistance to 5-FU (Fig. 5c, bottom and

right panels).

CFS established from CRC cell lines share a gene

signature that predicts disease relapse in CRC patients

Fifty-five genes that were differentially expressed between

CFS and their corresponding CRC cell lines displayed a

high level of up- or down-regulation (log2-fold change for

CFS/parental cell line [0.8; Supplementary Table S1;

Fig. 6). This 55-gene CFS expression signature predicted
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disease relapse in a previously described, retrospective

series of stage II and III CRC patients [25]. Tumors were

classified into two groups according to the expression level

of the 55 genes (T-CFSHigh or T-CFSLow; for further

details, see ‘‘Materials and methods’’ and Fig. 6a), where

T-CFSHigh and T-CFSLow correspond to tumors displaying

high or low levels of expression of the CFS signature,

respectively. Patients with T-CFSHigh tumors showed sig-

nificantly shorter disease-free survival (DFS) compared to

T-CFSLow patients (Supplementary Figure S3A, bottom

and left panel). To confirm these clinical findings, the same

analysis was performed on another, independent cohort of

stage II and III CRC patients [26]. A trend for similar

clinical impact of the 55-gene CFS expression signature

was observed (Supplementary Figure S2A, bottom and

right panel). Following normalization of the data, the two

patient series were combined to achieve greater statistical

power. In the overall series and in univariate analysis, the

survival of stage II and III CRC patients was associated

with the expression level of the 55-gene CFS signature

(Fig. 7, left panel; Supplementary Figure S2A, top and left

panel).

Since the 55-gene signature showed a trend for associ-

ation with patient outcome in the second dataset, we sought

to identify a novel prognostic signature by selecting genes

that were individually associated with outcome in the first

dataset. This allowed us to define an 8-gene CFS prog-

nostic signature (Fig. 6b; Supplementary Table S1) that

showed stronger associations with disease relapse in both

the individual and combined patient cohorts (Fig. 7, right

panel; Supplementary Figure S2B, top and right panel). To

ensure this finding was related to the CFS 55-gene selec-

tion and not to the methodology, the same approach was

repeated 1,000 times using signatures from 55 genes

selected at random. This analysis did not increase the false

positive rate in the second dataset (data not shown). In the

overall series and in multivariate Cox analysis that inclu-

ded TNM stage, the survival of patients with stage II or III

CRC was confirmed to be associated with the expression

level of 8 genes from the CFS signature (Table 2).
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Fig. 4 a Expression of putative colorectal CSC markers (CD44,

CD133, CD166, CD24, CD29, EPCAM, ALDH, OLFM4, LGR5)

were investigated using gene expression arrays in 13 CFS/parental

cell lines (8 MSI: LIM2405, HCT8, HCT116, HCT15, TC-7 CO115,

RKO, LS411; 5 MSS: V9P, HT29, SW620, Colo320, FET).

b Expression of CD166 and CD44 markers was investigated by flow

cytometry in different subpopulations of sorted cells from the

HCT116 and LS174T parental cells. CD166-/CD44-, CD166?/
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CFS can be used as models to identify new drugs

that are more efficient at killing CFS than 5-fluorouracil

Because of the current clinical interest in CFS, the Institut

Curie-CNRS chemical library (8,560 compounds) was

screened using the HCT116 (MSI) and FET (MSS) CRC

cell lines (Supplementary Fig. S3A). Fifteen new com-

pounds were identified with the ability to kill both parental

CRC cells and CFS from HCT116 and/or FET at low

concentration (IC50 % \ 1 lM; Supplementary Fig. S3B).

Of note, 8/15 (53 %) of these new compounds belong to

the Nitrofurans’ family previously reported to display

anticancer and antioxidant properties (Supplementary

Table S3, entries 1–8) [29, 30]. Since the library contains

240 of this class of compound (2.8 % of the total), Nitro-

furans were significantly over-represented amongst the 15

drugs with high effectiveness against CFS (P = 2.4

9 10-9, Fisher’s exact test). In contrast to results obtained

with 5-FU (see Fig. 5b), the ability of HCT116 and FET

cell lines to grow in serum-free medium did not increase

following treatment with three of the new compounds for

5 days at IC10 % (Supplementary Fig. S3C).

Discussion

Not all CRC cell lines contain CFS. This result may reflect

the true heterogeneity of CRC but may also be due to

events that occurred in vitro during or after the establish-

ment of CRC cell lines. All CRC cell lines tested here were

highly tumorigenic in mouse xenograft assays. We did not

observe increased tumorigenicity of CFS-positive com-

pared to CFS-negative CRC cell lines, nor of CFS

compared to their parental cell line counterpart. Surpris-

ingly, at lower numbers of injected cells, CFS were less

tumorigenic compared to their parental cell line. We have
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no obvious explanation for this result. In any case, CRC

cell lines are not ideal models for evaluating tumorigenicity

because of their high level of heterogeneity. Compared to

primary colorectal tumors, aberrant expression of putative

CSC markers was observed in the CRC cell lines investi-

gated here, but was not different to that of CFS, as already

reported for HCT116 [16]. Moreover, the current tran-

scriptome analyses revealed only weak correlations

between CFS and the expression of stem cell gene markers.

These results highlight the fact that CSC markers are not

specific for CFS. The CFS phenotype is therefore quite

different to that of putative CSCs from primary tumors. It
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would be interesting to perform similar experiments relat-

ing to the expression of CSC markers, tumorigenicity and

gene signatures using primary tumors and their sphere

counterparts.

Although clearly different to putative CSCs from pri-

mary tumors, an interesting question raised by this study is

whether the CFS models established from cancer cell lines

have clinical relevance. The differential expression of

genes in CFS relative to their parental cells is partly a result

of the presence of growth factors in one medium and not in

the other. This could involve growth factor pathways as

well as CSC-like genes. In support of this, it was recently

shown that CFS cultures contain only a fraction of CSCs

and therefore cannot be regarded as pure CSC models.

With this in mind, our data highlight that CFS have

retained interesting phenotypical characteristics, including

increased resistance to 5-FU in standard culture conditions.

Moreover, the 55-gene CFS signature identified here was

common to all CRC cell lines and was predictive for dis-

ease relapse in CRC patients. Although validated in two

independent CRC series, these findings require confirma-

tion in additional studies using larger cohorts of patients. In

summary, CFS models derived from CRC cell lines have

interesting phenotypical features and may have clinical

relevance for drug resistance and disease relapse, but are

unlikely to serve as models for putative CSCs in primary

CRC.

The genomic and mutational analyses of CRC cell lines

and CFS performed here, including the study of microsat-

ellite DNA repeats in MSI cell lines, help to explain the

origin of CFS. The status of DNA microsatellites consti-

tutes an accurate marker of the ‘history’ of each tumor cell.

These genetic markers, including the non-coding micro-

satellite repeats (BAT26, BAT25, NR21, NR25, and

NR27), were identical between CFS and their parental

CRC cells. The CFS phenotype therefore corresponds to a

cellular state achieved only by some clones under specific

culture conditions or exposure to drugs. Considering the

transcriptome analyses, our results also indicate that only a

fraction of cells from CRC cell lines have the capacity to

rapidly adjust the expression of specific genes and hence to

persist as CFS under challenging growth conditions. These

data agree with other recent studies demonstrating wide-

spread plasticity and dedifferentiation processes that affect

some tumor cells under specific environmental conditions,

particularly CRC cells [4, 31–35].

The expression signature of normal intestinal stem cells,

also shared by cells with a stem-like cell phenotype within

primary CRC, was recently found to be predictive of dis-

ease relapse in CRC patients [36]. However, another group

reported the CSC gene signature in CRC may reflect the

differentiation status of malignant tissue [37], rather than

reflecting the number of CSCs as suggested in the former

study. The results presented here relate only to the prop-

erties of CFS cultures derived from CRC cell lines, not

from primary tumors. We speculate that the gene expres-

sion pattern observed in our CFS model corresponds to that

of poorly differentiated ‘progenitor cells’, or dedifferenti-

ated CRC cells, due to the altered cell culture conditions.

This pattern could be expressed in an important fraction of

cancer cells within the primary tumor. The risk of devel-

oping a recurrence of CRC might be associated with the

expression of specific genes in these tumor cells and which

are required for tumor regeneration following cancer

therapy. Interestingly, 5 of the genes included in the limited

8-gene CFS signature are predicted to have indirect asso-

ciations with signaling pathways. LDLR and HMGCS1

participate in SREBP control of the lipid pathway by

stimulating lipid synthesis, while FGFR4 is a growth factor

reported to be associated with poor prognosis and aggres-

sive disease in many different cancer types including colon

cancer [27]. Although still poorly described, AHNAK2 and

FAM46A are both upregulated in cisplatin-resistant gastric

cancer cell lines [28].

Table 2 Association of the 8-gene CFS high/low score and TNM stage and prognosis in the combined dataset (Smith ? Jorissen)

Chi2 test P value CFSHigh (n = 73) CFSLow (n = 73)

TNM Stage 2 (n = 82) 0.097 35 (49 %) 46 (63 %)

3 (n = 65) 38 (51 %) 27 (37 %)

Cox univariate analysis Cox multivariate analysis

Annotation Valuea n samples n events H.R. 95 % C.I. P value H.R. 95 % C.I. P value Model P value

Jorissen ? Smith

8-genes signature

TNM stage 3 145 34 2.1 1–4.2 0.037 1.8 0.88–3.5 0.11
4.10E-04

SC score CFSLow 145 34 0.27 0.13–0.58 8.0E-04 0.29 0.14–0.64 1.8E-03

H.R. Cox hazard ratio, 95 % C.I. 95 percent confidence interval of H.R.

Significant p value in italics (\0.05)
a Value: modality of the annotation associated to H.R.
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The clinical and molecular heterogeneity of CRC is a

major limitation of this type of study. Principal component

analyses of the transcriptomic profiles showed that con-

siderable heterogeneity remains between CFS displaying

MSI or MSS. The response to chemotherapy is thought to

be different between patients with MSI and MSS colon

tumors, even when considering tumors with the same stage

of disease [37]. The CFS gene signature identified here was

shared by both MSI and MSS CRC. Nevertheless, we could

not evaluate the clinical relevance of MSI-specific or MSS-

specific CFS signatures for patients with these tumor sub-

groups because MSI status is not contained in the publicly

available Affymetrix U133P2 datasets with Recurrence

Free Survival annotations used for this study. This is a

subject for future investigation.

In conclusion, the current findings support the existence

of CFS subpopulations within CRC cell lines and provide a

framework to explain the origin of these tumor cells. They

also suggest that CRC cells acquire the CFS phenotype

through mechanisms that are only weakly related to CSC,

but which could nevertheless be important for the devel-

opment of chemoresistance by CRC cells in vivo in

primary tumors. The screening of 8,560 potential antican-

cer agents using an assay involving CFS populations

derived from CRC cell lines may therefore be a useful

approach to identify novel drugs for clinical application.

The 15 new drugs identified in this study, including several

new compounds belonging to the Nitrofurans’ family, are

currently being tested for toxicity and efficacy in pre-

clinical studies using animal models.
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