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Fibronectin: elements of the scaffold

Fibronectin (Fn) is a high molecular weight glycoprotein 
that consists of three types of repeating amino acid units, 
named type I, type II, and type III repeats (Fig.  1). The 
structure of Fn depends on whether it is secreted in plasma 
or synthesized by resident cells. Plasma Fn (pFn) is pro-
duced by hepatocytes, and present in human blood at a con-
centration of 300 μg/ml [1, 2]. Cellular Fn (cFn) contains 
the alternatively spliced extra domain A (EDA) and/or extra 
domain B (EDB) (nomenclature for humans; for rodents: 
EIIIA and EIIIB). In addition, a third alternatively spliced 
domain, the IIICS domain (for rodents: the V-region), can 
be included, but regulations for its inclusion have not been 
fully discovered yet. pFn and cFn are secreted as a dimer, 
in which both subunits do not have to contain the same 
alternatively spliced variants. Physiological Fn monomers 
and dimers will hereafter be referred to as “native Fn”. The 
main Fn receptors comprise a variety of integrin receptors 
(Fig. 1) [3]. In addition, Fn binds other extracellular matrix 
(ECM) molecules, including heparin, collagen, and fibrin, 
and together these protein networks form the ECM [4].

The main function of Fn is to serve as a scaffold for cell 
adhesion and migration, thereby also regulating cell pro-
liferation and differentiation [4, 5]. These functions are 
supported by a variety of small proteins, such as growth 
factors, when they accumulate in the Fn network, increas-
ing their concentration locally. Hence, these small mol-
ecules can be regarded as “the builders” on a scaffold of 
ECM including Fn, although Fn itself also stimulates tis-
sue regeneration. The Fn matrix is essential for normal 

Abstract  Tissue injury initiates extracellular matrix mol-
ecule expression, including fibronectin production by local 
cells and fibronectin leakage from plasma. To benefit tis-
sue regeneration, fibronectin promotes opsonization of tis-
sue debris, migration, proliferation, and contraction of cells 
involved in the healing process, as well as angiogenesis. 
When regeneration proceeds, the fibronectin matrix is fully 
degraded. However, in a diseased environment, fibronectin 
clearance is often disturbed, allowing structural variants to 
persist and contribute to disease progression and failure of 
regeneration. Here, we discuss first how fibronectin helps 
tissue regeneration, with a focus on normal cutaneous 
wound healing as an example of complete tissue recovery. 
Then, we continue to argue that, although the fibronectin 
matrix generated following cartilage and central nerv-
ous system white matter (myelin) injury initially benefits 
regeneration, fibronectin clearance is incomplete in chronic 
wounds (skin), osteoarthritis (cartilage), and multiple scle-
rosis (myelin). Fibronectin fragments or aggregates per-
sist, which impair tissue regeneration. The similarities in 
fibronectin-mediated mechanisms of frustrated regenera-
tion indicate that complete fibronectin clearance is a pre-
requisite for recovery in any tissue. Also, they provide 
common targets for developing therapeutic strategies in 
regenerative medicine.

J. M. J. Stoffels · W. Baron (*) 
Department of Cell Biology, University of Groningen,  
University Medical Center Groningen, Antonius Deusinglaan 1, 
9713 AV Groningen, The Netherlands
e-mail: w.baron@umcg.nl

C. Zhao 
Wellcome Trust—Medical Research Council Stem Cell  
Institute and Department of Veterinary Medicine, University  
of Cambridge, Madingley Road, Cambridge CB3 0ES, UK



4244 J. M. J. Stoffels et al.

1 3

embryonic development [6]. In healthy adult tissue, Fn is 
expressed at low levels. Transient Fn (re)-expression by 
plasma leakage and synthesis from resident cells is a com-
mon “default” response of tissue injury, ranging from skin 
wounds to joint inflammation [7] and myelin degradation 
(demyelination). Here, we discuss first how this temporary 
Fn matrix facilitates tissue regeneration, with a focus on 
normal cutaneous wound healing as an example of com-
plete tissue regeneration. Next, we review how in osteoar-
thritis (OA) and multiple sclerosis (MS), clearance of the 
Fn matrix is disturbed, and contributes to failure of tissue 
regeneration via distinct mechanisms.

The fibronectin scaffold helps to rebuild tissue:  
focus on cutaneous wound healing

Wounds are defined as disruption of the normal anatomical 
structure and function of tissue. The wound-healing pro-
cess is the physiological response to wounding in any tis-
sue. Therefore, when we discuss how Fn benefits cutaneous 
wound healing, these functions equally apply to other tissues, 
although detailed features vary between tissue types [8]. In 
cutaneous wounds, regeneration involves (a) hemostasis and 
inflammation to provide temporary closure of the defect, (b) 
migration and proliferation of epithelial cells to replace the 
temporary seal, and (c) maturation and remodeling of the 
new epithelium and angiogenesis (reviewed, among many 
others, in [8–10]). Fn is involved in each of these steps to 
a greater or lesser extent (extensively reviewed in [11–13]).

On skin injury, a temporary Fn matrix (“the Fn scaf-
fold”) originates from plasma leakage and cellular expres-
sion. First, whole blood containing pFn leaks from the 
disrupted vessels and pFn is a major component of the 
subsequently formed hemostatic clot, although pFn is not 
essential for normal hemostasis [14]. Hemostatic thrombi 
are, however, more stable with pFn than without [15]. The 
hemostatic clot provides the basis of a provisional matrix, 
which also contains fibrin and other plasma proteins. The 
provisional matrix secures additional hemostasis, and 
assists migration and proliferation of epithelial cells. The 
presence of pFn in this matrix is not essential for normal 
wound healing [14], which is explained by compensatory 
actions of cFn. For as soon as a few hours after wounding  
[14], cells start to deposit Fn in the provisional matrix. 
Initially, mainly platelets secrete cFn [14], followed by 
macrophages, then fibroblasts [16], and possibly endothe-
lial cells [17]. In addition, neutrophils express Fn mRNA 
at 24  h [17], but are negative again at 2  days after skin 
wounding [16]. Therefore, neutrophils also contribute to 
initial cFn expression early after wounding. Analogous 
to cutaneous wounds, a temporary Fn matrix is gener-
ated on cartilage damage [18] and myelin damage (demy-
elination) in the central nervous system (CNS) [19–23]. 
In these injuries, Fn leaks from plasma [19, 20] and is 
secreted by resident chondrocytes in cartilage [24, 25], 
and resident astrocytes, microglia, and endothelial cells in 
the CNS [23]. Therefore, the generation of a temporary 
Fn scaffold with pFn and cFn is a common response to 
tissue injury.

Fig. 1   Structure of fibronectin and major fibronectin fragments that 
are generated in osteoarthritis. The yellow circles represent type I, the 
blue ellipses type II, and the red circles type III repeats. The alterna-
tive splice variants are referred to as “A” for the EDA/EIIIA domain, 
“B” for the EDB/EIIIB domain, and V for the IIICS/V-region. Pro-
tein interaction sites are depicted above the linear structure, integrin  

binding sites below. PSHRN and RGD refer to these specific fibronec-
tin domains. Four main fibronectin fragments with catabolic potential 
in osteoarthritis (OA) are shown under the double-headed arrows. The 
arrows correspond to the cleaving sites of these fragments. Adapted 
from [4, 48, 149]
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Functions attributed to the transient Fn matrix include 
stimulation of: (a) coating and ingestion (opsonization) 
from tissue debris by inflammatory cells, (b) migration and 
proliferation of regenerating cells via chemo- and/or hapto-
taxis, and (c) angiogenesis (for cutaneous wounds reviewed 
in: [9, 11, 13, 26]). Fn functions are similar among differ-
ent tissue injuries, but mechanisms are best described in 
cutaneous wound healing. Fibroblast migration in wound 
healing requires functional RGD, heparin II, and cFn IIICS 
domains [27] (Fig. 1), and is promoted by EIIIA from cFn 
via β-catenin [28] and integrin α9β1 for keratinocytes [29]. 
Further, myofibroblast differentiation is stimulated by 
EIIIA [30] via integrin α4β7 [31]. In fact, EIIIA is essential 
for normal wound contraction in mice as shown via EIIIA 
knockout [32], although in mice from a different genetic 
background, EIIIA knockout did not impair wound heal-
ing [33]. Without EIIIB, mouse rib fractures heal normally, 
but more specific experiments are required to confirm its 
redundancy in cutaneous wound healing, especially since 
fibroblast proliferation and Fn matrix assembly in vitro are 
slightly reduced on EIIIB knockout [34].

Before tissue regeneration is completed, the Fn matrix is 
cleared. However, if Fn persists, this correlates to chronic 
failure of regeneration. In cutaneous wounds, analysis of 
wound fluid from human chronic venous ulcers showed 
persistence of Fn-degradation products, possibly as a result 
of increased matrix metalloproteinase 9 (MMP-9) activity 
[35, 36]. Certainly, failure of tissue regeneration is medi-
ated by many factors, including changes in expression of 
growth factors, cytokines, and matrix proteins as well 
as receptor expression patterns, and tissue oxygen levels  
[37, 38]. Therefore, a structurally altered Fn matrix will 
only contribute to failure of regeneration in a complex 
interplay with changes in other factors, but nonethe-
less mediates tissue damage. Fn-degradation products in 
chronic venous ulcers, for example, likely stimulate neutro-
phil degranulation [39], and EIIIA activates Toll-like recep-
tor 4 (TLR4) on inflammatory cells. This TLR4 stimulation 
may help opsonization of tissue debris at first, but eventu-
ally results in chronic inflammation [40, 41]. Interestingly, 
Fn fragments have also been implicated in OA disease pro-
gression, which will be discussed next.

Osteoarthritis: fibronectin fragments contribute  
to cartilage damage

OA is characterized by articular cartilage damage, resulting 
in joint destruction. The pathophysiology of OA is not fully 
understood. The current pathogenesis concept is based on 
increased cytokine and chemokine activation as a result of 
many factors, including ageing and chronic wear and tear 
on cartilage. In this concept, cytokines and chemokines 

contribute to protease production by chondrocytes, and 
inhibition of cartilage synthesis. This damages articular 
cartilage, and eventually also joint synovium, ligaments, 
tendons, and muscles [42, 43], causing pain and impair-
ment of motility. The Fn matrix that is generated on the 
initial cartilage injury is not completely degraded in OA. 
As a result, Fn fragments contribute to (a) persistent local 
inflammation via innate immune system activation, and (b) 
direct cartilage damage.

Local joint inflammation results from Fn persistence 
in several ways. First, after Fn is degraded into multiple 
fragments by proteases (Fig. 1), Fn binds the C1q compo-
nent of the complement system [44, 45], likely resulting in 
chronic stimulation of leukocytes. Secondly, the fragment 
containing EIIIA stimulates TLR4, as discussed above in 
the context of complicated wound healing [40, 46]. How-
ever, although the roles of EIIIA–TLR4 interactions in 
chronic wounds remain hypotheses based on in vitro stud-
ies, there is more evidence for the significance of this bind-
ing for joint damage. Injecting EIIIA-containing fragments 
into joints of mice results in joint swelling through the 
release of pro-inflammatory cytokines from mast cells [41]. 
Therefore, although innate immune system activation by 
Fn initially facilitates tissue debris clearance on cartilage 
damage, non-degraded Fn fragments contribute to chronic 
synovial inflammation in OA.

Cartilage damage in OA (and in rheumatoid arthritis) 
is also mediated by Fn fragments via suppression of sul-
fated proteoglycans, and via stimulation of chondrocytes 
and synovial fibroblasts to secrete catabolic cytokines 
and MMPs. The four major characterized Fn fragments 
include a 29-kDa heparin-binding fragment, a gelatin-
binding fragment, a cell-binding fragment, and a 40-kDa 
heparin-binding fragment [47, 48] (Fig. 1). These Fn frag-
ments are present at high levels in synovial fluid from OA 
patients [49], and in human osteoarthritic cartilage [50]. Fn 
fragments result from degradation of the Fn matrix, medi-
ated by MMP-1, -3, -8, and -13 and by the aggrecanases 
ADAMTS-4 and -5 [48, 51, 52]. Native Fn has no adverse 
effects on cartilage, and low concentrations of Fn frag-
ments show anabolic effects [53]. However, at higher con-
centrations, Fn fragments stimulate cartilage chondrolysis 
in vitro [54, 55] via different effector molecules and differ-
ent pathways.

First, Fn fragments contribute to release of pro-inflam-
matory cytokines. These include IL-1, TNF-α, and IL-6 in 
cultured human cartilage for the 29-kDa heparin-binding 
fragment [56], and IL-6, IL-8 [57], and IL-7 [58] in human 
articular chondrocytes for the cell-binding fragment. 
These cytokines subsequently stimulate MMP expression 
from chondrocytes, including MMP-1, -2, -3, -9, and -13 
[59–62], which enhance cartilage degradation. For exam-
ple, chondrocytes release MMP-3 on stimulation with the 
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29-kDa heparin-binding fragment, but blocking antibodies 
to TNF-α, IL-1, and IL-6 suppress this release [56]. Activa-
tion of some of these cytokines and MMPs is mediated by 
the nuclear factor-κB (NF-κB) transcription pathway [57], 
whereas activation of others involves mitogen-activated 
protein kinase (MAPK) pathway activation (reviewed in 
[47]).

Secondly, Fn fragments induce MMP expression 
directly via cell surface receptors. For example, the 40-kDa 
heparin-binding fragment stimulates MMP release from 
chondrocytes via upregulation of NF-κB through the 
phosphoinositide-3-OH kinase (PI3K)/Akt pathway and 
the CD44 hyaluronan receptor [61, 63]. Interestingly, the 
same heparin-binding fragment also binds TLR4 to initi-
ate aggrecanase release from chondrocytes [64]. The cell-
binding Fn fragment binds integrin α5β1 on chondrocytes 
and fibroblasts, which induces the secretion of MMP-13 
and degradation of cartilage [59, 65, 66]. This interaction 
requires reactive oxygen species as second messengers 
[67]. Although native Fn also binds to integrin receptors, 
native Fn stimulation does not cause a catabolic response 
from chondrocytes. This contrast can be explained by the 
hypothesis of “Fn-integrin imbalance”. According to this 
hypothesis, Fn fragments alter normal Fn signals in chon-
drocytes by binding to distinct integrin receptors, but at the 
same time not binding to others. Therefore, chondrocytes 
perceive signals from altered clusters of integrins, and this 
initiates a catabolic response in OA [59, 68, 69]. Further, 
Fn fragments expose cryptic binding sites, which also 
explains the altered signaling compared to native Fn.

Thirdly, besides stimulation of cytokine and subsequent 
proteinase (MMP) production, Fn fragments, such as the 
29-kDa heparin-binding fragment, damage cartilage via 
suppression of cartilage matrix synthesis, including sul-
fated proteoglycans [53, 70]. Also, the heparin-binding 
Fn fragment spanning the COOH-terminal induces an 
enhanced release of the free radical nitric oxide (NO) [71]. 
Although most of the data discussed are generated in vitro, 
additional in vivo studies show that injection of Fn frag-
ments into rabbit knee joints results in cartilage destruction 
and joint swelling, resembling OA in humans [70, 72].

In order to reverse Fn fragment-mediated cartilage 
destruction in OA, and perhaps also rheumatoid arthritis, 
the following designs may be considered: (a) prevention 
of Fn fragmentation, (b) clearance of Fn fragments, and  
(c) by-pass of harmful Fn fragment signals. Attempts at by-
passing Fn fragment signals is, to our knowledge, the only 
approach to have been tested so far. Anti-oxidants, includ-
ing N-acetylcysteine, glutathione, and allopurinol, increase 
proteoglycan levels on Fn fragments as a result of a reduc-
tion of the catabolic cytokines TNF-α, IL-1, and IL-6 in 
vitro [73, 74]. Glucosamine and chondroitin sulfate mix-
tures also increase proteoglycan levels after Fn fragment 

administration to cultured cartilage [75]. Despite these 
modest, favorable effects on the damage caused by Fn frag-
ments, none of these agents are currently used in clinical 
treatments of OA. Another agent, hyaluronan, is in clinical 
use for OA, mainly because patients” pain and joint func-
tion can improve on this drug [43]. One of the underlying 
mechanisms for its benefit could comprise preventing the 
catabolic effects of Fn fragments, because on Fn fragment 
injection into rabbit joints, hyaluronan upregulates proteo-
glycan levels and improves histological disease character-
istics [72]. In addition, after treatment with Fn fragments, 
hyaluronan promotes proteoglycan levels, and decreases 
NO levels in cultured human articular cartilage from OA 
patients [76, 77]. Whether hyaluronan contributes to struc-
tural cartilage improvement in OA needs yet to be estab-
lished in human patients.

Multiple sclerosis: fibronectin aggregates inhibit 
regeneration of myelin

MS is a chronic disease of the CNS. Although the patho-
genesis is unknown, many factors are recognized to play 
a role in MS onset, including genetics and environmen-
tal factors, such as cigarette smoking, Epstein–Barr virus 
infection and vitamin D levels [78]. Pathological hallmarks 
are CNS inflammation, myelin degeneration (demyelina-
tion) and axonal loss, which clinically reflect as neuro-
logical disability. Progression of MS occurs in distinct 
patterns, ranging from rapid accumulation of disability in 
primary and secondary progressive MS to episodes of ful-
minant inflammation and recovery in relapsing-remitting 
MS. On demyelination, regeneration of myelin (remyeli-
nation) is attempted by oligodendrocyte progenitor cells 
(OPCs), which can differentiate into myelin-forming oli-
godendrocytes. However, remyelination ultimately fails in 
MS, despite the presence of OPCs [79, 80], leaving axons 
unprotected by myelin sheaths, and therefore vulnerable 
to further degeneration [81–83]. Temporary, dimeric Fn 
expression occurs on demyelination, but Fn aggregates in 
MS lesions [23]. Persistence of Fn, likely in the form of 
Fn aggregates, is involved in the pathology of chronic MS 
via (a) (chronic) stimulation of inflammation, and (b) direct 
inhibition of OPC maturation to oligodendrocytes (Fig. 2).

Inflammation in MS involves, among others, the entry of 
immune cells to the brain, and the pathological activation of 
CNS-resident microglia. Leukocyte invasion to the brain in 
relapsing-remitting MS requires migration across the blood–
brain barrier. The blood–brain barrier contains endothelial 
cells and astrocytes [84], expressing Fn [20, 85]. In order 
to cross the blood–brain barrier, leukocytes express integrin 
α4β1, which mainly binds to vascular cell adhesion mol-
ecule 1 (VCAM1) [86], but also to the CS1-peptide, which 
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is a domain of Fn (a site within the IIICS-region) (Fig. 1) on 
endothelial cells, or can be expressed independently of Fn on 
astrocytes [87, 88]. The α4β1-Fn CS1 interaction is blocked 
by natalizumab, an approved drug for relapsing-remitting 
MS that was designed to prevent leukocytes from binding 
to VCAM1 [85]. Also, interferon β-1b, another drug for 
relapsing-remitting MS, inhibits the ability of T-lymphocytes 
to migrate via Fn on endothelial cells [89]. Therefore, Fn on 
endothelial cells contributes to leukocyte invasion in relaps-
ing-remitting MS. Although cell migration and proliferation 
on Fn usually benefit tissue regeneration, these examples 
demonstrate that such physiological functions contribute to 
pathology under inappropriate circumstances. Of note, stim-
ulation of cell proliferation by Fn also becomes pathologi-
cal in cancer metastases, when cancer cells invade new tissue 
and proliferate there [90–92]. Further, Fn contributes to MS 
inflammation by instructing the CNS resident microglia and, 
possibly, invaded macrophages. Fn interacts with integrin 
α5β1 on microglia to enhance MMP-9 secretion [93]. Also, 
Fn may bind to TLR4 on microglia, as has been suggested 

for wound healing and OA before. Expression of TLR3 and 
-4 is upregulated in human MS lesions [94], with TLR4 
primarily localized to microglia [94, 95]. In vitro, pFn acti-
vates microglial cells to secrete pro-inflammatory cytokines, 
including IL-1β [96], TNF-α, CXCL1, CCL3, and CCL5, 
and enhances phagocytosis by microglia [97]. Because these 
effects depend on the presence of MyD88, they likely result 
from TLR4 stimulation. Interestingly, in these studies, pFn 
was examined, suggesting that pFn contributes to TLR4-
stimulation as well as EIIIA-containing Fn fragments [40]. 
Immune activated microglia likely facilitate remyelination 
in MS. For example, phagocytosis of myelin debris is neces-
sary for complete remyelination [98] and moderate inflam-
matory activity enhances remyelination [99, 100]. Also, 
macrophage/microglia activation by pFn is neuroprotective 
in traumatic brain injury [101]. However, TLR4 stimulation 
by LPS induces indirect loss of OPCs and oligodendrocytes 
and neurodegeneration in vivo [95, 102]. Therefore, the 
overall effects of Fn–microglia interactions in MS remain to 
be established, as well as the effects of Fn aggregates.

Fig. 2   On central nervous system injury in multiple sclerosis, 
improper fibronectin degradation is related to failure of remyeli-
nation and disease progression. Myelin injury initiates fibronectin 
(Fn) expression from plasma leakage, and secretion by astrocytes, 
macrophages/microglia, and endothelial cells (depicted from top to 
bottom, respectively). This Fn matrix promotes myelin regeneration 

via different mechanisms, including stimulation of oligodendro-
cyte progenitor cell (OPC) migration and proliferation. Complete 
removal of the Fn matrix corresponds to remyelination, whereas 
Fn aggregates mediate failure of remyelination by impairing OPC 
differentiation, and possibly via continuous macrophage/microglia 
activation
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Fn also directly affects OPCs. OPCs express a variety 
of integrin receptors during the (re)myelination process, 
including the Fn receptors αvβ1, αvβ3, αvβ5, and αvβ8 
[103–105]. In vitro, coatings of pFn stimulate integrin 
αvβ1 to enhance OPC migration [106, 107]. In addition, 
αvβ3 integrin stimulation by physiological levels of plate-
let-derived growth factor A (PDGF-A) and Fn enhances 
OPC proliferation [108]. Further, integrin αvβ5 signaling is 
important for OPC differentiation [104]. These studies indi-
cate that Fn promotes recruitment of OPCs in the demyeli-
nated area via αvβ1, αvβ3, and αvβ5 integrins, benefiting 
remyelination. However, in vitro myelin formation of OPCs 
is impaired on pFn, mediated by β1-integrin signaling and 
mislocalized MMP-9 activity [109–111]. This impairment 
of OPC maturation initially plays a useful role in remyeli-
nation because it allows for precise timing of the remyeli-
nation process [82]. However, as soon as OPC recruitment 
has been completed, αv integrin expression decreases [112] 
and the Fn matrix should be degraded, allowing OPCs to 
proceed to form myelin. Indeed, downregulation of Fn 
precedes remyelination on toxin-induced demyelination 
[22, 23, 105]. In contrast, in chronic relapsing experimen-
tal autoimmune encephalomyelitis (cr-EAE), an animal 
model for relapsing-remitting MS, Fn aggregates in the 
lesion areas. Fn aggregates also persist in chronic demyeli-
nated MS lesions, and inhibit CNS remyelination on toxin-
induced demyelination in vivo [23]. The mechanism for 
remyelination impairment needs yet to be established, but 
could comprise the perturbation of oligodendrocyte process 
outgrowth, myelin-membrane-directed vesicular transport, 
and membrane microdomain formation, as has been shown 
for pFn [110, 111, 113, 114].

How Fn aggregates are formed in MS warrants further 
investigation. Organization of Fn into fibrils (fibrillogen-
esis) and, ultimately, assembly into a three-dimensional 
matrix is a well-balanced process during tissue develop-
ment and regeneration (extensively reviewed in [115, 116]). 
Fn aggregation, as defined by deoxycholate (DOC)-insol-
ubility, is likely the result of strong, noncovalent protein–
protein interactions [117, 118] (our unpublished observa-
tions), and participation of other extracellular proteins in 
this matrix [118]. Fn aggregation may be appropriate dur-
ing initial stages of tissue regeneration [115, 116, 119]. 
However, excessive Fn deposition and inappropriate remod-
eling contribute to scarring and fibrosis, and frustrate com-
plete tissue regeneration [116, 120]. Under physiological 
circumstances, maintenance of the Fn matrix requires con-
tinuous Fn synthesis by cells [121], but in MS, Fn mRNA 
levels were undetectable in chronic demyelinated lesions, 
where Fn aggregates nonetheless persisted [23]. This sug-
gests that inappropriate remodeling, rather than continu-
ous Fn deposition, is crucial for Fn aggregation in MS 
lesions. Fn remodeling into aggregates is likely mediated 

by self-assembly, interaction with binding sites on other 
proteins as well as with cellular receptors (mainly integ-
rin receptors), and local enzyme activity [115, 122, 123].  
Because transglutaminase activity is proposed to be 
required for Fn aggregation [124, 125], and transglu-
taminase interactions with Fn are active in MS [126], this 
enzyme is one of the factors that may contribute to Fn 
aggregation in MS, but this requires further investigation.

Concluding remarks: timely removal of the fibronectin 
scaffold is necessary to complete the build

In the development of therapeutic strategies for the pro-
motion of tissue regeneration, there is much focus on the 
initiating mechanisms of specific diseases, for example 
via the identification of gene expression patterns relevant 
to disease onset. The rationale behind this approach is that 
to unravel the disease pathogenesis will likely provide tar-
gets for stopping tissue degeneration by its cause. Alterna-
tively, a more pragmatic strategy is to tackle persistent fac-
tors in the injury environment that hamper regeneration. Fn 
is such a factor. This review illustrates similarities among 
the responses to injury in different tissues in the creation 
of a Fn matrix. Fn initially facilitates regeneration of skin, 
cartilage, and myelin, mainly via stimulating the recruit-
ment of inflammatory and regenerative cells. However, 
whereas Fn is totally removed before complete regenera-
tion takes place, persistent structural variants contribute to 
failing regeneration in OA and MS. Mechanisms by which 
persistent Fn mediates regeneration failure differ between 
specific tissue types, but showed similarities, especially 
in their interaction with the immune system. Therefore, 
adequate clearance of the Fn matrix benefits regeneration, 
and incomplete degradation contributes to failure of tissue 
regeneration (Fig. 2).

The contribution of a residual Fn matrix in regeneration 
failure is not limited to the tissues that have been discussed 
in this review. For example, in myocardial infarction, the 
Fn matrix is necessary for myofibroblast recruitment and 
differentiation [127], but on incomplete clearance of the 
matrix, the EIIIA-containing Fn mediates adverse cardiac 
remodeling [128]. Also, accumulation of Fn fragments 
occurs during intervertebral disc degeneration [129], and 
further enhances disc degradation via stimulation of MMP 
expression [130, 131]. These examples further emphasize 
the benefit of complete degradation from the Fn matrix for 
tissue regeneration. This also underlines the importance 
of tightly regulated dynamic ECM expression in general 
[132], especially because collagen fragments and persis-
tence of tenascin-C also contribute to OA pathology [133, 
134]. Similarly, the high molecular weight variant of hyalu-
ronan, present in MS lesions, inhibits remyelination [135].
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In designing therapies to improve tissue regeneration, 
both the good and the bad sides of Fn can be taken into 
account. Taking advantage of the pro-regenerative proper-
ties of Fn, it can be attempted to speed up regeneration by 
exogenous administration of Fn. In designing such thera-
pies, it is essential to consider the concept of “dynamic 
reciprocity”, which refers to the importance of well-bal-
anced receptor and ligand signaling in time. In this concept, 
Fn administration can only add to healing if its (integrin) 
receptors are still upregulated [38]. Despite a potential 
mismatch between Fn and its receptors in chronic wounds, 
a modest additional benefit has been demonstrated for  
Fn-based therapies here. For example, after wounding the 
skin from obese diabetic mice [136], and also on rat peri-
toneal injury [137], the PHSRN fragment from the 9th type 
III domain accelerates wound healing. This acceleration 
benefits from the physiological properties of Fn, includ-
ing an increased fibroblast and keratinocyte adhesion and 
migration, wound contraction [136], and angiogenesis via 
integrin α5β1 on epidermal and endothelial cells [138, 
139]. Similarly, pFn slightly accelerates wound healing in 
rats when topically applied onto skin wounds [140, 141], 
and when injected after incisional wounding in a dose-
dependent manner [142]. In patients with persistent corneal 
epithelial defects, topical application of pFn shows mod-
est beneficial effects on healing [143]. Wound dressings, 
including Fn-based therapies, benefit healing in carefully 
selected wounds, and only in a subset of wounded patients 
[144]. Therefore, the therapeutic potential of exogenous 
Fn application could further be enhanced by selecting spe-
cific patient groups, such as wounded patients with dia-
betes mellitus [141]. In addition, these therapies may be 
more effective when Fn domains are coupled to (a) other 
supportive proteins, such as hyaluronan [145], (b) growth 
factors, such as PDGF [140] and hepatocyte growth factor 
[146], or (c) glycoprotein hormones, such as erythropoietin 
[31, 147]. Finally, in another elegant approach, a fibrin/Fn 
matrix was designed, that could bind the growth factors 
PDGF, vascular endothelial growth factor (VEGF), and 
bone morphogenetic protein (BMP) to enhance healing of 
skin wounds of diabetic mice [148].

To overcome the detrimental properties of persistent 
Fn, multiple strategies are possible: (a) ensuring proper Fn 
clearance, (b) eliminating Fn structural variants once they 
emerge, and (c) by-pass of harmful Fn signals. We briefly 
discussed therapeutic strategies in OA and MS that, among 
their other actions, by-pass Fn signals. By-passing strate-
gies included hyaluronic acid (OA), natalizumab, and 
interferon β-1b (MS), although these effects occur second-
ary to how the drugs were designed. These and the other 
approaches warrant further investigation. To accelerate our 
understanding, a multidisciplinary approach will be help-
ful, comparing good and bad sides of Fn and Fn therapies 

between tissues. This will expand our insight into how 
improper Fn clearance is mediated, and could be overcome. 
These insights will likely benefit therapeutic strategies that 
promote tissue regeneration.
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