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Abstract The innate immune system recognizes devia-

tion from homeostasis caused by infectious or non-

infectious assaults. The threshold for its activation seems to

be established by a calibration process that includes sens-

ing of microbial molecular patterns from commensal

bacteria and of endogenous signals. It is becoming

increasingly clear that adaptive features, a hallmark of the

adaptive immune system, can also be identified in the

innate immune system. Such adaptations can result in the

manifestation of a primed state of immune and tissue cells

with a decreased activation threshold. This keeps the sys-

tem poised to react quickly. Moreover, the fact that the

innate immune system recognizes a wide variety of danger

signals via pattern recognition receptors that often activate

the same signaling pathways allows for heterologous innate

immune stimulation. This implies that, for example, the

innate immune response to an infection can be modified by

co-infections or other innate stimuli. This ‘‘design feature’’

of the innate immune system has many implications for our

understanding of individual susceptibility to diseases or

responsiveness to therapies and vaccinations. In this article,

adaptive features of the innate immune system as well as

heterologous innate immunity and their implications are

discussed.
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Abbreviations

ACD Allergic contact dermatitis

BCR B cell receptor

CHS Contact hypersensitivity

CLR C-type lectin receptor

CRISPR Clustered regularly interspaced short

palindromic repeats

DAMP Damage-associated molecular pattern

DC Dendritic cell

DNP 2,4-Dinitrophenyl

DTH Delayed type hypersensitivity

DNTB 2,4-Dinitrothiocyanobenzene

ECM Extracellular matrix

MAMP Microbe-associated molecular pattern

MDSC Myeloid-derived suppressor cell

NK Natural killer

NLR NOD-like receptor

PAMP Pathogen-associated molecular pattern

pMHC Peptide/MHC complex

PRR Pattern recognition receptor

RLR RIG-I like receptor

SAR Systemic acquired resistance

TCR T cell receptor

TLR Toll-like receptor

Treg Regulatory T cell

TNCB 2,4,6-Trinitrochlorobenzene

TNP 2,4,6-Trinitrophenyl

Introduction

The innate immune system responds immediately to

infections, mechanical or chemical assaults which disturb

tissue homeostasis. It recognizes a large variety of
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microbe- (MAMPs) or pathogen-associated molecular

patterns (PAMPs) as well as exogenous and endogenous

non-microbial danger signals such as damage-associated

molecular patterns (DAMPs). These danger signals trigger

germline-encoded pattern recognition receptors (PRRs)

such as the Toll-like receptors (TLRs) [1–5]. PRR trig-

gering leads to an innate inflammatory response that aims

at the restoration of homeostasis and repair of tissue

damage. Moreover, this response is a prerequisite for

efficient activation of the adaptive immune system, e.g.,

the priming of naı̈ve T cells by activated dendritic cells

(DCs) [6].

Adaptive features as illustrated by affinity maturation,

receptor editing and formation of memory cells were

always attributed exclusively to the T- and B lymphocytes

of the adaptive immune system [7–11]. However, in recent

years evidence for adaptive features of the innate immune

system is accumulating. These manifest themselves, for

example, in a heightened reactivity of innate immune cells

following a primary immune response (Fig. 1). Another

interesting feature of the innate immune system is the fact

that different members of a given PRR family feed into the

same or similar signaling pathways. This enables heterol-

ogous innate immune stimulation [12] leading, for

example, to the amplification of innate signaling by a

pathogen through additive or synergistic activation of the

same pathways via different PRRs due to co-infection with

different pathogens (Figs. 2, 3).

Adaptive immune features are also found in bacteria

and invertebrates. Bacteria use the clustered regularly

interspaced short palindromic repeats (CRISPR)-Cas

system to induce adaptive immunity [13]. They incor-

porate sequences from foreign genetic elements such as

viruses and plasmids as spacers (CRISPR spacers) into

Fig. 1 Impact of heterologous innate immune stimulation on activa-

tion thresholds. An immune reaction can be compared with a

chemical reaction. The activation threshold is determined by the

activation energy, i.e., the energy difference between the basal energy

level and the energy of the transition state. a In the case of a non-

adaptive response, the immune system becomes activated and returns

to the former, homeostatic energy level that has been established in a

calibration process (red line). Heterologous stimuli (e.g., adjuvants)

may act like catalysts and lower the energy level of the transition state

thereby lowering the activation threshold of the primary response

(green line). b If the system is primed by an immune response, it

returns to a higher basal energy level in a primary response. c This

lowers the activation energy required for the secondary response

(green line). d Heterologous stimulation (e.g., by adjuvants) can

lower the activation threshold of the primary response and the system

can be primed in addition (green line). e The result is an even lower

activation energy required for the secondary response (green line)
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an array of endogenous repeat sequences (CRISPR

repeats). CRISPR loci are flanked by CRISPR-associated

(Cas) genes. Transcription of these loci results in the

production of small interfering RNAs. These bind to

complementary sequences, which are then targeted and

degraded by Cas endonucleases. Moreover, invertebrates

use RNA interference to generate immunity to infection

[14, 15].

Innate adaptation resulting in ‘‘trained’’ innate immunity

[16] and heterologous innate immunity are important in our

understanding of individual disease susceptibility,

responsiveness to therapies or vaccinations. Most impor-

tantly, these features open up many possibilities to

modulate innate and, subsequently, adaptive immune

responses in the treatment of disease and in vaccination

strategies. This may be achieved, for example, by altering

activation thresholds and using positive or negative stim-

ulatory adjuvants as heterologous innate immune stimuli to

promote immunity or tolerance.

This article gives a point-of-view on the ‘‘design’’ and

function of the innate immune system with a focus on

adaptive features and heterologous innate immunity.

Fig. 2 Principle of autologous and heterologous innate immune

stimulation and potential outcomes of heterologous innate immune

stimulation. As an example, upon infection autologous stimuli are

associated with the pathogen trigger PRRs such as TLRs (e.g., LPS

via TLR4). Co-infection or tissue damage can provide heterologous

stimuli acting via the same or different TLRs (e.g., DNA via TLR9).

This can lead to different potential outcomes

Fig. 3 Heterologous innate

immune stimulation in allergic

contact dermatitis. Contact

allergens either directly or

indirectly trigger PRRs to cause

production/release of other

danger signals including ROS

and ATP. Combinations of

contact allergens, addition of

irritants or co-infections can

provide heterologous innate

immune stimulation leading, for

example, to additive or

synergistic amplification of the

innate inflammatory response
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Calibration of the adaptive immune system

The adaptive immune system consists of T- and B cells

with highly diverse clonotypic antigen-specific T cell

(TCR) and B cell receptors (BCR), respectively. Activation

thresholds for T cells are being defined during thymic

selection. T cells, which receive survival signals by low-

affinity interactions of their TCRs with self-peptide/MHC

complexes (pMHC) are positively selected [17]. In the

periphery tonic signaling triggered by self-pMHC ensures

T cell survival and increased antigen reactivity [18, 19] as

well as maintenance of functional memory T cells [20].

The BCR is capable of ligand-independent tonic signaling

that regulates B cell survival and differentiation [21, 22].

One of the hallmarks of adaptive immunity is the genera-

tion of long-lasting antigen-specific memory. This enables

a fast recall response to repeated challenges with previ-

ously encountered antigens by recirculating and tissue-

resident high-affinity T- and B cells [9, 23–25]. Due to the

selection of high-affinity receptors and the independence of

co-stimulatory signals, the threshold for the activation of

memory T cells is significantly lower.

Calibration of the innate immune system

As in the adaptive immune system, activation thresholds

are established for innate immune responses (Fig. 1). This

is achieved by a calibration process that involves contin-

uous exposure to homeostatic microbial signals from

commensal bacteria at barriers such as skin, lung or gut

[26, 27]. In addition, continuous exposure to endogenous

danger signals generated during normal cell and extracel-

lular matrix (ECM) turnover might contribute to this

calibration process [28–30]. A further calibration system is

based on the sensing of endogenous viruses integrated as

retroelements into the genome [31]. Cyotosolic DNA sen-

sors can be activated by cDNA intermediates of such

retroelements. The sensitivity of this system has to be

adjusted such that autoreactivity is prevented without

compromising immune responses to DNA viruses and

retroviruses such as HIV. Relevant cytosolic DNA sensors

are IFI6 or the cyclic GMP-AMP synthase cGAS [32].

These eventually trigger the production of type I interferon

production via the ER transmembrane protein STING.

Autoreactivity of the innate immune response to endoge-

nous retroelements is prevented in part by enzymes that

metabolize cDNA intermediates. Mutations in such

enzymes, however, leads to their accumulation and can

cause disease. One example is the mutation of the exonu-

clease Trex1 as found in Aicardi–Goutières syndrome or

some forms of systemic lupus erythematosus (SLE) [31]. In

this case, accumulation of endogenous DNA triggers the

cGAS-STING axis and activation of interferon-stimulated

genes. This was prevented in cGAS knockout mice [33].

Moreover, derepression of endogenous retroelements by

UV light may cause inflammation.

Thus, the innate immune system must maintain a deli-

cate balance that prevents ‘‘self-reactivity’’ to commensals,

endogenous danger signals such as DAMPs or endogenous

retroelements under homeostatic conditions and at the

same time allows to react to infection or tissue damage.

Similar to tonic TCR signaling which preserves antigen

reactivity in the naı̈ve T cell pool, tonic innate immune

receptor signaling may keep the innate immune system in a

more reactive, alert state.

Commensal bacteria are very important in the calibra-

tion of the innate immune system. Apart from defects in the

development and maturation of the immune system in

germ-free mice, the overall fitness of the innate immune

system is compromised in their absence [27]. Antibiotic-

treated mice have disrupted commensal bacterial commu-

nities. Innate immunity at barrier surfaces is impaired as

shown, for example, by reduced innate antiviral responses

to influenza infection. The production of pro-inflammatory

cytokines and chemokines including inflammasome-

dependent IL-1b production as well as the type I interferon

(IFN) response is compromised [26, 34]. At the cellular

level, it has been shown that innate-like lymphocytes such

as marginal zone B cells recognize circulating bacterial

products with adjuvant properties. They express polyreac-

tive BCRs as well as TLRs that recognize diverse microbial

patterns. They are in a pre-activated, primed state and

rapidly respond to blood-borne antigens. This primed state

seems to depend on circulating microbial products, since

germ-free mice have impaired natural antibody responses

[35]. Similar priming by commensal-derived signals has

been shown for mononuclear phagocytes [36]. Germ-free

mice have strongly impaired expression of inflammatory

response genes including type I IFNs in these cells from

non-lymphoid organs. This is due to the lack of activating

histone marks in the cytokine gene promoters preventing

binding of the translocated transcription factors NF-jB and

IRF3. As a consequence, NK cells are not appropriately

primed and antiviral immune responses are compromised.

These findings indicate that systemic effects on innate

immune fitness are mediated via circulating bacterial pro-

ducts with adjuvant properties.

In summary, the innate immune system is calibrated by

commensal microbiota and, most likely, endogenous sig-

nals to ensure tissue homeostasis, tissue repair and

responsiveness to infections and other, non-infectious

challenges. Such challenges can cause priming of innate

immune cells, which lowers their activation threshold and

keeps the innate immune system poised for more rapid and

more efficient responses (Fig. 1).
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Other means to lower activation thresholds are the

depletion or functional impairment of immunoregulatory

cell populations such as regulatory T cells (Treg), invariant

NKT cells (iNKT) or myeloid-derived suppressor cells

(MDSC) [37–40]. Moreover, genetic defects in pathways

that prevent inflammation decrease activation thresholds. An

example is Nrf2-deficient mice with a deficient antioxidant

phase 2 response. Due to their heightened pro-inflammatory

state, chemical-induced skin irritation or allergic contact

dermatitis (ACD) are more easily triggered [41].

Mechanisms of adaptation in the innate immune system

Adaptation of the innate immune system to assaults can be

due to transient or stable changes in chromatin conforma-

tion and microRNA (miRNA) profiles leading to altered

gene expression patterns. Thereby, previous immunologic

experience can be memorized over a longer period of time.

Plants lack an adaptive immune system, but they also

recognize PAMPs/MAMPs using PPRs including TLR-

and NLR-like receptors [42, 43]. Recognition of PAMPs/

MAMPs and other forms of biotic and abiotic stress results

in defense priming in plants. This is characterized by a

heightened state of resistance and faster and stronger

responses to stress including infection. The local response

can be transmitted systemically due to systemic acquired

resistance (SAR) mediated by plant hormones such as

salicylic acid [44]. This innate plant defense system thus

exerts adaptive features. The underlying mechanisms

include epigenetic modifications that can be heritable [45–

47].

Interestingly, short-term innate memory has also been

described for immune cells [48]. Histone modifications,

some forms of transient DNA methylation and changes in

the expression of miRNAs have been identified as potential

mechanisms. Epigenetic modifications in macrophages

induced by TLR signaling have been reported in the mouse

system of LPS tolerance [49]. Here, both silencing of pro-

inflammatory and priming of antimicrobial genes was

detected identifying an innate immune response with fea-

tures of adaptive immunity. Such mechanisms may also

contribute to the adaptive features of other innate immune

cells like NK cells [50]. For NK cells’ memory, T cell-like

functions have been identified in antiviral immunity and

chemical-induced ACD [51–57]. Monocytes may also

display memory-like features [58]. It was shown that T/B

cell-deficient mice were protected against reinfection with

Candida albicans. This was dependent on monocytes,

which exhibited increased cytokine production. Epigenetic

changes were suggested to be responsible for this ‘‘trained’’

innate immune response [16, 59]. Interestingly, similar

epigenetic modifications in monocytes were observed

following Bacillus Calmette Guérin (BCG) vaccination

against tuberculosis [60]. This may explain in part the non-

specific protective effects of the BCG vaccine on unrelated

infections [61, 62] and provides an example for heterolo-

gous innate immunity.

Memories of the past: does the tissue memorize

previous immune responses?

It is conceivable that the different tissues and organs of an

organism can adapt to different immune stimuli. Barrier

tissues such as skin, lung or gut adapt to the commensal

microbiota. This adaptation process is essential for the

establishment of immune homeostasis [27, 63–65]. Dis-

turbance of the microbiota can result in the induction of

disease as a consequence of dysbiosis [66–68]. Restoration

of a healthy microbiota achieved, for example, by fecal

microbiota transplantation (FMT) can ameliorate disease

states [69]. In addition, acute and chronic infections may

leave traces in the tissue in the form of transient or long-

term adaptation processes that may be imprinted by epi-

genetic modifications such as histone and DNA

modifications and altered miRNA expression profiles.

Infections may thus shape immune responses to heterolo-

gous infections and other challenges at different levels.

Eventually, the tissue may be more responsive, poised to

react more quickly due to a heightened inflammatory state

and, thereby, lowered activation thresholds. Consequently,

the quality of the immune response to new, heterologous

challenges may be altered. In the case of chronic infections,

subsequent immune responses are often impaired [70]. This

may indicate an adaptation process that serves to prevent

immunopathology by downregulation of immunity. More-

over, the type of immune response may be altered due to

changes in the cytokine milieu. As a consequence, the

polarization of DC cytokine and co-stimulatory/co-inhibi-

tory receptor expression profiles can be altered affecting

the polarization of T cell responses induced by these DCs

in local draining lymph nodes, and the reactivity of tissue-

resident memory T cells [11] and of other resident or

infiltrating immune cells. Moreover, alterations in chemo-

kine profiles may impact the type of immune cells that can

be recruited into the tissue. In addition, the existence of

tissue-resident memory T cells may be explained in part by

sustained chemokine production by tissue cells as part of

innate memory-like features [71–73]. The sustained pro-

duction of CCL27 by keratinocytes is one example. Thus,

retention of CCR10 expressing skin homing T cells may

underlie the phenomenon of recall contact dermatitis or

flare-up reactions at the site of the first contact allergen

antigen encounter upon re-challenge with the same contact

allergen at a different site [74–76].
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Adaptation and susceptibility to allergies

Infections influence the susceptibility to allergy and atopy.

This was formulated in the hygiene hypothesis [77]. Today,

it is clear that besides genetic predisposition that correlates

in part with polymorphisms in innate immune receptor

genes such as TLR- and NLR genes [78, 79], exposure to

infectious agents and other environmental factors is a

critical determinant for susceptibility. Epidemiological

evidence shows a correlation of increased hygiene, i.e.,

reduced microbial exposure, and the rise of allergic and

autoimmune diseases [80], but many controversial issues

remain to be investigated further [81, 82]. Exposure to

infections shapes the innate immune system and subse-

quently polarizes the T cell response [83]. Pre-natal

microbial farm exposure as well as early life exposure and

consumption of unprocessed cow’s milk reduces the risk of

asthma development [84]. These exposures correlated with

an upregulation of TLRs and a bias of the T cell response

towards a Th1 rather than a Th2 type [85, 86]. This

adaptation and polarization of the pre-natal and perinatal

immune system was reflected in epigenetic modifications

in asthma candidate genes [87]. Studies in mice have

revealed that specific bacteria such as Acinetobacter lwofii

or Staphylococcus sciuri W620 as contained in stable dusts

in part explain the effects and drive epigenetic modifica-

tions, for example, in Th1/Th2-relevant cytokine genes

[88–91]. In these studies, a protection of the offspring from

airway hyperreactivity was observed when pregnant female

mice were exposed to such bacteria. The effect was

dependent on maternal expression of Toll-like receptors

(TLR) [91, 92]. In addition, intestinal microbiota contrib-

utes to the protective effects [93]. Thus, antibiotic-treated

mice or germ-free mice revealed higher IgE levels and

higher levels of circulating basophils suggesting a role for

the commensal microbiota [94]. Interestingly, mice with a

B cell-specific defect of MyD88 had a similar phenotype

arguing for a contribution of TLR signaling in B cells in

shaping the immune system and determining susceptibility

to allergies. These findings from mouse and human studies

contribute to our understanding of gene–environment

interactions and the influence of hygiene in influencing the

susceptibility for atopic diseases and asthma [95, 96] by

impacting the adaptation and polarization of the innate and,

consequently, adaptive immune response.

In general, immune responses are shaped individually

owing to the fact that our immune system is not naı̈ve and

is modulated transiently or stably by previous or current

experience due to adaptation [97]. The innate immune

system does not only adapt to its exposures by calibration

and heightened reactivity, but also by polarization that

translates into the type of T cell response due to T cell

subset differentiation. Therefore, individually different

immune history and experience and the resulting condi-

tioned tissue or systemic immune microenvironments may

in part explain the differences in disease susceptibility and

responsiveness to therapies as well as overall immune

reactivity. It remains to be determined whether these

parameters are also influenced by the great inter-individual

variability regarding commensal communities that impact

basal calibration and maybe also polarization of the

immune system [27, 98].

In summary, the adaptation of the tissue microenviron-

ment to immune challenges, including pre-natal and

perinatal innate immune stimulation, by microbial expo-

sure can significantly shape immune responses to future

challenges.

Heterologous innate immunity

The innate immune system is typically activated via PRRs.

The most prominent PRR families are the TLRs, NOD-like

receptors (NLRs), C-type-lectin receptors (CLRs) and

RIG-I-like receptors (RLRs) [5, 99–102] and a variety of

DNA sensors [32, 103, 104]. These PRRs recognize a

diverse array of microbial and non-microbial lipids, pro-

teins, nucleic acids or carbohydrates as danger signals. This

broad specificity of PRRs allows the innate immune system

to mount similar responses to a diverse array of pathogens,

thereby ensuring appropriate immune defense as well as

the restoration of tissue homeostasis.

The disadvantage of the restriction of clonotypic TCR-

and BCR expression to single cell lineages and of their

exquisite antigen specificity is the low cell number specific

for a given antigen in primary immune responses. As a

consequence, after an infection the necessity for priming,

differentiation and expansion of the few naı̈ve T- or B cells

with distinct antigen specificity delays an efficient adaptive

immune response by days. This time gap is bridged by the

immediately activated innate immune system. The advan-

tage of the innate PRR system is that the same PRRs can be

found on many different cell types such as innate immune

cells and also on non-hematopoietic tissue cells such as

epithelial and endothelial cells as well as on T- [105] and B

lymphocytes [106]. Different cell types can thus be simul-

taneously activated by the same array of PAMPs, MAMPs

or DAMPs allowing for the generation of a strong and

immediate innate immune response. Due to the triggering of

the same or similar signaling pathways by different PRRs

such as the 10 human and 13 murine functional TLRs,

additive or synergistic triggering of several TLRs by ligands

that may derive from different sources allows for amplifi-

cation of innate immune responses (Fig. 4). This make-up

of the innate immune system provides the basis for heter-

ologous innate immunity.
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Heterologous immunity was originally defined as cross-

reactivity of memory T cells specific for one infectious agent

to a new infectious agent or to alloantigens thereby impact-

ing the outcome of heterologous infections, transplantation

tolerance and autoimmunity [107–109]. It was shown that

cross-reactive T cells can determine the individually differ-

ent outcomes of a heterologous infection. As an example,

mice infected with influenza virus and then later on with

lymphocytic choriomeningitis virus (LCMV) developed

pneumonitis of various degrees. The severity of the disease

directly correlated with the frequency of T cells cross-reac-

tively recognizing epitopes from influenza and LCMV [110].

Heterologous innate immune stimulation can be defined

as the triggering of similar or identical signaling pathways,

for example, via the same or different PRRs, by danger

signals not derived from the original pathogen or agent that

induces innate and often adaptive immunity (Figs. 2, 3). In

the case of co-infections, heterologous innate stimuli can

occur in addition to or instead of the autologous stimuli.

Potential outcomes can be additive or synergistic amplifi-

cation or attenuation/tolerization, substitution,

neutralization (e.g., by antagonism), re-polarization of

immune responses or breaking of tolerance (Figs. 2, 3)

[111, 112]. Another outcome due to a longer-lasting

adaptation of the innate immune system to vaccination can

be an improved ability of the immune system to handle

heterologous infections [61]. These features of the innate

immune system can be beneficial or detrimental.

Heterologous innate immunity may explain the impact

of previous or current acute or of chronic co-infections on

the outcome of innate and adaptive immune responses to a

distinct infection [70, 113] or other assaults. Examples are

the cross talk of Streptococcus pneumoniae, Staphylococ-

cus aureus and influenza virus in lung infections [114,

115]. A recent study demonstrated synergistic lethal effects

of an established influenza infection of mice upon co-

infection with Legionella pneumophila [116]. In this study,

co-infection caused severe damage to the lung tissue. This

was associated with the downregulation of genes involved

in tissue protection and repair specifically in the co-infec-

ted animals. Interestingly, in mice lacking TNF, caspase-1,

TLR2/4, MyD88 or nitric oxide synthase (Nos)2 or after

depletion of Gr-1? or NK1.1? cells the lethality was not

significantly altered. These data demonstrate a synergistic

heterologous effect involving infection-induced tissue

stress and damage responses. Lethality was due to an

irreversible loss of tolerance to tissue damage upon co-

infection. Most interestingly, these effects were indepen-

dent of pathogen burden and the level of innate

inflammation, at least for the parameters measured.

Specificity of the innate immune response

and heterologous innate immunity

The exquisite antigen specificity of clonotypic TCRs on T

cells is illustrated by the ability of human T cells to dif-

ferentiate between the contact allergens 2,4-dinitro-

(DNCB) and 2,4,6-trinitrochlorbenzol (TNCB) [117].

Penicillin-specific human T cells are able to recognize

Fig. 4 Funnel function of TLRs

for innate signaling and

heterologous innate immunity.

Almost all TLRs signal by

assembling a signaling complex

containing the adaptor protein

MyD88. As a result activation

of NF-jB and induction of its

target genes including the

inflammatory cytokines IL-6,

IL-12 and TNF-a occurs. MAP

kinases and interferon

regulatory factors (IRFs) can

also be induced. Other, TLR-

independent innate stimuli may

also trigger the NF-jB pathway
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small differences in the side chains of derivatives of this b-

lactam antibiotic [118]. Clonotypic TCRs also recognize

differences in the amino acid sequence of short antigenic

peptides and amino acid modifications.

Despite the notion that a broad spectrum of molecular

patterns is recognized by PRRs, they also exhibit ligand

specificity. The variety of PRRs recognizes a multitude of

different ligands. Individual PRRs, however, exert speci-

ficity up to the level of recognizing small molecular

differences in ligands, which impact signaling and the

resulting response as revealed by the recognition of lipid A

variants by the TLR4–MD2 complex [119–121] or the

differentiation between fucose and mannose by DC-SIGN

[122]. Nevertheless, many different PAMPs and DAMPs

are assigned as activators to the same TLR. Different

ligand-binding mechanisms have been identified for dif-

ferent TLRs [123]. This may also hold for individual TLRs

and explain the diversity of activating ligands for a single

TLR.

One very important notion is that similar activation and

polarization of DCs with respect to their T cell subset

polarizing properties can be achieved by the autologous or

heterologous stimulation of different PRRs. This is the key

to heterologous innate immune stimulation and allows the

innate immune system to flexibly mount similar immune

responses to various challenges. In addition, the simulta-

neous interplay of different TLRs enables fine tuning of the

response [124, 125].

The ‘‘immunologists dirty little secret’’ [1] describes the

use of heterologous innate immune stimulation in the form

of adjuvants for vaccination. The efficient induction of

memory responses is the goal of vaccination strategies. In

this context, the innate immune system is of great impor-

tance for the design of efficient vaccines [126] due to its

crucial impact on the activation and polarization of adap-

tive immune responses [6, 127]. Few adjuvants are licensed

for clinical use [128]. They include monophosphoryl lipid

A (MPLA) or alum and target TLRs and the NLRP3 in-

flammasome. Other adjuvants that target RLRs and other

nucleic acid sensors are in development [126, 129]. Inter-

estingly, the PAMPs used in vaccines and even more so in

experimental studies are often not derived from the target

pathogens of the vaccination. This demonstrates the prac-

tical relevance of heterologous innate immune stimulation

[130, 131]. Attenuated vaccines, however, use the patho-

gens’ own PAMPs for innate immune receptor signaling

addressing various innate immune receptor families [126].

In addition, live vaccines contain so-called vita-PAMPs

such as bacterial mRNA, which makes them more efficient

than dead vaccines [132]. It will be interesting to study the

impact of the composition of heterologous innate immune

stimuli on the outcome of vaccinations. Including vita-

PAMPs as adjuvants may increase their efficiency.

In addition to triggering T- and B cell responses directed

against the target pathogen, unspecific immune stimulation

has been shown for vaccines such as the tuberculosis

vaccine BCG, measles vaccine and vaccinia virus vaccine

[61]. These positive effects are due to adaptation as a

consequence of heterologous immunity including both

cross-reactive T cells and so-called trained innate immu-

nity [133].

In summary, the rather broad specificity of the innate

immune response regarding the diversity of stimuli that can

trigger similar outcomes explains why heterologous innate

immune stimulation is an important issue to be considered

in our understanding of diseases, of therapeutic immune

interventions and of vaccination strategies.

Role of PRRs in heterologous innate immunity

The broad specificity of the innate immune system is well

illustrated by the diverse array of microbial or endogenous

ligands triggering the different mouse and human TLRs.

These include proteins, lipids, nucleic acids and carbohy-

drates. The immune response resulting from the triggering

of different TLRs is very similar due to the fact that all

TLRs except for TLR3 signal via the adaptor protein

MyD88 to activate NF-jB and MAP kinase signaling.

TLR4 and TLR3 also signal via the adaptor Trif to induce

type I IFNs [5, 28]. Likewise, the great variety of activators

for the NLRP3 inflammasome triggers caspase-1 activation

and processing of immature pro-IL-1b and pro-IL-18 to

their bioactive and secreted forms [134, 135]. RIG-I and

MDA5, cytosolic RLRs recognizing RNA from many dif-

ferent sources, signal via the adaptor MAVS to activate

NF-jB and IRF3 signaling pathways [136] and the NLRs

NOD1 and NOD2 engage the adaptor proteins RIP2 and

CARD9 to signal via NF-jB and MAPK and AP1,

respectively [137, 138]. Thus, the huge variety of PAMPs

and DAMPs elicits similar innate immune responses due to

a funnel function of the PRR families that focus the per-

ception of exogenous and endogenous danger signals on a

limited number of signaling pathways driving the innate

inflammatory response (Fig. 4). For this reason, different

combinations of PAMPs and PRRs can result in similar

innate inflammatory responses. With respect to the acti-

vation and polarization of T cell responses by DCs, this

also implies that different TLRs on a given DC can be

triggered to yield the same polarized T cell response. The

make-up of the innate immune system, therefore, allows

for a complete uncoupling of innate and adaptive speci-

ficities. This means that the DC that primes and polarizes

an antiviral or antibacterial T cell response does not nec-

essarily have to be activated by danger signals represented

by PAMPs derived from the pathogen that the T cell
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response is directed to. Heterologous innate immune

stimulation may substitute for the autologous PAMPs

(Fig. 4). This notion has a number of implications includ-

ing additive or synergistic effects of the simultaneous

triggering of several TLRs [124]. This may allow over-

coming activation thresholds not reached by weak

stimulation of a single TLR. In addition, TLR-independent

heterologous stimuli can play an important role by trig-

gering the same or other pro-inflammatory innate signaling

pathways (Fig. 4).

Heterologous innate immune stimulation and contact

dermatitis

Heterologous innate immune stimulation has many impli-

cations regarding its potential outcomes (Figs. 2, 3)

including the substitution of missing autologous innate

stimuli or the amplification of autologous stimuli as

exemplified for ACD [111, 112, 139], a sterile inflamma-

tory response induced by protein-reactive metal ions and

organic chemicals, but they should be of general impor-

tance for immune reactions. ACD is a hypersensitivity

reaction of the skin to chemicals. The main effector cells

are T cells of the CD4? Th1/Th17 and CD8? Tc1/Tc17

subsets. Contact allergens differ in their allergenic potency

as determined, for example, in the local lymph node assay

(LLNA) by their ability to induce cell proliferation in skin

draining lymph nodes following repeated epicutaneous

application [140]. The potency seems to correlate with

chemical reactivity and the strength of the innate inflam-

matory response that is induced and translated into the

vigor of the T cell response and the allergic reaction [141].

Contact allergens activate the innate immune system

directly or indirectly. Direct activation of human TLR4

was shown for nickel and cobalt. These metal ions bind to

histidine residues that are present in human but not mouse

TLR4 leading to TLR4 dimerization that is essential for

signaling, which occurs in the absence of LPS [142, 143].

Palladium also seems to activate human TLR4 [144]. As

shown in the contact hypersensitivity (CHS) mouse model,

indirect PRR activation by organic chemicals such as

TNCB and oxazolone depends on the generation of

endogenous danger signals. This was shown for the trig-

gering of TLR2 and TLR4 by fragments of the ECM

component HA [145, 146] and for the NLRP3 inflamma-

some via extracellular ATP and signaling via the purinergic

receptor P2X7R [147–149]. ROS are also induced by

contact allergens and are required for CHS [146]. Similar

pathways are triggered by acetaminophen in drug-induced

liver injury (DILI) [111, 150].

Activation thresholds for the innate immune system are

often not reached by potential contact allergens and

sensitization, i.e., the priming of contact allergen-specific T

cells does not occur. In order to exceed the threshold and to

induce sensitization to such allergens repeated or chronic

exposure may result in cumulative inflammatory stimuli. In

addition, heterologous innate immunity is of great impor-

tance (Fig. 1) [12, 113]. Thus, additive or synergistic effects

by the combination of different contact allergens or aller-

gens and irritants may result in (facilitated) sensitization.

Examples are the amplification of proliferative responses to

sub-sensitizing concentrations of the strong contact allergen

DNCB by sodium dodecyl sulfate (SDS) [151], amplifica-

tion of sub-threshold inflammation of suboptimal, non-

sensitizing doses of TNCB by oxazolone [152] or the

observed amplification effects in human ACD due to

combinations of weak contact allergens such as fragrances

or of contact allergens and irritants [153–155]. Toxicolog-

ical hazard identification and risk assessment are mostly

performed with single substances. However, heterologous

innate immune stimulation must be considered whenever

substances are combined. Consumer products such as cos-

metics are usually complex mixtures and formulations.

Similar aspects apply to some drugs. In addition, consumers

and patients often simultaneously use several products and

drugs, respectively. Due to the fact that the contact allergen

that induces sensitization does not necessarily have to

provide the autologous innate stimuli that appropriately

activate and polarize the antigen-presenting DCs, heterol-

ogous stimuli can amplify insufficient or substitute for

absent contact allergen-dependent innate immune stimula-

tion. Thus, even non-allergens such as irritants or infections

may provide such stimuli (Fig. 3). Examples are the con-

version of nickel, a non-allergen in mice, to an allergen by

providing exogenous danger signals such as PAMPs like

LPS (Fig. 5a) or the irritant SDS [156, 157] or the con-

version of the weak contact allergen/tolerogen 2,4-

dinitrothiocyanobenzene (DNTB) into an allergen by

addition of SDS [158]. Interestingly, the combination of the

antibiotic amoxicillin with TLR ligands results in a signif-

icant increase in DC maturation, IL-12 production and T

cell proliferation in vitro, mainly with cells from patients

with DTH responses to the drug [159]. This suggests that

drug-induced maculopapular exanthema reactions may be

exacerbated by heterologous innate stimuli.

The findings in the CHS model demonstrate that heter-

ologous innate stimuli can substitute for missing

autologous innate stimuli, thereby leading to innate

immune responses or the breaking of immune tolerance, or

amplify autologous innate stimuli leading to stronger

immune responses.

In the CHS model, sensitization can be restored in CHS-

resistant TLR4/IL-12Rb2 mice by heterologous innate

stimuli. Their DCs lack sensitizing capacity when injected

into the skin of wild-type mice [145]. However,
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heterologous innate stimulation of TLR4/IL-12Rb2 DCs by

in vitro pre-treatment with the TLR9 ligand CpG-oligo-

deoxynucleotide (CpG-ODN) or by direct skin injection of

CpG-ODN into TLR4/IL-12Rb2 deficient mice prior to

epicutaneous sensitization with TNCB (our unpublished

data) restored sensitization and CHS. Thus, lack of TLR2/4

signaling or TLR4/IL-12Rb2 signaling can be compensated

by heterologous innate immune stimulation via TLR9

(Fig. 5b). These data illustrate that heterologous innate

immune stimulation can overcome genetic resistance to

ACD.

The importance of appropriate and sufficient innate

immune stimulation is obvious. Activation and full matu-

ration of DCs crucially depends on innate immune stimuli.

In the absence of such stimuli or in the presence of

insufficient stimulation, DCs may remain immature or

semi-mature. If they then present antigens to T cells anergy

or Treg can be induced [160–162]. This knowledge is used

for the targeting of antigen to immature DCs in the absence

of innate stimulation for the induction of tolerance [163,

164]. In the presence of TLR ligands immunity is effi-

ciently induced or enhanced [165]. In the case of contact

allergens, the use of sub-sensitizing doses results in low

zone tolerance, i.e., antigen presentation to T cells on tol-

erogenic DCs most likely due to absent or insufficient

innate immune stimulation [166]. In this case, heterologous

innate immune stimulation might result in the breaking of

tolerance (Fig. 2).

These findings also indicate how heterologous innate

immune stimulation can be used to manipulate immune

responses. Thus, adjuvants can break tolerance while the

lack of appropriate innate immune stimulation can result in

tolerance. This opens the possibility to use stimulatory or

tolerogenic adjuvants or to interfere with innate immune

stimulation and, in addition, to exploit adjuvants that

impact the T cell polarizing potential of DCs. For example,

certain ligands for TLRs, NLRs or CLRs in fact drive DC

to induce Th2 responses [167]. Moreover, the strength of

the innate stimulus may be varied to achieve tolerization

rather than immunity or to control the magnitude of the

immune response.

A recent dramatic example for the relevance of heter-

ologous innate immune stimulation was provided for LPS-

mediated sepsis. A TLR4-independent, lipid A-mediated

non-canonical pathway for caspase-11-dependent activa-

tion of the NLRP3 inflammasome and pyroptosis was

identified. Intracellular sensing of LPS resulted in py-

roptosis. This required priming of the NLRP3

inflammasome via TLR4. In a mouse model, TLR4-defi-

cient mice were resistant to LPS-induced sepsis. However,

when priming was performed by heterologous innate

immune stimulation using the TLR3 ligand poly I:C, the

mice succumbed to TLR4-independent LPS-induced sep-

sis due to NLRP3-mediated pyroptosis [168, 169]. Thus,

co-infections or trauma that produces PAMPs or DAMPs,

which trigger other TLRs, can turn resistance into sus-

ceptibility. These findings impressively demonstrate the

relevance of heterologous innate immune stimulation.

They also have potential clinical relevance with respect to

therapeutic approaches that solely target TLR4 in septic

shock.

Fig. 5 Loss of resistance to CHS due to heterologous innate immune

stimulation. a Nickel ions cannot bind to murine TLR4 (mTLR4) and

mice are therefore resistant to CHS. Addition of LPS, however, can

trigger mTLR4 and provide a heterologous stimulus that renders mice

susceptible to Ni2?-induced CHS. b Mice lacking TLR2 and TLR4

are resistant to TNCB-induced CHS. Heterologous triggering of

TLR9 by CpG-ODN renders these mice susceptible to CHS
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As for delayed-type hypersensitivity (type IV allergy)

such as ACD, heterologous innate immune stimulation

should also be relevant for IgE-mediated immediate-type

hypersensitivity (type I allergy) such as rhinitis and asthma.

Pollen from many different plant species can cause type I

allergies. The reactivity of B cells and T cells is highly

specific for distinct epitopes from pollen proteins. As for

type IV allergies, innate immune system activation is

required for the allergic response. In recent years, it has

become clear that pollens are not only allergen carriers but

contain lipid mediators, enzymes such as NADPH oxidases

and other compounds such as adenosine that can trigger,

promote and polarize innate inflammatory responses [170].

Again here, the co-occurrence of different pollen species or

pollen in the context of other heterologous innate immune

stimulants may lead to the amplification of innate immune

responses or the conversion of non-allergenic pollen into

allergenic pollen due to heterologous innate immune

stimulation based on the uncoupled specificities of the

innate and adaptive immune response.

Conclusion

The innate immune system is able to adapt in response to

commensals, infection, xenobiotic chemicals and other

assaults. Its activation threshold is established in a calibra-

tion process that integrates signals from commensal bacteria

and most likely from endogenous danger signals. Upon its

activation, both innate immune cells and tissue cells may

acquire a state of heightened reactivity due to adaptation

processes that may be imprinted by epigenetic modifications

and lead to trained innate immunity. This (pre-)conditioning

of the tissue microenvironment and the context in which a

pathogen or a chemical is acting on the immune system

crucially influences the quality and quantity of the resulting

immune response. Due to individually different immune

histories, the thresholds for induction of innate inflammatory

and adaptive immune responses may vary individually and

over time as a consequence of potentially dynamic calibra-

tion and adaptation processes [16, 27]. In addition,

individually different tissue- and organ-specific thresholds

may be established. These may explain, for example, dif-

ferent organ involvements in patients with adverse reactions

to the same drugs. These complexities make predictions of

individual risks very difficult unless reliable biomarkers that

reflect the current immune status can be identified.

The rather broad specificity of the PRR families and

their signaling via common pathways enables heterologous

innate immune stimulation. This can significantly impact

the outcome of innate and, subsequently, adaptive immune

responses in a beneficial or detrimental manner. These

design features of the innate immune system help to

understand how individual immune experience can shape

the immune system and impact future immune responses

with regards to quality and quantity, individual immune

fitness and susceptibility to diseases.

Possible manipulations of the innate immune system

may include the lowering or heightening of activation

thresholds to increase responsiveness or prevent hyper-

sensitivity, respectively. Heterologous innate immune

stimulation can be used to optimize vaccinations, to

amplify or attenuate immune responses, to change the

polarization of immune responses and to induce tolerance.

Therefore, a more detailed understanding of the mecha-

nisms underlying calibration, trained immunity and

heterologous innate immunity is needed. This can be

exploited for the prevention and therapy of diseases and the

improvement of vaccination strategies.
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