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Abstract

Introduction The skin is constantly exposed and responds

to a wide range of biomechanical cues. The mechanobi-

ology of skin has already been known and applied by

clinicians long before the fundamental molecular

mechanisms of mechanotransduction are elucidated.

Materials and methods Despite increasing knowledge on

the mediators of biomechanical signaling such as mitogen-

associated protein kinases, Rho GTPases or FAK-ERK

pathways, the key elements of mechano-responses tran-

scription factors, and mechano-sensors remain unclear.

Recently, canonical biochemical components of Hippo and

Wnt signaling pathway YAP and b-catenin were found to

exhibit undefined mechanical sensitivity. Mechanical for-

ces were identified to be the dominant regulators of YAP/

TAZ activity in a multicellular context. Furthermore, dif-

ferent voltage or ligand sensitive ion channels in the cell

membrane exhibited their mechanical sensitivity as

mechano-sensors. Additionally, a large number of mi-

croRNAs have been confirmed to regulate cellular behavior

and contribute to various skin disorders under mechanical

stimuli. Mechanosensitive (MS) microRNAs could not

only be activated by distinct mechanical force pattern, but

also responsively target MS sensors such as e-cadherin and

cytoskeleton constituent RhoA.

Conclusion Thus, a comprehensive understanding of this

regulatory network of cutaneous mechanotransduction will

facilitate the development of novel approaches to wound

healing, hypertrophic scar formation, skin regeneration,

and the progression or initiation of skin diseases.

Keywords TRP � Piezo � Wound healing �
Hypertrophic scar � Fibrosis � Scleroderma

Abbreviations

YAP Yes-associated protein

AP-1 Activator protein 1

ECM Extracellular matrix

MS Mechanosensitive

MAPKs Mitogen-associated protein kinases

FAK Focal adhesion kinase

ERK Extracellular regulated protein kinases

PI3K Phosphoinositol-3-kinase

HF Hair follicles

IFE Interfollicular epidermal
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MSCs Mesenchymal stem cells

GPCRs G-Protein-coupled receptors

CaSR Calcium-sensing receptor

TRP Transient receptor potential

ECs Endothelial cells

Cx Connexin

Introduction

The skin is exposed to mechanical cues throughout life. As

the outermost layer of human, it is an easily accessible

tissue layer to investigate how mechanical force regulates

adult stem cell renewal, lineage selection, and tissue

assembly. Although fundamental mechanisms of mechan-

otransduction (the process of sensing mechanical cues and

the subsequent biochemical response) [1] are still mostly

unknown, the concept of Langer’s lines, topographical skin

lines defined by skin mechanobiology, high mechanical

stress regions for hypertrophic scar formation, has been

widely used in clinical therapies. Decreasing mechanical

force on the skin is the core principle for plastic surgeons to

reduce pathologic scarring. Another example, skin expan-

sion is a procedure that stimulates and promotes skin

regeneration through continuous mechanical stretching

provided by an underlying silicone expander. It has been

used for a variety of plastic and reconstructive procedures

due to its ability to regenerate additional normal skin [2].

It is becoming well known that the mechanical environ-

ment has significant effects on cutaneous biology. As such,

researchers and clinicians are pursuing the underlying

molecular mechanisms of mechanotransduction pathway.

Researches have demonstrated that mechanical force is

transmitted across the cellmembrane to activate downstream

biochemical pathways including, but not limited to calcium-

dependent pathways, nitric oxide (NO) signaling, MAPKs,

Rho GTPases, and phosphoinositol-3-kinase (PI3K) [3]. A

convincing study confirmed the association between me-

chanical force and pathologic scar through inflammatory

FAK-ERK-MCP-1 pathways and that molecular strategies

targeting FAK can effectively uncouple mechanical force

from pathologic scar formation [4]. Besides, tissue archi-

tecture of cell–extracellular matrix (ECM), such as matrix

stiffness and rigidity, cell–cell adhesions and the organiza-

tion of cytoskeleton, controls the proliferation, migration,

self-renewal, differentiation and cell death of stem cells (for

more details seen in the excellent review of Wong et al. [5]).

Notably, the process of epidermal stratification can be in-

terpreted as a differentiation process induced by loss of cell-

ECM contacts. However, except from the above signaling

pathways, the role of most recent research revealed that

mechano-related transcription factors and co-regulators,

mechano-sensor ion channels, and a number of

mechanosensitive microRNAs are not reviewed yet. There-

fore, this review will focus on these molecular components

of mechanotransduction in skin: mechanosensitive tran-

scription regulators, ion channels, and microRNAs, which

may provide basis for clinical therapies, rather than universal

signaling passengers (Fig. 1).

Mechanosensitive (MS) transcription factors and co-

regulators in skin

b-Catenin

The Wnt pathway is of central importance in regulating the

development of skin and its appendages, hair follicles

(HFs), interfollicular epidermal (IFE) stem cells renewal,

and melanocytes [6]. Different members of the Wnt family

are expressed in specific subsets of cells in developing and

adult epidermis. Although loss of epidermal b-catenin re-

sulted in loss of hair follicle specification, its role in IFE

remains elusive [7]. Genetic evidence suggests that b-
catenin is dispensable for interfollicular epidermal function

[8], but a recent study of Lim et al. [9] showed that self-

renewal of interfollicular epidermal stem cells is regulated

via autocrine Wnt signaling. While conflicting evidences

exist as to whether Wnt/b-catenin signaling is involved in

IFE development and adult IFE maintenance, many Wnt

signaling mutations do result in IFE phenotypes. In addi-

tion to its role as the key cytoplasmic effector of the Wnt

pathway, b-catenin is also a component of intercellular

adhesive junctions, binding to the cytoplasmic domain of

E-cadherin. b-catenin then in turn binds to a-catenin, re-
sulting in the formation of the cadherin–catenin complex

[10]. Besides, a-catenin can bind to a variety of actin-

binding proteins, indicating that the cadherin–catenin

contact is essential to be subjected to mechanical stress,

and b-catenin may function as mechano-mediator.

Direct regulation of Wnt signaling by biophysical sig-

nals has been demonstrated [11]. In osteoblasts,

mechanical strain caused a rapid, transient accumulation of

active b-catenin in the cytoplasm and its translocation into

the nucleus in osteoblasts. Mechanical stimulation

(3,600 cycles/day, 2 % strain) also can prevent adipogenic

and improve osteogenic lineage differentiation of mes-

enchymal stem cells (MSCs) [12] by inactivating GSK3b
and therefore inducing activation of both b-catenin and

NFATc1 signaling. It has been found that mechanotrans-

duction often caused conformational changes in the protein

domains of b-catenin when b-catenin was subjected to

tension. Using single-molecule force spectroscopy and

molecular dynamics, armadillo repeat region (ARM) of b-
catenin was found to be very sensitive to small changes in
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its structure and followed multiple unfolding pathways

upon stretching. Simulations of the ARM/E-cadherin cy-

tosolic tail complex emulated the most probable stress

geometry occurring in vivo [13]. In skin, b-catenin was

demonstrated to protect the epidermis of mice from me-

chanical stresses; while loss of b-catenin did not result in

defects of epidermal differentiation and cell–cell contacts,

tight junction protein localization was diminished in b-
catenin knockout epidermis [14]. Another direct evidence

of b-catenin in mechanotransduction in skin was that

ROCK activation in mouse skin elevated tissue stiffness

via increasing collagen production. b-catenin was stabi-

lized by ROCK activation, leading to its nuclear

accumulation, transcriptional activation, and consequent

keratinocytes’ hyperproliferation and skin thickening [15].

So, b-catenin is indispensable to maintain tight junctions

and mechanotransduction of skin under mechanical stretch.

Yes-associated protein (YAP)

The Hippo pathway has been demonstrated its function in

precise skin size control [16, 17], with two key downstream

effectors: YAP and its homolog transcriptional co-activator

with PDZ-binding motif (TAZ). Transient overexpression

of YAP resulted in enlarged liver and epidermis. However,

sustained YAP overexpression eventually led to the de-

velopment of liver and skin tumors. Clinical samples

showed elevated expression and nuclear localization of

YAP in various human cancers. Furthermore, YAP was

inhibited by junctional proteins, such as angiomotin

Fig. 1 Novel intracellular components of mechanotransduction in

skin. Mechanical force activated multiple mechano-sensors have been

described and include stretch-activated ion channels (Calcium-

sensing receptor (CaSR), Transient receptor potential (TRP), Con-

nexins and Piezos), integrins-focal adhesion kinase (FAK) complex,

G-Protein-coupled receptors (GPCR) and cell-cell adhesion structure

e-cadherin/a-catenin. Mechanical signal is transmitted across the cell

membrane to activate multiple downstream biochemical pathways,

Rho GTPases and F-actin remodeling of cytoskeleton. The

convergence of these signals are mediated by three critical

mechanosensitive (MS) transcription factors b-catenin, YAP and

AP-1. While YAP could be activated by conformational change of

GPCR directly or intermediate Rho GTPases, b-catenin could directly

be regulated by the destruction of cell-cell adhesion structure. These

transcription factors translocate into the nucleus and activate

mechanoresponsive genes. Furthermore, plenty of MS microRNAs

such as miR-141, miR-145 are expressed and target mechanosensitive

elements, which may form a positive or negative feedback
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(AMOT) family proteins [18, 19], ZO-2, and alpha-catenin

[20]. Besides, as the downstream components of canonical

Hippo pathway, YAP/TAZ was also regulated by several

extracellular signals including the G-protein-coupled re-

ceptors (GPCRs) signaling, the Wnt signaling, and

mechanical stimulation. Rho GTPase and remodeling of

F-actin, known effectors of GPCR signaling, were found to

be required for YAP/TAZ regulation [21, 22]. Interest-

ingly, GPCRs were also found to be mechano-sensor

(discussed in section of Calcium channels).

Recently, mechanical signals were found to be trans-

duced by two related transcriptional coactivators, YAP and

TAZ [23]. To classify the complex crosstalk between these

different inputs feeding on YAP/TAZ (mechanical

stimulation, Hippo, Wnt, or GPCR signaling), Aragona

et al. [24] demonstrated that mechanical forces were over-

arching regulators of YAP/TAZ in multicellular contexts,

setting responsiveness to Hippo, WNT, and GPCR signal-

ing. Another fascinating research found that YAP/TAZ

could act as an intracellular mechanical rheostat that stored

information from past physical environments and influ-

enced the cells’ fate [25]. In fibroblasts, YAP function was

required for cancer-associated fibroblasts to promote matrix

stiffening, cancer cell invasion, and angiogenesis. Respon-

sively, matrix stiffening further enhanced YAP activation,

thus establishing a feed-forward self-reinforcing loop [26]

during oncogenesis. So, YAP/TAZ was now widely rec-

ognized as mechano-sensors and mechanotransducers in

regulating organ size and tumor growth (for more details

seen in the excellent review of Low et al. [27]).

As the mechanical control checkpoint of multicellular

growth, YAP controls epidermal growth and is involved in

various skin diseases. YAP, through its interaction with a-
catenin, acts as a critical mediator of crowd control in the

epidermis of mice [20]. So, whether a-catenin could form a

general mechano-sensor complex with b-catenin and

YAP1, which orchestrates cellular responses to divergent

mechanical stimuli, deserves more well-designed research.

Increased cellular density limits stem cells expansion by

inactivating YAP. Low basal cell density, as in a growing

embryo or after wounding, would translate into nuclear

YAP and proliferation. YAP/TAZ localization to the nu-

cleus is required in skin wound healing [28], activation of

stem/progenitor cell in the epidermis [29], promoting epi-

dermal proliferation and inhibiting terminal differentiation

[30]. During these pro-proliferation capacity, YAP also

functioned in basal cell carcinoma [31] and contributed to

the invasive and metastatic capacity of melanoma cells,

with increased expression of TAZ and its downstream

targets genes connective-tissue growth factor (CTGF) [32].

Collectively, YAP is the governor of epidermal prolif-

eration and may act as a mechanical sensor in skin.

Activator protein 1 (AP-1)

The transcription factor AP-1 mediates gene expression in

response to a variety of extracellular stimuli including

growth factors, cytokines, and mechanical stress [33]. AP-

1, a heterogeneous set of dimeric proteins, consists of

members of the Jun, Fos, and ATF families. AP-1 pro-

teins are now being recognized as critical regulators of

oncogenesis, bone development, inflammation, skin phy-

siology, and diseases [34]. In skin, AP-1 subunits

expressed in keratinocytes are involved in the regulation

of the proliferation and differentiation of epidermis. AP-1

target genes include transglutaminase and different

members of the cytokeratin gene family such as Keratin1

(K1), K5, K14, K18, and K19 [35]. While Jun is regarded

as a positive regulator of keratinocyte proliferation, JunB

and JunD are often considered to be the negative

regulators of cell proliferation. Fibroblasts overexpressing

JunB showed reduced proliferation [36]. AP-1 has been

demonstrated to function in wound healing [37], pho-

toaging, melanoma, squamous cell carcinoma (for

references, see [33, 34, 38]), psoriasis, as well as skin

regeneration [39].

In addition to mediate inflammatory effect, AP-1 is also

involved in mechanotransduction. AP-1 and NF-jB were

found to be activated by cyclic strain and shear stress in

endothelial cells [40, 41], inducing the expression of genes

encoding for adhesion molecules, monocyte chemo-at-

tractants, and growth factors. Then, AP-1- and NF-jB-
mediated transcriptions were identified to function in

bladder muscle cells [42], osteoblasts [43], lung

parenchyma [44], and amnion cells [45], in response to

mechanical forces. At the initiation of arteriogenesis,

stretch-induced AP-1-mediated MCP-1 expression in vas-

cular smooth muscle cells played as a key determinant

[46]. With regard to the role of AP-1 in mechanotrans-

duction of skin, previous research showed that by

microarray analysis performed on mechanical stretched

and normal human skin, significant difference was ob-

served in 77 genes. Among these skin regeneration-related

genes, AP-1 was up-regulated in mechanically stretched

skin [39], implying that AP-1 may be involved in

mechanotransduction of skin.

In brief, the above-mentioned three transcription factors

and co-regulators in skin mechanobiology were the most

studied, with their roles in skin summarized in Table 1.

While b-catenin and YAP have been demonstrated to di-

rectly transduce mechanical stimulation in skin, AP-1 has

only been found to be significantly up-regulated in me-

chanical stretched skin. More elaborate research is

demanded to reveal the direct mechanosensitive facet of

AP-1 in skin, especially epidermis.
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Mechanosensitive ion channels of the skin

Mechanical stimuli are known to induce ionic currents in

various types of cells. These currents are conducted

through different ion channels in the cell membrane [47].

Mechanical sensitivity, much like voltage or ligand sensi-

tivity, is a general characteristic of ion channels. Channels

previously considered as ‘‘voltage-gated’’ such as K? and

Na? channels were also found to be mechanically sensitive

[48]. In this mechanosensory transduction system, the

opening of stretch-activated channels is the first step,

leading to various intracellular events. Although many ion

channels are implicated in mechanosensation, few have

been shown to be directly stretch activated. Ion channels

which are identified to be MS in other cells have also been

found to express and function in skin physiology. In the

present review, without analysis of structure and function

of MS ion channels, we focus on the physiological func-

tions and related cutaneous diseases of four different MS

ion channels: CaSR, TRP, Connexins, and Piezo.

Calcium channels (calcium-sensing receptor)

The major downstream effect of mechanosensitive ion

channel activation in the epidermis is a change in cyto-

plasmic Ca2? concentration [49]. Ca2? oscillations have

been observed in MSCs and are considered as both an

indicator and a regulator of the MSC differentiation. Ex-

tracellular calcium is essential for initiating keratinocyte

differentiation and maintaining epidermal functions [50].

Ca2? concentration oscillation may be caused by me-

chanical signal [51] as found in human cardiac progenitor

cells, keratinocytes, and myofibroblasts [52], indicating

that mechanical forces might have the potential to directly

regulate the fate of these cell types through modulating

calcium signals [53]. It has been reported that changes in

the plasma membrane tension can be transmitted to the

mechanosensitive L- and N-type Ca2? channel [54, 55].

Ca2? influx can also be mediated by the nonspecific cation

channels such as MS transient receptor potential (TRP)

channels, connexins, and Piezos (described below), as well

as voltage-gated calcium channels [56] and specific calci-

um-sensing receptors (CaSR) [57, 58].

The CaSR belongs to the family C of GPCRs which

exhibit distinct functions in many physiological processes

such as inflammation, cellular growth, and differentiation.

Although the direct evidence of mechanical sensitivity has

not been reported for CaSR yet, a multitude of researches

suggested that GPCRs were involved in mechanosensation.

Gq/11-protein-coupled receptors have recently been indi-

cated in the sensing of fluid shear stress in endothelial cells

(bradykinin B2 receptor) [59, 60] and mechanical stretch in

cardiac myocytes (beta-adrenergic receptor) [61, 62] (For

more details about G-protein-mediated stretch reception

seen in [63]). In the skin, MS GPCRs are involved in

collagen synthesis in cardiac and lung fibroblasts [64], and

thought to activate fibroblast contraction during wound

healing. Inhibition of CaSR expression in keratinocytes

markedly impairs cell differentiation by reducing intra-

cellular Ca2? pools [58] and blocking E-cadherin mediated

signaling [65, 66]. Abrogation of CaSR in vivo was shown

to perturb the epidermal Ca2? gradient and compromise

differentiation and barrier functions [67]. However, CaSR

transgenic mice exhibited advanced differentiation and

epidermal permeability barrier formation during embry-

ologic development and accelerated hair growth at birth.

Transient receptor potential (TRP) channels

Members of the TRP family are implicated in a wide va-

riety of mechanical transduction processes in diverse

organs and species. These channels can be activated by

mechanical, as well as chemical and thermal stimulation.

TRP channels play a role in cellular homeostasis and

Table 1 Mechanosensitive transcription factors in skin

Transcription

regulators (homo

sapiens)

Mechano-

pattern

Effect Skin diseases involved

b-Catenin Stretch or

strain;

stiffness of

ECM

Promote osteogenic differentiation of MSCs; protect epidermis

from mechanical stresses; self-renewal of interfollicular

epidermal stem cell

Maintain tight junction proteins of skin

barrier [14]; epidermal

hyperproliferation [15]

YAP Stretch or

strain;

stiffness of

ECM

Cell proliferation; cell crowd control; activate epidermal stem

cell; inhibit epidermal terminal differentiation; skin cancers

Skin tumors [20]; stem/progenitor cell

activation; wound healing [28]

AP-1 Stretch or

strain; fluid

shear stress

Inflammation; initiation of arteriogenesis; adhesion; monocyte

chemotaxis; induce expression of epidermal growth factor-like

growth factor; activate osteoblast differentiation

Wound healing [37]; skin regeneration

[39]
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growth control, regulation of cell fate and survival, im-

mune, and inflammatory mechanisms [68]. The TRP

channel family is usually divided into seven subfamilies

(TRPC, TRPV, TRPM, TRPN, TRPA, TRPP, and

TRPML). These ion channels are non-selectively perme-

able to cations, including sodium, calcium, and

magnesium. Evidences suggest that multiple TRP channels

are critically involved in the regulation of cutaneous

functions [69]. Among the TRP channels, TRPA1, TRPV1,

and TRPV4 are the most studied TRP channels of the skin

and their mutations lead to a variety of phenotypic

disorders.

TRPA1 can induce marked changes in the expressions

of certain adhesion and extracellular matrix proteins in

keratinocytes as well as of molecules regulating cell fate

and differentiation [70]. The role of TRPA1 in cutaneous

inflammation has been further verified in rodent dermatitis

models. TRPA1 activation enhanced the migration of

dendritic cells to draining lymph nodes, and this effect was

antagonized by the TRPA1 antagonist [71]. Activation of

TRPV1 on epidermal keratinocytes resulted in the influx of

Ca2? into the cells, suppressing cell growth, and inducing

apoptosis [68]. Furthermore, TRPV1 stimulation delayed

barrier recovery, whereas administration of the TRPV1

antagonist accelerated barrier repair [72]. Stimulation of

TRPV1 expressed by outer root sheath keratinocytes of

human hair follicles also inhibited hair shaft elongation

[73]. Besides, mechanical activation of TRPV1 caused

intracutaneous release of a plethora of neuropeptides. The

released peptides activated multiple types of skin cells,

inducing the release of certain pro-inflammatory cytokines

[73, 74]. Similarly, TRPV4, mediating the metabolic re-

sponse of chondrocytes to mechanical stimuli [75], was

also involved in epidermal barrier homeostasis [76, 77].

Most recent research showed that TRPV4 was abrogated

both in premalignant lesions and non-melanoma skin can-

cer in cytokine-dependent manner [78].

Connexins

Connexins are structurally conserved gap junction (GJ)

protein abundantly expressed in bone and skin cells [79],

playing a central role in cell-to-cell communication and

mechanotransduction. Channel opening and closure are

tightly regulated by changes in cytosolic pH, voltage, as

well as mechanical stimulation [80]. This process is critical

for the maintenance of cellular homeostasis and regulation

of proliferation, differentiation, and apoptosis [79, 81].

In vitro studies suggested that gap junctional intercellular

communication (GJIC) sensitized bone cells to mechanical

signals. Additionally, mechanical signals detected by os-

teocytes were communicated to osteoblasts via GJIC [80,

82–84]. Connexin43 (Cx43) is the predominant GJ protein

in bone. Cx43 expression was enhanced by loading in

bones in vivo as well as in cultured osteoblasts and os-

teocytes, thus preventing osteocyte apoptosis [82, 83].

Under mechanical loading, the c-terminus domain of Cx43

with integrin a5 and b1 led to activation of PI3 K, the

kinases FAK/Src, and the ERK pathway, eventually pro-

moting osteocyte survival.

Connexin has also been demonstrated to function in

keratinocytes differentiation, wound healing, and skin

diseases. Up to 10 different connexins are differentially

expressed throughout the terminal differentiation. Cx43 is

the main connexin found in basal proliferating cells [85].

Cx43 knockdown resulted in impaired epidermal differ-

entiation and barrier function [86]. During wound healing,

Cx43 knockout mice showed shorter wound closure times,

making itself a potential therapeutic target to improve

wound healing [87]. Cx43 expression at wound margins

declined rapidly following injury, returning to normal

levels following re-epithelization. The reduction of Cx43 at

wound edges is related with the mechanical force which

was produced by intrinsic myofibroblats and many extrin-

sic forces. Another skin disorder associated with connexin

is melanoma. The loss of the ability to form heterocellular

contacts and exhibit GJIC with keratinocytes was found to

be a contributor or suppressor to melanoma growth within

the epidermis [88]. While Cx32 knockout mice are more

prone to developing chemical- and radiation-induced tu-

mors [89, 90], the role of connexins during the onset and

progression of melanoma tumorigenesis is still controver-

sial. Most recently, it was found that Cx43 could act as a

tumor suppressor during melanoma tumorigenesis by sig-

nificantly reducing cellular proliferation and anchorage-

independent growth [90].

Piezos

Piezo1 and Piezo2 were first identified as MS channels in

the cell line Neuro2A. Piezo proteins have 2,100–4,700

amino acids which contain approximately 24–39 trans-

membrane segments showing no homology to other already

known voltage sensitive channels [91]. Piezos do not re-

quire any additional proteins for their opening, but can

directly sense lipid membrane extension [92]. Although

currents mediated by Piezo proteins are non-selective ca-

tionic currents, Piezo1 protein was classified as a real ion

channel that conducts both K? and Na?. The currents

mediated by both Piezo1 and Piezo2 can be pharmaco-

logically inhibited by mechanosensitive channel blockers

[93]. Piezo1 expression has been observed in bladder,

colon, kidney, lung, and skin which all constantly undergo

mechanotransduction. Recent studies found that Piezo1 is

present in the mouse and human bladder urothelium and

has a functional role in stretch-evoked Ca2? influx and
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ATP release in mouse urothelial cell [94] and human neural

stem cells [95], indicating the potential MS property of

Piezos.

The role of Piezo proteins in skin has not been investi-

gated until most recently. Piezo2 was previously shown to

be present at low levels in the skin [91]. However, Woo

et al. [96] found that Piezo2 was specifically expressed in

Merkel cells (*0.05–0.1 % of total epithelial cells from

dorsal skin) in whisker pad, dorsal skin, and foot pad.

Using Piezo2 knockout mice, they found that Merkel cells

were indeed mechanosensitive, and Piezo2 was required in

Merkel cells to produce their mechanical currents. Piezo2

ablation impaired proper mechanosensory encoding in

Merkel cell–neurite complexes in the intact skin. The re-

sults indicated that Piezo2 was the Merkel-cell

mechanotransduction channel and provided the first line of

evidence that Piezo channels have a physiological role in

mechanosensation in mammals. The function of Piezo

proteins in non-Merkel cells of the skin needs further

investigation.

In summary, direct evidence of ion channels to be MS

was only found in Connexin43 and Piezo2 in the skin.

Although Ca2? and TRP channels that are also expressed in

the skin and play a vital role in skin barrier formation and

inflammation have been shown to be activated by various

mechanical stimuli in non-cutaneous cells, they have not

been demonstrated to mediate a mechanical signal yet

(seen in Table 2). Besides, many mechanically activated

currents are non-selective cationic currents, such as Ca2?

and Connexins, could be conducted through different MS

ion channels in the cell membrane. So, the mechanism how

these MS ion channels are orchestrated by cutaneous cells

under mechanical condition and the identification of the

downstream signaling pathways for these currents deserve

more further research.

The association between mechanosensitive microRNAs

and skin disorders

MiRNAs are shown to be involved in the mechanical

regulation of epidermal biology and functions. The role of

MS miRNAs has been widely studied in endothelial cells

(ECs) [109, 110]. In vascular endothelial cells, shear stress

regulated ECs redox and inflammatory state, cell cycle,

cytoskeleton and gap junctions. Furthermore, different

shear stress patterns determine distinct endothelial func-

tion. While pulsatile shear stress (PS) act as

atheroprotective flow, oscillatory shear stress (OS) was

identified to be an atheroprone factor, suggesting the

specific role of shear stress in endothelial response. Recent

studies underline the importance of miRNAs in skin de-

velopment and epidermal differentiation, wound healing,

fibrosis, and skin cancers [111]. For example, miR-203 has

been shown to be indispensable in skin mechanobiology.

AP-1 subunits c-Jun and JunB were found to drive miR-

203 expression in keratinocytes, acting as a switch between

keratinocyte proliferation and differentiation. MiR-200 and

miR-205 positively regulate E-cadherin and seem to be

essential in maintaining epithelial stability (For more

Table 2 Mechanosensitive ion channels and skin disorders

Channel

family

MS channel isoforms Skin disorders involved Effect

Ca2?

channels

GPCRs [60–62] Epidermal differentiation and

barrier functions

Advance epidermal differentiation and permeability barrier

formation [65–67]

TRP

channels

TRPA1 [97, 98] Skin barrier Accelerate skin permeability barrier recovery [70]

Skin inflammation Contact dermatitis [71]

TRPV1 [99] Skin barrier Decrease proliferation and induce apoptosis of keratinocytes; inhibit

skin barrier recovery [72]

Skin inflammation Induce release of pro-inflammatory cytokines [73, 74]

TRPV4 [100] Skin barrier Strengthen the tight junction barrier in human epidermal

keratinocytes [76, 77]

Non-melanoma skin cancer Decreased TRPV4 expression as an early biomarker of skin

carcinogenesis [78]

Connexins Connexin43 [82–84,

101, 102]

Wound healing Enhance wound closure [85, 87, 103, 104]

Melanoma Serve as tumor suppressor [88, 90, 105]

Epidermal homeostasis Epidermal differentiation and barrier function [81, 86, 106]

Piezo Piezo1 and piezo2 [91,

93]

Merkel cells sensory afferents Touch-sensitive currents of Merkel cells [96]

Cl-

channels

CFTR [107] Hyperpigmentation Mediate the procedure of treatment of melasma with estrogen [108]
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details about microRNAs in skin seen in [111–113]). So, in

this review, we will focus on the role of reported MS

miRNAs in skin disorders, such as wound healing, hyper-

trophic scar, inflammation or related scleroderma fibrosis,

and skin cancers (Table 3).

MS microRNAs in wound healing, hypertrophic scar,

and keloid

Acute wounds undergo a healing process of complex bio-

chemical and cellular events. All the phases are influenced

by mechanical forces which are generated by wound con-

traction and traction forces of ECM and myofibroblasts. It

has been well described that the mechanical stretching of

fibroblasts can regulate the expression of matrix and in-

flammatory genes involved in scar formation, suggesting

that wound fibrosis can be modulated by fibroblast

mechanosensitivity [4]. Keratinocytes are also me-

chanically responsive: mechanical stretch promotes

keratinocyte proliferation and migration in vitro [114].

Thus, clinical application of mechanical forces provides an

alternative method for the acceleration of cutaneous wound

healing and prevention of hypertrophic scars. Compression

treatment is a frequently used therapy for postburn hyper-

trophic scars. Silicone gel sheeting has been shown

effective in reducing tension between the scar and normal

skin. Paper or plastic adhesive tape is also used to prevent

excessive scarring by decreasing wound tension [115].

MS microRNAs, found in non-cutaneous cells, play

essential roles in wound healing or hypertrophic scar. In ECs,

shear stress forces increased the expression of miR-21 and

miR-155 which influence endothelial biology by decreasing

apoptosis [116] and inducing changes in morphology and

F-actin organization [117]. In human aortic smooth muscle

cells, mechanical stretch modulated miR-21 expression, thus

participating in cellular proliferation and apoptosis [118].

Both miR-21and miR-155 are involved in wound healing and

the formation of hypertrophic scars, mainly in activated and

migrating keratinocytes of the epidermis and mesenchymal

cells of the dermis [119, 120]. Antagonizing miR-21 caused

significant delay of wound closure with impaired collagen

deposition. Interestingly, wounds treated with miR-21 an-

tagomir exhibited significantly impairedwound contraction at

an early stage of wound healing, which provided direct evi-

dence of miR-21 to be an MS microRNA during wound

healing [119]. MiR-155 was up-regulated in wound tissue

when compared with healthy skin. However, lacking expres-

sion of miR-155 resulted in an accelerated wound closure.

Besides, miR-155 targets two key regulators of the cy-

toskeleton organization: RhoA and myosin light chain kinase

(MYLK) [117], which are key components in mechan-

otransduction. More research is required to understand the

exact function of miR-155 in wound healing. But it is

undoubted that biomechanical force and MS miRNAs play a

vital role inwound closure and formationof hypertrophic scar.

MS microRNAs in scleroderma fibrosis and chronic

inflammatory diseases

Scleroderma is a complex systemic autoimmune disease

characterized by extensive chronic fibrosis, primarily of the

skin. Overproduction of pathological ECM components by

fibroblasts plays a major role in the pathogenesis of scle-

roderma. Importantly, functional alterations of scleroderma

are accompanied by changes in the mechanical properties

and morphology of fibroblasts. The architecture of the fi-

brosis-associated ECM is fundamentally different from that

of the normal tissue stroma. Previous data showed that

ongoing myofibroblast activation and TGF-b signaling can

be driven by altered mechanical tension in a feed-forward

loop [121]. Compared to normal dermal fibroblasts, sig-

nificant differences in cellular stiffness have been detected

in dermal fibroblasts derived from sclerodermal lesions

using atomic force microscopy [122]. Another explanation

for the overproduction of ECM in scleroderma is the ac-

tivation of fibroblasts by cytokines and growth factors,

endothelin1 and thrombin [123], as well as chronic in-

flammation. Matrix-generated biomechanical tension via

integrin signaling seems to be involved in this process.

These findings suggest an association between scleroder-

ma, chronic inflammation, and mechanotransduction.

Besides TGF-b signaling and inflammatory cytokines,

miRs have recently been identified to play a role in the

pathogenesis of inflammatory cutaneous diseases such as

scleroderma, psoriasis, and diabetic wound healing. While

TGF-b leads to an increased expression of miR-21 and

decreased expression of fibrosis-inhibitor gene Smad7,

overexpression of miR-21 in fibroblasts decreases the ex-

pression of Smad7, suggesting that miR-21 may act as a

potential therapeutic target of scleroderma [124]. MiR-19a

is another MS microRNA that is involved in the patho-

genesis of scleroderma. Using microRNA chip array, miR-

19a expression in ECs was found to be regulated by

laminar shear stress [125]. MiR-19a level was also shown

to be significantly higher in the serum and dermal fibrob-

lasts of scleroderma patients [126]. Similarly, miR-146a is

rapidly up-regulated by oscillatory pressure in airway ep-

ithelial cells, playing an important role in mechanically

induced inflammation in lung epithelia [127]. IRAK1 and

TRAF6, two important mediators of inflammatory re-

sponses, were then identified as targets of miR-146a. In

cutaneous diseases, miR-146a is known to be up-regulated

both in lesions and peripheral blood mononuclear cells

(PBMCs) of psoriatic patients, correlated with IRAK1 ex-

pression [128]. Thus, mechanical cues may contribute to

the persistent inflammation of psoriasis mediated by miR-
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146a. Chronic inflammation is also thought to play a cen-

tral role in the pathogenesis of diabetic wound. Notably,

miR-146a expression is markedly down-regulated in

diabetic mouse wounds [128].

MS microRNAs in melanoma and non-melanoma skin

cancers

Cutaneousmelanoma is a highlymalignant tumor type due to

its tendency tometastases. Recent work has identified BRAF

and NRAS mutations in melanoma, which lead to constitu-

tive activation of MAPK and phosphoinositide 3-kinase

(PI3K) pathway [129]. Both MAPK and PI3 K pathways

were found to mediate biomechanical signal, implying the

potential role of BRAF and NRAS in mechanotransduction

of melanoma. It has been shown that many stromal compo-

nents are able to activate varieties of cellular processes in

melanoma [130]. Cutaneous melanoma cells have varied

morphological characteristics, and the stroma can show

myxoid or desmoplastic changes. Members of the matrix

metalloproteinase (MMP) family are expressed by me-

lanoma cells [131], which indicates that frequent ECM

remodeling and collagen deposition happened during me-

lanoma progression. The ECM stiffness can regulate

melanoma cells and tissue behavior by initiating biome-

chanical signaling cascades in cells through interactionswith

a number of specialized transmembrane ECM receptors.

Furthermore, tumor growth cannot be sustained unless the

tumor cells attract and stimulate fibroblasts, which are the

main source of extracellularmatrix. Recruited fibroblasts are

converted into myofibroblasts, differentiated to fibrocytes

that secrete fibrillated extracellular matrix components,

which further stiffen the ECM [132]. Importantly, bio-

physical force generated by contraction of myofibroblasts

and stiff ECM in the microenvironment has a significant role

in melanoma growth and metastases.

A large number of MS miRNAs were demonstrated to

act in melanoma. MiR-21 was shown to be MS in ECs and

aortic smooth muscle cells, and significantly increased in

primary melanoma tissues as compared to benign nevi.

Upregulation of miR-21 in melanocytes resulted in in-

creased proliferation and decreased apoptosis [133]. MiR-

21 has also been found in plasma and its expression was

associated with tumor burden in cutaneous melanoma and

squamous cell carcinoma patients [134]. MS miR-23b on

the other hand mediated flow-regulation of Rb phospho-

rylation in EC growth. MiR-23b was found to be decreased

in melanomas, as assessed by an in-depth analysis of the

miRs transcriptome [135, 136]. MiR-26a is an MS gene to

mechanical stretch and plays an important role in the

regulation of human airway smooth muscle hypertrophy

[137]. MiR-26a was identified to be specifically down-

regulated in human melanoma cells [138] and squamous

cell carcinoma. Another example, miR-34a can modulate

differentiation of endothelial progenitor cells in response to

shear stress. In melanoma, miR-34a was found to be tumor

suppressive by targeting ULBP2, a natural killer cell im-

munoreceptor NKG2D ligand and it is widely expressed in

tumor cells [139]. Furthermore, miR-34a was also found in

non-melanoma skin cancers (Table 3). Taken together,

these findings imply a strong association between

mechanotransduction and skin cancers. These MS miRs

modulators (antagonist or agonist) may serve as promising

novel therapies for subsets of melanoma.

What is known and unknown about the regulatory

network induced by mechanical force?

Interestingly, some MS miRNAs are found to target MS

transcription factors (Table 4). miRNAs regulate gene ex-

pression by binding to the 30 untranslated region of the

Table 4 Mechanosensitive transcription regulators related to microRNAs

Transcription

factors (homo

sapiens)

MiRNAs validateda MS miRNAs Effect

YAP1 mir-141, 181a, 374a, 375, 519a,

630

mir-141 Target the E-cadherin transcriptional repressors ZEB1 and

ZEB2, inducing invasion and metastasis of skin tumor cells

[180, 181]

b-Catenin mir-1, 30, 122, 125a, 145, 148a,

150, 155, 183, 192, 193a, 200a,

214, 224, 517a, 520c; let-7b

mir-145 Target the junctional adhesion molecule A, the actin-bundling

protein fascin and c-Myc [182, 183], involved in melanoma

and non-melanoma skin tumors

AP-1 mir-1, 9, 15, 16, 21, 24, 25, 26a,

30, 34a, 99, 100, 125a, 126, 141,

143, 144, 145,146a, 150, 155,

194, 195, 200a, 214, 203, 206,

223; let-7b

mir-21, 24, 26a, 34a, 141,

144, 145, 146a

mir-21 targets a number of tumor suppressors; mir-24 can

directly repress cytoskeletal modulators in keratinocytes

[150]; mir-26a can repress gene expression of SODD

(silencer of death domains) in melanocytes [138]; mir-34a:

repressed by p63 to maintain keratinocyte cycle progression

[161]

a Results from miRWalk. (http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/micrornapredictedtarget.html)
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target mRNAs. Specific binding of MS miRNAs to MS

transcription factors (YAP1, b-catenin and AP-1) is

validated and gathered, according to an open-access miR-

NAs database miRWalk (http://www.umm.uni-heidelberg.

de/apps/zmf/mirwalk/micrornapredictedtarget.html). For

example, YAP1 can be regulated by mir-141, 181a, 374a,

375, 519a, and 630, during which mir-141 (belong to mir-

200 family) is abundantly expressed in skin. Mir-141 tar-

gets the E-cadherin transcriptional repressors ZEB1 and

ZEB2, inducing invasion and metastasis of skin tumor cells

[180, 181]. Furthermore, both YAP1 and AP-1 are

regulated by mir-141. b-catenin and AP-1 can be targeted

by many miRNAs, during which mir-21, 24, 26a, 34a, 141,

144, 145, and 146a are identified to be MS (Fig. 2). Mir-

145 targets junctional adhesion molecule A and the actin-

bundling protein fascin, modulating cancer cell motility

[182]. Mir-145 is also expressed through the phospho-

inositide-3 kinase (PI-3K)/Akt and p53 pathways, and then

targets the expression of c-Myc [183]. Most listed MS

miRNAs were found to regulate AP-1, but direct evidence

that these miRNAs are activated and target AP-1 expres-

sion under mechanical stimulation is still missing.

However, it is still largely unknown about the regulatory

network of miRNAs under mechanical stimuli conditions.

For example, pulsatile flow down-regulates miR-17 which

targets SOD2, GPx2, and TrxR2. In contrast, oscillatory

flow down-regulates SOD1 by miR-872 [109], indicating

that different mechanical patterns were sensed and medi-

ated by different membrane proteins and downstream

signaling pathways. Although diverse mechanotransduc-

tion pathways under specific patterns of mechanical stimuli

have been identified, the underlying complex mechanisms

require more further investigation to understand how slight

difference in mechanical patterns may cause tremendous

divergence of cell responses. Mechanical stimuli-induced

miRNAs could responsively regulate MS cell sensors such

as e-cadherin, cytoskeleton constituent RhoA, and MS

transcription factors such as YAP1, b-catenin, and AP-1

(Table 4). Moreover, it remains largely unknown how

mechanical force regulates the network of miRNAs.

Therefore, it is still unknown if these mechanical-induced

feedback regulations are positive or negative.

Conclusion and future directions

Taken together, the exploitation of cutaneous

mechanobiology will help researchers and clinicians to

gain a more comprehensive understanding of wound

healing, hypertrophic scar formation, skin regeneration,

and skin tissue engineering. However, different magnitude

of mechanical force also seems to exert distinct biological

effects by targeting different genes. MS transcription

factors and microRNAs interweave in a complex regula-

tory network of cellular-responses. On the other hand, the

reciprocal cell-ECM remodeling mechanisms of this cir-

cuit and the model of skin stem cells (interfollicle or hair

follicle) activation under mechanical stimuli remain un-

known. Identification of the mechanical property

divergence of ECM under pathological or physiological

conditions or stem cells niche, the association of ECM

mechanical modulus with different Rho GTPases, and the

convergence of mechano-sensors with canonical bio-

chemical receptors may be the possible steps to overcome

these challenges. Advances in nanotechnology, molecular

imaging, and gene manipulation will further accelerate the

investigation of the mechanically activated regulatory

network within the cells. Finally, in-depth research of

these questions is urgently needed not only in cutaneous

biology, skin, and hair follicle morphogenesis, but also in

the progression and initiation of skin diseases like

cancers.
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