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Introduction

Glial tumors are primary tumors that resemble astrocytes 
and/or oligodendrocytes. Grade Iv astrocytomas (known as 
glioblastomas—GBM) are the most common glial tumors 
and they have a terrible prognosis, with a median survival 
rate of only 12–15 months. Among the main features of 
this type of cancer are a high mitotic index, diffuse infil-
tration, a tendency for necrosis, significant angiogenesis, 
resistance to apoptosis, and widespread genomic aberra-
tions [1]. Standard treatment currently consists of surgery 
followed by radiotherapy and cytotoxic chemotherapy with 
the alkylating agent temozolomide [2], although treatment 
is generally palliative for most patients. Another important 
feature of GBM is the high degree of intra and intertumoral 
heterogeneity. For decades these tumors have been classi-
fied as primary or secondary GBM: the former displaying 
no evidence of a pre-existing, less malignant lesion, and 
comprising more than 90 % of the cases; with the latter 
represent a progression from a lower-grade glioma and they 
usually affect younger patients [3]. Nevertheless, no his-
tological differences between these two entities have been 
described.

The expression of multiple genes and/or proteins is 
altered in glioblastomas, affecting the activation of onco-
genes and/or the silencing of tumor-suppressor genes. 
Based on copy number and expression analyses, and on 
DNA sequencing studies, three signaling pathways have 
commonly been seen to be disrupted in GBM: (i) the recep-
tor tyrosine kinases (RTK)/Ras/phosphoinositide 3-kinase 
(PI3 K) pathway, which includes the alterations in epider-
mal growth factor receptor (eGFR) (amplification and/or 
mutation in 40 % of cases), phosphatase and tensin homo-
logue (PTEN: a PI3K inhibitor that is inactivated in 36 % 
of cases) and neurofibromatosis 1 (NF1: a Ras inhibitor 
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inactivated in 23 % of cases); (ii) the p53 pathway, where 
the TP53 gene is mutated in 35 % of cases; (iii) the Rb path-
way, where the cell-cycle inhibitors CDKN2A (p16INK4A) 
and CDKN2B are inactivated alternatively in about 50 % 
of cases [4, 5]. A relatively high frequency of mutations 
in the isocitrate dehydrogenase 1 and 2 (IDH1/2) has also 
been found in GBM, although these mutations appear to 
be preferentially associated with secondary GBM (80 % 
of the cases), in which they fulfill a significant pathogenic 
role [3]. By contrast, primary GBMs are characterized by a 
high proportion of mutations and/or the overexpression of 
EGFR gene. The eGFR is a 170-kDa glycosylated receptor 
with tyrosine kinase activity and alterations in eGFR func-
tion have not only been associated with GBM tumor initia-
tion and growth but also with cell invasion, angiogenesis, 
and resistance to chemo- and radiotherapy [6, 7]. However, 
while eGFR kinase inhibitors have proven to be useful in 
treating other types of tumors, they offer poor outcomes 
in GBM patients. Moreover, contrary to what could be 
expected, there is some controversy about the correlation 
between the eGFR amplification and overexpression, and 
the clinical response to eGFR kinase inhibitors in GBM 
patients [8–11]. These results underline the special nature 
of the eGFR oncogenic network in these neoplasms.

Here we will try to draw up a comprehensive picture 
of eGFR signaling (in particular those aspects linked to 
cell proliferation and survival), based on classical models 
and more recent findings, in order to explain its oncogenic 
action in aggressive gliomas. we hope that this review will 
shed some light on the development of targeted therapies 
for eGFR-dependent GBMs and that as a result, better 
synergistic approaches and/or possible predictive markers 
might arise.

EGFR expression in gliomas

The frequent amplification of the EGFR gene in GBM was 
initially reported in 1985 [12] and it has been confirmed 
in many subsequent studies. It has been estimated that the 
EGFR gene is amplified in 30–40 % of GBMs and nearly 
50 % of them overexpress the receptor [1, 4, 5]. Although 
not well understood, high levels of EGFR mRNA are also 
found in less malignant astrocytomas and oligodendroglio-
mas, with no gene amplification [13]. These observations 
underlie the relevant function of eGFR in glial cells and 
suggest that other oncogenic events may lead to increased 
transcription of this gene. Indeed, EGFR amplification has 
only been reported in 3 % of anaplastic (grade III) astro-
cytomas [14] and it is infrequent in secondary GBMs 
(only 8 %), whereas 60 % of primary GBMs show eGFR 
overexpression and 40 % of them contain EGFR amplifi-
cations. Moreover, EGFR amplification is rare in GBM 

patients younger than 35 years of age and the median age 
of patients with such alterations is 62 years [3]. From a his-
topathological point of view, EGFR gene amplification is 
relatively common in small cell GBMs (69 %) but rare in 
gliosarcomas (0 %) and giant cell GBMs (6 %) [15].

Several studies have correlated EGFR status and changes 
in other common GBM pathways. In general, there is a 
tendency for mutually exclusive changes in EGFR altera-
tions and mutations in the tumor suppressor p53 [16–18]. 
Indeed, these modifications are considered as hallmarks of 
primary and secondary GBM, respectively [3]. On the other 
hand, the RB1 pathway seems to be important in both pri-
mary and secondary GBM, although homozygous deletions 
of the INK4A-ARF locus are more frequent in primary than 
in secondary tumors, this locus encoding two gene products 
(p16INK4A and p19ARF) involved in cell-cycle arrest and 
apoptosis [3]. Moreover, there is a frequent association of 
INK4A/ARF loss of function and EGFR activation in GBM 
[19], raising the possibility that critical functional interac-
tions between these mutations are necessary for cellular 
transformation, as recently corroborated in several in vivo 
mouse models (see below).

From the neuropathological point of view, identification 
of EGFR amplification or the presence of eGFR mutations 
represents strong evidence that the tumor is a GBM, or at 
least that it should be treated like one, even in the absence 
of necrosis and microvascular proliferation in the biopsy 
[20]. However, while the diagnostic value of EGFR anal-
ysis is not questioned in GBM, there are some discrepan-
cies regarding the prognostic value of EGFR amplification/
overexpression, especially when patients of all ages are 
analyzed together. In fact, EGFR amplification has been 
associated with a worse prognosis in younger patients but 
with a better prognosis among older patients [18, 21–23]. 
Moreover, the EGFR amplification only predicted worse 
prognosis among younger patients in tumors with no p53 
mutations, suggesting that the oncogenic potential of this 
receptor could be overcome by alterations in the tumor-
suppressor pathway [20]. EGFR amplification is also 
evident in 26 % of long-term GBM survivors (patients 
surviving longer than 3 years [24]), suggesting that this 
oncogenic pathway is not much more aggressive than other 
GBM-related alterations.

EGFR and GBM molecular profiling

In recent years, high-throughput profiling techniques have 
made it possible to identify molecular subclasses of oth-
erwise apparently uniform tumors. As a proof of princi-
ple, specific expression profiles were found to distinguish 
robustly primary from secondary GBM [25, 26], demonstrat-
ing that they are two different entities. More recently, The 
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Cancer Genome Atlas (TCGA) used unsupervised clustering 
of global transcriptional data to define four GBM subclasses: 
proneural, neural, classical, and mesenchymal [27]. An ear-
lier transcriptional study analyzing a set of grade III and Iv 
gliomas established three molecular variants of malignant 
glioma, with at least two of them (also named proneural 
and mesenchymal) being very similar to those of the TCGA 
analysis [28, 29]. Interestingly, the proneural subgroup 
has a better prognosis and this gene-expression signature 
is enriched in anaplastic astrocytomas as well as in tumors 
with oligodendroglioma histology [30]. In accordance with 
these observations, proneural tumors are more common in 
younger patients. In fact, the beneficial effect of a younger 
age at diagnosis can be entirely attributed to the higher pro-
portion of proneural GBM tumors detected [31].

The different GBM groups defined are correlated with 
defined genomic abnormalities. More specifically, proneu-
ral tumors have been strongly associated with alterations 
in platelet-derived growth factor receptor alpha (PDG-
FRA) and IDH1,2, while mesenchymal tumors are asso-
ciated with mutations in NF1 [27]. Regarding EGFR, the 
TCGA analysis indicates that gene amplification, and in 
particular the presence of the vIII isoform, is enriched in 
the classic GBMs, although it may also occur in the other 
subtypes [27]. However, it has also been suggested that 
chromosome 7 amplifications (where the EGFR gene is 
located) are more frequent in the mesenchymal subtype 
[28]. Apart from the genomic studies, further support for 
the three basic subdivisions of malignant glioma have come 

from proteomic analyses, whereby NF1 expression, the 
upregulation of PDGF signaling, or of eGF signaling are 
highly reminiscent of the genomic abnormalities enriched 
in mesenchymal, proneural, and classical GBMs, respec-
tively [32]. Regarding the classification of GBM cells when 
grown in vitro as primary cultures, most groups define only 
two subtypes, characterized by the differential expression 
of markers like CD133 and Olig2 in one group, and CD44 
in the other. They are also referred to as proneural and mes-
enchymal GBM cells based on their expression profiles 
[33–36], although EGFR amplification has been described 
in both cases [34]. However, elsewhere the existence of 
three different subgroups of GBM cells was proposed, 
with EGFR being amplified and expressed in neurospheres 
expressing the signature of the classical subtype and MET 
(encoding the hepatocyte growth factor receptor, HGFR) 
being present in the mesenchymal and proneural subtypes 
[37]. Likewise, it was suggested that the gene expression 
profiles of glioma subtypes overexpressing EGFR are dis-
tinct from the rest [38], indicating that EGFR alterations 
drive a specific program of tumor development and that 
eGFR-addicted GBM might behave differently to other 
aggressive gliomas.

EGFR structure and mutations in GBM

epidermal growth factor (eGF) was identified by the 
embryologist Stanley Cohen in the early 1960s and its 

Fig. 1  Structural motifs and 
regulatory domains of eGFR 
and its commonly mutated form 
vIII. wild-type eGFR com-
prises and extracellular (eC), a 
transmembrane (TM), and an 
intracellular (IC) region. The 
eC comprises four domains: L1 
and L2 form the ligand-binding 
pocket upon folding and CR1 
(cystein-rich 1) domain includes 
the dimerization arm. In the IC 
region, there is a tyrosine-kinase 
(TK) domain and the regulatory 
(ReG) region, which includes 
the autophosphorylation sites 
and the internalization domain. 
In the eGFRvIII, amino acids 
6–273 are lost and the ligand-
binding pocket cannot be 
formed
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receptor (eGFR), which is also known as HeR-1 or 
c-erbB-1, was identified a decade later [39]. eGFR is 
one of four transmembrane growth factor receptor pro-
teins (c-erbB) that share similarities in structure and func-
tion, the other members being HeR2 (c-erbB-2), HeR3 
(c-erbB-3), and HeR4 (c-erbB-4). The eGFR is the recep-
tor for members of the eGF family of extracellular ligands, 
including eGF, transforming growth factor-α (TGF-α), 
amphiregulin (AR), betacellulin, epiregulin, and the Hep-
arin-binding eGF-like growth factor (HB-eGF [40]. eGFR 
is a 1,186-amino acid single polypeptide chain with three 
main regions: an extracellular (eC) receptor domain, a 
transmembrane region (TM), and an intracellular domain 
(IC) with tyrosine kinase (TK) activity (Fig. 1). The eC 
amino-terminal end can be divided into four domains, with 
the L1 and L2 domains responsible for ligand binding. 
Cysteine-rich (CR) domains 1 and 2 contain N-linked gly-
cosylation sites and they form disulfide bonds that deter-
mine the tertiary conformation of the external portion of 
the molecule. eGFR can form homo- and hetero-dimers 
with other members of the c-erbB family, which result in 
differences in ligand affinity and downstream signaling 
[40]. Indeed, a large loop that protrudes from the back of 
CR2 makes contact with the respective domain of the other 
receptor [41]. The kinase activity of eGFR is stimulated by 
ligand engagement in a manner that depends on intermo-
lecular interactions [42]. In contrast to other kinases, the 
trans-phosphorylation of the activation loop is not a criti-
cal event for eGFR activation [43]. In fact, recent structural 
studies revealed that the eGFR tyrosine-kinase domain 
has two different conformations. In the inactive one, it can 
inhibit its own activity but after eGF induces dimerization, 
the increase in the local concentration of the kinase domain 
provokes an allosteric change that drives the activation of 
eGFR [44, 45].

There are several mechanisms that could justify the acti-
vation of the eGFR signaling pathway in GBM. Overex-
pression on its own could provoke a local accumulation of 
the kinase domain that would provoke its activation. More-
over high expression of eGFR ligands has been reported in 
high-grade gliomas [46–48] and there are reports of TGFα 
amplification, mainly in recurrent gliomas [49]. However, 
it is also well known that many GBMs with EGFR ampli-
fication also carry mutations in EGFR [41, 50]. The most  
common EGFR mutations found in GBMs are in-frame 
deletion of regions in the extracellular domain like 
eGFRvIII (present in 30–40 % of GBMs with EGFR 
amplification). Oncogenic missense point mutations in the 
extracellular domain of the receptor were also recently 
reported [51], presumably promoting receptor dimerization. 
Another common mutation is a truncation of the intracel-
lular region at amino acid 958, eGFRvv, which is present 
in 15 % of GBMs with EGFR amplification. This mutant 

receptor is internalization-deficient and therefore, it has 
enhanced ligand-dependent kinase activity [41, 50]. Muta-
tions of the intracellular portion of EGFR are more com-
mon in other neoplasms and in fact, the tyrosine mutations 
in the kinase domain found in lung cancer that respond to 
specific eGFR inhibition [52] have not been detected in 
GBMs [53]. Notably, multiple mutations can sometimes be 
seen in the same amplified EGFR gene, a finding unique 
to GBM [54]. Indeed, a recent genomic study has revealed 
the presence of recurrent in-frame fusions involving EGFR 
(in 7.6 % of GBMs), with the most recurrent partners 
being septin 14 (SEPT14) and phosphoserin phosphatase 
(PSPH). Interestingly, the EGFR-SEPT14 fusions pro-
duce mitogen-independent growth and they constitutively 
activate signal transducer and activator of transcription 3 
(STAT3) signaling, as well as imposing sensitivity to eGFR 
kinase inhibitors [55].

The eGFRvIII isoform

The eGFRvIII deletion represents 60–70 % of eGFR 
mutations in GBM, involving exons 2–7 of the extracellular 
domain (Fig. 1), with the multiple Alu repeats in introns 1 
and 7 potentially mediating susceptibility to such specific 
gene rearrangement [54]. This mutated gene encodes for 
a receptor that lacks amino acids 6–273 with a novel ter-
tiary conformation of the extracellular domain. It has been 
proposed that the oncogenic action of eGFRvIII is due 
to the constitutive activation of its kinase activity, resem-
bling the behavior of the viral eGFR homologue, v-erbB, 
which exists primarily in dimers [56]. In fact, such altered 
eGFRvIII kinetics could produce a distinct set of down-
stream signals to those associated with wild-type eGFR 
[57] and indeed, there are reports of selective and/or consti-
tutive activation of the signaling pathways involving: PI3K 
[58, 59], Ras [60], c-jun N-terminal kinase (JNK [61]), Src 
family kinases (SFK [62]), urokinase-type plasminogen 
activator receptor (uPAR [63]), and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB [64]). 
Moreover, eGFRvIII confers resistance to drug and ioniz-
ing radiation (IR) on GBM cells [65, 66].

The study of several mouse glioma models has indicated 
that the vIII variant is more tumorigenic that the wild-
type receptor (see below). In fact, a multivariate analysis 
revealed that eGFRvIII overexpression was an independent 
and significant prognostic factor for poor overall survival 
[23]. However, in patients, this mutation occurs almost 
exclusively together with EGFR amplifications [54], sug-
gesting a crosstalk between the mutant and the wild-type 
receptors in human GBM cells. This cooperation could be 
explained in a cell-autonomous manner, as the vIII isoform 
might be a substrate for eGFRwt and this phosphorylation 
would trigger the nuclear translocation of eGFRvIII and 
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STAT3 activation [67]. Moreover, it has been suggested 
that eGFRvIII can directly bind to and activate the wild-
type receptor [68], although autocrine and/or paracrine 
crosstalk has also been proposed. Indeed, it has been shown 
that eGFRvIII induces the expression of eGFR ligands 
(e.g., HB-eGF), whereas eGFRwt can activate the mutant 
isoform by facilitating eGFRvIII dimerization [69], sug-
gesting a feed-forward loop that regulates the oncogenic 
action of these receptors. More recently, it was reported 
that cells expressing eGFRvIII release cytokines that acti-
vate neighboring eGFRwt-expressing cells [like interleukin 
6 (IL6) and leukemia inhibitory factor (LIF)], favoring the 
formation of heterogeneous gliomas in mice [70]. These 
non-cell autonomous effects could explain the coexist-
ence of the mutation with gene amplification in the same 
tumor, yet not necessarily in the same cells. Intriguingly, 
the oncogenic capacity of eGFRvIII may be propagated to 
non-expressing cells by cell-to-cell transfer of microvesi-
cles (also called exosomes [71]). exosomes are membrane-
enclosed vesicles (30–100 nm in diameter) that are derived 
from endosomes during the formation of multivesicular 
bodies [72]. In GBM it has been shown that exosomes can 
mediate the horizontal transfer of eGFR (both protein and 
mRNA), altering the proliferation of receptor cells [73]. In 
addition, eGFR ligands have been seen to accumulate in 
exosomes isolated from cancer patients, which could reflect 
the dialogue between the different tumor cells, as well as 
between the tumor cells and their niche [74]. This exo-
some-mediated communication could add more complexity 
to the role of the eGFR in gliomas.

EGFR and GBM tumor initiation: mouse models 
of GBM related to EGFR

The high frequency of alterations to EGFR in primary 
GBMs suggests that this receptor not only participates in 
tumor growth but also in tumor initiation. In fact, numerous 
studies carried out on animal models have indicated that the 
enhanced eGFRwt expression in neural stem cells (NSCs) 
or more committed neuronal or glial precursor cells, and 
more particularly that of truncated eGFRvIII, can cooper-
ate with other genetic alterations to induce primary brain 
cancer initiation and progression.

In accordance with the strong correlation between the 
alterations to the EGFR gene and the loss of the INK4A-
ARF locus [19], most of the glioma models based on the 
overexpression of wild-type or vIII eGFR have been 
developed in cells that are deficient for this tumor suppres-
sor. The first model described made use of avian retrovi-
ral vectors to transfer eGFRvIII into Inka-Arf null mice 
expressing tv-a, a gene encoding the TvA retroviral recep-
tor, under the control of brain cell type-specific promoters 

[75]. Interestingly, the astrocytic lesions observed were 
much more frequent when the nestin promoter (progenitor-
specific) was used in preference to the astrocyte-specific 
glial fibrillary acidic protein (GFAP) promoter. By contrast, 
eGFRvIII appeared to be incapable of generating gliomas 
on a p53-deficient background, unless CDK4 was also 
overproduced [76], possibly explaining the mutual exclu-
sivity of the mutations in EGFR and P53 found in GBM. 
when a different approach was used, using retroviral vec-
tors to overexpress eGFR in vitro in well-defined astrocyte 
or NSCs cultures from Ink4a-Arf-deficient mice, and then 
reintroducing these cells into the brains of SCID mice, 
both compartments were seen to be equally permissive for 
the generation of high-grade gliomas [77]. Using a similar 
approach, in vitro eGFRvIII expression in PTEN-deficient 
NSCs synergistically induced chromosomal instability and 
the formation of astrocytic tumors [78]. These data suggest 
that the deregulation of specific genetic pathways, rather 
than the cell-of-origin, dictates the emergence and phe-
notype of high-grade gliomas. However, low-grade oligo-
dendrogliomas appeared in 20 % of transgenic mice that 
express the v-erbB oncogene under the control of S100b 
promoter, lesions that were more aggressive and that dis-
played higher penetrance in the context of p53 or Ink4-Arf 
heterogeneity [79]. S100b is expressed by oligodendroglia 
and astrocytes during early brain development, although it 
is also present in NSCs, and thus it is difficult to conclude 
which cells originate the tumors observed [80]. However, 
the differences with previous models suggest that oligoden-
drocytes are more readily transformed by v-erbB, at least 
during early neural development.

eGFRvIII overexpression can also cooperate with onco-
genic Ras mutations, as witnessed with the Ras astrocy-
toma-prone model (RasB8 mice: GFAP-v12Ha-ras trans-
genic mice [81]). In transgenic mice that express both 
eGFRvIII and mutated Ras in the same cells, there was a 
higher penetrance of the tumors than in single Ras trans-
genic mice. However, the phenotype was also different 
in these mice, as overexpression of eGFRvIII led to the 
appearance of oligodendroglial and mixed oligoastrocyto-
mas [82]. Interestingly, GFAP-eGFRvIII astrocytes forced 
to express mutated Ras in vitro generated oligodendro-
glioma-like tumors when inoculated back into immunodefi-
cient brains. By contrast, injection of adenovirus-expressing  
eGFRvIII into adult RasB8 brains induced low-grade 
and high-grade astrocytomas with a high penetrance [83]. 
These results, together with those from Ink4-Arf−/- mice 
confirm that the expression of eGFRvIII is not sufficient 
to initiate gliomagenesis, although it cooperates with other 
genetic alterations to induce glioma formation. They also 
suggest that the same eGFR mutation can generate tumors 
with an astrocytic or oligodendrocytic phenotype, depend-
ing on the cell type and the developmental stage in which 
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the alteration takes place. However, it is still unclear if 
eGFRvIII activates different signaling pathways in the ger-
mline and somatic context that could explain the changes in 
the phenotypic outcomes.

An important corollary from these mouse models is 
that eGFRwt cannot substitute for eGFRvIII to drive 
infiltrative glioma formation [76, 77], perhaps suggest-
ing that sustained eGFR signaling is necessary for glial 
transformation. The mitogenic effect of eGFRvIII has 
been proposed to be due to a weak but constitutive kinase 
activity, amplified by the failure to attenuate signaling by 
down-regulating the receptor [84]. However, overexpres-
sion of self-activating eGFRwt may not be sufficient to 
induce cell transformation due to its constant lysosomal 
targeting. Indeed, using a conditional transgenic model 
in which somatic vIII or eGFRwt expression is induced 
in adult animals by stereotactic injection of an adenovi-
rus expressing Cre recombinase, eGFRvIII expression 
promotes the formation of aggressive gliomas in conjunc-
tion with the loss of the cdkn2a and/or PTEN locus [59]. 
By contrast, overexpression of eGFRwt to levels similar 
to those observed in human GBMS is very inefficient at 
inducing tumor formation under the same conditions [59]. 
Similar studies were later carried out using bicistronic 
lentiviral vectors designed to express TGFα and Cre 
recombinase so that eGFR expression could be induced 
in Ink4-Arf-/- and/or PTEN-deficient mice. In this case, 
somatic, ligand-mediated activation of eGFR was nec-
essary for gliomagenesis [85, 86], further evidence that 

persistent eGFR signaling is a necessary oncogenic event. 
These results are consistent with clinical observations that 
eGFR ligands are commonly overexpressed in receptor-
amplified GBM. Interestingly, in the presence of PTeN, 
the tumors formed resembled the classical GBM subtype, 
while in the absence of PTeN expression they were more 
similar to the mesenchymal subtype in molecular terms 
[86]. It remains to be confirmed if a similar combination 
of mutations occurs in human tumors classified in this 
subgroups.

EGFR‑dependent downstream signaling

eGFR signaling is activated by a three-step mechanism. 
First, the binding of a specific ligand to the receptor 
induces dimerization of the ligand-binding domains. Sec-
ond, this dimerization results in the auto-phosphorylation 
of five specific tyrosine residues at the carboxy-terminus of 
the intracellular domain of eGFR (Y992, Y1045, Y1068, 
Y1148, and Y1173), of which Y1173 is the major auto-
phosphorylation site [87, 88]. Third, the activated eGFR 
recruits several signaling molecules that associate with 
the phosphorylated tyrosines through their Src homol-
ogy domain 2 (SH2) or phospho-tyrosine binding (PTB) 
domains, many of which become phosphorylated by the 
receptor. These associations link a series of important 
signaling cascades to this activated eGFR tyrosine kinase 
(Fig. 2).

Fig. 2  eGFR kinase-dependent 
signaling. The interaction 
between eGF and eGFR trig-
gers the phosphorylation of 
several residues in the intracel-
lular domain of the receptor 
and the recruitment of several 
adapter molecules that in turn 
activates a variety of intracel-
lular pathways which involves 
MAPK/eRK, PI3K, STAT-3, 
PLCγ-PKC-NFκB and Src, 
among other downstream signal 
transducers. These signaling 
events result in changes in 
protein synthesis, cell growth, 
apoptosis and immune suppres-
sion, and cellular metabolism. 
eGFR can be also translocated 
into the nucleus, where it has an 
effect on cell cycle regulation 
and DNA damage repair
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MAPK/eRK cascade

eGFR has been classically associated with cell prolif-
eration through the recruitment of growth factor receptor 
bound protein 2 (Grb2) and activation of the mitogen-acti-
vated protein kinase (MAPK)/extracellular signal-regu-
lated kinase (eRK). Grb2 recruits the guanine nucleotide 
exchange factor Son of Sevenless (SOS) to the recep-
tor and it promotes binding of GTP to Ras, which then 
binds to and activates RAF. Activated RAF in turn binds 
to and phosphorylates MeK, which then phosphorylates 
eRK1/2. Upon activation, eRK kinases can translocate to 
the nucleus and activate several transcription factors (TFs) 
that enhance the transcription of genes involved in cellular 
proliferation [89], including elk-1 (eTS domain-contain-
ing protein), peroxisome-proliferator-activated receptor γ 
(PPARγ), STAT1 and STAT3, C-myc and activating pro-
tein-1 (AP-1).

The expression of eRK and activated phospho-eRK 
has been correlated with proliferation and shorter survival 
time in gliomas [90]. However, while constitutively acti-
vated, mutated forms of Ras are found in nearly 50 % of all 
human tumors, few Ras mutations have been found in glio-
mas. By contrast, the GTPase-activating NF1 that inhibits 
Ras is inactivated in 23 % of cases [5]. Nevertheless, even 
in wild-type NF1 tumors, high levels of active Ras-GTP 
are found [91], suggesting that eRK-dependent mitogenic 
signaling in GBM is likely to be mostly mediated by the 
inappropriate activation of eGFR and/or other membrane 
molecules: RTKs, integrins, vascular endothelial growth 
factor (veGF).

PI3K signaling

eGFR can modulate the balance between senescence and 
apoptosis by recruiting the p85 subunit of PI3K, and sub-
sequently activating the p110 subunit. PI3K phosphoryla-
tion of phosphatidylinositol-4, 5-bisphosphate (PIP2) yields 
the second messenger phosphatidylinositol [3–5] -triphos-
phate (PIP3). This PIP3 serves as a membrane-docking site 
for the serine/threonine protein kinase AKT, although PIP3 
is dephosphorylated to yield PIP2 by the tumor suppressor 
protein PTeN, which attenuates AKT signaling. Phospho-
rylated AKT appears to be able to prevent programmed 
cell death through targeted inhibition (phosphorylation) of 
Bad (a pro-apoptotic member of the Bcl-2 family) and cas-
pase-9, and through the activation of murine double minute 
2 homolog (MDM2) and inhibitor of nuclear factor kappa-
B kinase subunit alpha (IKKα [92]). In turn, activated 
IKKα phosphorylates inhibitor of κB (IκB), targeting it for 
ubiquitination and proteosomal degradation, and provoking 
the activation and nuclear translocation of NF-κB. NF-κB 
plays and important role in inflammation and cancer, and 

it can induce pro-survival genes like Bcl-XL or caspase 
inhibitors [93]. Activated AKT also promotes cell growth 
through the activation of mammalian target of rapamycin 
(mTOR), a master integrator of growth factor signals, and 
of the sensing of nutrients and ATP [94]. The downstream 
effectors of mTOR are the eukaryotic initiation factor 4e 
(eIF4e) and ribosomal protein S6 kinase (S6K1/2) that 
induces translation of mRNA by phosphorylation of S6 
[95].

elevated phosho AKT levels have been observed in up 
to 85 % of GBM cell lines and samples from patients [96]. 
Activation of the PI3K pathway is significantly associated 
with increasing tumor grade, dampened apoptosis, and with 
an adverse clinical outcome of human gliomas [97]. In fact, 
AKT activation is correlated with eGFR amplification [98]. 
Alterations to this pathway are frequent in GBM, and they 
include activating mutations and amplifications of p110α 
[4, 99, 100], and p110δ [101], as well as gain of function 
mutations in the p85α regulatory subunit [4, 102]. Moreo-
ver, as we have already mentioned, the PTEN gene is lost, 
mutated, or epigenetically silenced in 40–50 % of gliomas, 
resulting in enhanced PI3 K activity and downstream sign-
aling [4, 5, 92]. Interestingly, like EGFR amplifications, 
PTEN mutations are found almost exclusively in primary 
GBMs where there is a frequent association between the 
eGFR amplification and loss of 10q (where the PTEN sup-
pressor gene is located [103]). However, a significant cor-
relation between the presence of EGFR amplification and 
PTEN mutations has yet to be described [104]. Neverthe-
less, the deregulation of PI3K-PTeN could influence the 
effectiveness of certain molecular therapies targeting the 
eGFR (see below).

STAT3 activation

STAT3 is a latent transcription factor that is activated by 
tyrosine phosphorylation, which leads to its dimerization, 
nuclear translocation, and DNA binding. STAT3 is consti-
tutively active in a wide variety of primary hematological 
and epithelial tumors, and in astrocytomas [105]. STAT3 
tyrosine phosphorylation is induced by stimulated eGFR 
although it can also be induced by stimulation of other 
upstream receptors and/or non-receptor kinases including  
PDGFR, Src, and JAK2 (Janus kinase 2 [106]). Inter-
estingly, it was recently indicated that STAT3 is further  
activated in GBM by enhancer of Zeste homolog 2 
(eZH2)-mediated methylation. This alternative mechanism 
is induced by AKT phosphorylation of eZH2, indicative of 
RTK-independent means to activate STAT3 in GBM when 
the PI3K pathway is mutated [107].

Like eRK, there are no reports of STAT3 gain-of-func-
tion mutations in GBM but rather, STAT-3 activation is 
thought to be the consequence of either the deregulation 
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of upstream kinases or the loss of endogenous inhibitors 
[108, 109]. STAT3 has been associated with cell-cycle 
progression, apoptosis, and immunosuppression in GBM 
[108, 110], and many studies indicate the anti-neoplastic 
potential of STAT3 inhibitors in GBMs [111]. Regarding 
eGFR-mediated activation, it has been reported that STAT3 
constitutive activation coexists with eGFR expression 
in almost 30 % of high-grade gliomas and that targeting 
STAT3/JAK2 sensitizes these tumors to anti-eGFR agents 
[109]. However, elsewhere it was indicated that STAT-3 
phosphorylation is only correlated with the presence of 
eGFRvIII, suggesting that it is specifically activated in the 
presence of such mutations. These findings could be related 
to the increased gliomagenic potential of this mutant recep-
tor form (see below).

PLCγ-PKC signaling

Phospho-lipase Cγ (PLC-γ) is recruited to and phosphoryl-
ated by eGFR. Activated PLCγ in turn interacts with the 
plasma membrane where it cleaves PIP2 to inositol triphos-
phate (IP3) and diacylglycerol (DAG). Together with DAG, 
IP3-mediated induction of calcium (Ca2+) release can  
activate protein kinase C (PKC), which in turn can phos-
phorylate a plethora of substrates regulating proliferation, 
apoptosis, cell survival, and cell migration [112]. In GBM, 
the survival of patients with tumors expressing PKC or 
PLCγ was significantly shorter [90]. A novel study indi-
cated that PLCγ signaling in response to GBM eGFR 
activation induces IKKβ and it promotes NF-κB nuclear 
translocation [113]. As mentioned above, NF-κB activ-
ity has been linked to the suppression of apoptotic sig-
nals, and in fact, this transcription factor cooperates with 
eGFR in breast [114] and lung cancer [115], and aberrant 
constitutive activation of NF-κB has been observed in glio-
blastomas [116]. Moreover, it was recently demonstrated 
that NFκ I1A, the gene that codes for the NF-κB inhibitor 
(IκBα), is often deleted in these tumors. Indeed, deletion 
of IκBα has a similar effect to that of eGFR amplification 
in the pathogenesis of GBM and it is associated with com-
paratively short survival [117]. These results suggest that 
activation of NF-κB is another fundamental pathway for 
glioma progression and that it can be achieved either by 
genetic deletion of its inhibitor or by EGFR amplification.

Apart from its role in suppressing apoptosis, nuclear 
NF-κB also cooperates with other transcription factors like 
hypoxia-inducible factor 1α (HIF1α). This interaction can 
lead to the overexpression of pyruvate kinase M2 (PKM2) 
[113], which catalyzes the last step in glycolysis, and is 
responsible for net ATP production and the accumulation 
of lactate within the glycolytic sequence [118]. Tumor 
cells have elevated rates of glucose uptake and higher 
lactate production, even in the presence of oxygen. This 

phenomenon, known as aerobic glycolysis or the warburg 
effect, supports tumor cell growth. Accordingly, PKM2 
expression is increased in cancer cells in which it facilitates 
lactate production [119, 120], and stronger PKM2 expres-
sion has been identified in GBM than in lower-grade glio-
mas and normal tissue [121]. In fact, it was postulated that 
PKM2 upregulation is the key step in eGFR-promoted gly-
colysis, demonstrating a good correlation between PKM2 
expression and eGFR and IKKβ activity in GBM samples 
[113].

PKM2 is also located in the nucleus where it has been 
shown to function as a co-factor for HIF-1α, facilitating 
the transcription of hypoxia responsive genes and further  
promoting glucose uptake and lactate production [122]. 
Therefore, through the activation of NF-κB and the over-
expression of PKM2, PLCγ-PKC signaling links eGFR 
activation to the regulation of glycolysis and the hypoxic 
response, contributing to the survival of GBM cells in their 
harsh tumorigenic niche.

eGFR–Src interaction

Although the major tyrosine sites in the eGFR C-terminal 
domain appear to be auto-phosphorylated, some tyrosine 
residues are phosphorylated by other intracellular tyrosine 
kinases. For example, eGFR Y845 is phosphorylated by 
Src, also known as tyrosine-protein kinase CSK [123, 124]. 
Co-overexpression of eGFR and Src frequently occurs 
in human tumors, and this has been linked to enhanced 
tumor growth. Src is capable of potentiating receptor-
mediated tumorigenesis, causing synergistic increases in 
eGF-induced DNA synthesis, soft agar colony growth, 
and tumor formation in nude mice [125–127]. One of the 
proposed binding targets for eGFR phospho-Y845 is the 
transcription factor STAT5b, which is overexpressed in 
GBM compared to normal tissue or lower-grade gliomas 
[128] and where it seems to be preferentially activated 
by eGFRvIII [129]. Recent work indicates that SFKs are 
frequently coactivated with eGFR in GBM cell lines and 
patients [130], and it has been shown that dasatinib (a SFK 
inhibitor) enhances the efficacy of eGFR-targeted therapies 
in these tumors [62]. Moreover, it has been proposed that 
Src-dependent eGFR activation is induced by IR in glioma 
cells [131]. All the above provide a rationale for the com-
bined use of anti-eGFR and anti-SFK therapies

Another pathway that appears to be regulated through 
Y845 following eGF stimulation is that mediating eGFR 
trafficking to mitochondria and interaction with the 
cytochrome-c oxidase subunit II (CoxII) [132]. The cata-
lytic activity of eGFR and Src, as well as endocytosis and 
a mitochondrial localization signal, are required for these 
events. Rapamycin, apoptosis inducers, and eGFR inhibi-
tion can further enhance eGFR mitochondrial transport 
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[133, 134]. Once in the mitochondria, CoxII can be phos-
phorylated by both eGFR and c-Src, reducing Cox activ-
ity and cellular ATP, regulating cell survival [132, 135]. 
Although the relevance of the eGFR-CoxII interaction in 
GBM remains to be determined, the Src-induced localiza-
tion of eGFRvIII is stimulated in conditions of low glu-
cose, and this mutant eGFR reduced glucose dependency 
by stimulating mitochondrial oxidative metabolism [136]. 
Interestingly, the amount of mitochondrial eGFR seems to 
be fine-tuned by the balance between autophagy and apop-
tosis, and inhibition of the former or induction of the latter 
provokes an accumulation of eGFR in this organelle as a 
pro-survival mechanism [134]. Taken together, these stud-
ies suggest that tumor cells reprogram the intracellular traf-
ficking of eGFR/eGFRvIII by increasing its mitochondrial 
accumulation as a mechanism to escape from therapy- and 
stress-induced apoptosis and growth suppression.

Nuclear eGFR signaling

Most of the eGFR-activated signaling pathways end up in 
the nuclear translocation of second messengers and in the 
modulation of the activity of several TFs. However, eGFR 
itself has often been detected in the nuclei of cancer cells, 
primary tumor specimens, and other highly proliferative 
tissues [137]. Increased nuclear eGFR localization corre-
lates with poor clinical outcome in several types of cancer 
[138], although this analysis has not been performed in 
gliomas. However, both eGFRwt and eGFRvIII have been 
detected in the nucleus of normal glial cells and primary 
GBM specimens, where they cooperate with STAT3 [139, 
140].

A novel nuclear localization sequence (NLS) at amino 
acids 645–657 has recently been characterized eGFR, adja-
cent to the transmembrane domain [141], which allows 
nuclear translocation of members of this receptor fam-
ily via binding to importin β [142]. Furthermore, there is 
cumulative evidence indicating that eGFR internalization 
serves to transport the receptor from the cell surface to the 
nucleus [143]. Once there, eGFR still functions as a tyros-
ine kinase, phosphorylating and stabilizing PCNA, and 
thus enhancing the proliferative potential of cancer cells 
[144]. This could explain the strong correlation between 
the nuclear localization of eGFR and the highly prolif-
erative status of tissues [137]. However, it remains to be 
determined if there are other substrates for eGFR and/or 
eGFRvIII in the nucleus.

Nuclear eGFR and DNA damage regulation

eGFR overexpression has been implicated in radiore-
sistance in a variety of human cancers, including GBM. 
Moreover, it has been correlated with a poor radiographic 

response of some patients with this tumor to radiotherapy 
[7, 15]. eGFR itself can be activated by radiation in a 
ligand-independent way, promoting cancer cell survival and 
proliferation. Furthermore, eGFR and eGFRvIII have been 
linked by several authors to the repair of double-strand 
breaks (DSB), the most lethal DNA lesions induced by ion-
izing radiation [7, 145]. In fact, the use of eGFR inhibitors 
in GBM cell lines and intracranial xenografts caused tumor 
regression when combined with radiotherapy [146, 147]. It 
appears that both PI3K and eRK pathways mediate the sig-
nals downstream of the receptor that activate DNA-depend-
ent serine/threonine protein kinase (DNA-PK), a kinase 
required for non-homologous end joining (NHeJ) of DSBs 
[148, 149]. Moreover, the disruption of PI3K/AKT sign-
aling by small-molecule inhibitors blocks DSB repair in 
GBM, whereas PTeN loss promotes it, resulting in radiore-
sistance [150]. Furthermore, the radioresistance conferred 
by eGFRvIII seems to be a consequence of hyperactivated 
PI3K/AKT signaling [148]. However, more recent discov-
eries indicate that nuclear eGFR can influence DNA repair 
directly through a physical interaction with DNA-PK. The 
eGFR antibody cetuximab decreased nuclear DNA-PK 
protein and kinase activity by reducing its physical interac-
tion with the receptor [151]. Moreover, cetuximab blocks 
nuclear shuttling of eGFR and prevents DNA-PK phos-
phorylation and DSB repair [152, 153]. Together, these 
data suggest that DNA-PK inhibitors and/or eGFR inhibi-
tors may represent an effective strategy for radiosensitizing 
GBM tumors.

Targeting EGFR in GBMs

Several anti-eGFR-based therapeutic strategies have 
been assessed in pre-clinical and clinical trials as 
monotherapy, or in combination with radiotherapy and 
conventional chemotherapy. Some of the most promis-
ing results and ongoing clinical trials in GBM patients 
are resumed here (Table 1), including treatments with 
antibodies against eGFR (like cetuximab and nimot-
uzumab) or the vIII isoform (mAb806). The aim of 
these approaches is to provoke fewer side effects than 
traditional chemotherapy, although it is still not clear 
if their capacity to cross the blood–brain barrier will 
be sufficient to improve the results obtained with small 
molecules, and the cost-effectiveness ratio is still very 
high. vaccination against eGFR vIII (rindopepimut) is 
also an attractive alternative, although due to the intra-
tumoral heterogeneity of GBMs, it is still not known if 
this immunotherapy will induce a long-term reduction 
of the tumors. The most advanced eGFR-based thera-
pies currently used clinically are the small-molecule 
tyrosine kinase inhibitors (TKIs). The best-studied TKIs 
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are quinazoline-derived synthetic molecules with a low 
molecular weight, which can block the magnesium-
ATP-binding pocket of the intracellular TK domain. 
This union prevents the activation of the kinase domain 
by ligand-induced auto-phosphorylation and the down-
stream activation of survival signaling pathways. The 
first eGFR-specific TKIs used in the clinic to treat newly 
diagnosed and recurrent gliomas were gefitinib, erlo-
tinib, and lapatinib. However, despite the promising pre-
clinical results obtained in vitro and in vivo with these 
first-generation inhibitors, they have not lived up to 
expectation [154]. Hence, second-generation TKIs have 
been designed that can bind irreversibly to the ATP bind-
ing site of various HeR receptors, such as afatinib and 
dacomitinib. Most of these TKIs have proven some effi-
cacy in other tumors and they are currently being tested 
clinically on recurrent GBM patients (Table 1). How-
ever, while we wait for the results of these next-gener-
ation TKIs, we need to reconsider the possible explana-
tions for the lack of therapeutic response observed until 
now with eGFR-directed strategies in GBM patients.

Conclusions from TKI studies in GBM: synergistic 
approaches and predictive markers

There are several possible explanations for the failure of 
eGFR-targeted therapy in GBM patients. Deficient tumor 
drug penetration and reduced systemic TKI availability 
due to antiepileptic drugs used in most GBM clinical trials 
could explain the lack of success of these compounds [6, 
154, 164]. However, beyond the drug-delivery limitations, 
some molecular features of GBMs could be responsible for 
the limited benefits provided by these therapeutic agents.

eGFR vIII mutations and the AKT pathway

It has been proposed that eGFR vIII-positive cells are 
resistant to gefitinib because they need larger amounts of 
the drug and a longer exposition to it in order to dampen 
eGFR downstream signaling, especially the PI3K/AKT 
signaling pathway [165]. Moreover, tumors bearing 
eGFRvIII respond worse to cetuximab [154, 166]. By con-
trast, in a wild-type PTeN context, eGFRvIII expression 

Table 1  Main eGFR-targeted agents being tested in preclinical and clinical trials for GBM patients

Agent Brand name Company Target Class Selected references/
trial identifier

Monoclonal anti-
bodies

Cetuximab
(C225)

erbitux ImClone Systems 
Inc.

eGFR/HeR1 Mouse-human chi-
meric antibody

[155, 156]

Nimotuzumab
(h-R3)

TheraCIM YM Biosciences eGFR/HeR1 Human antibody [157]

Panitumumab vectibix Amgen eGFR/HeR1 Human antibody NCT01017653
125I-MAb 425 Fox Chase Cancer 

Center
eGFR Radiolabeled murine 

antibody
[158]

mAb 806 ABT-806 Abbott eGFR vIII Human antibody [159]

Small-molecule 
tyrosine kinase 
inhibitors

Gefitinib
(ZD1839)

Iressa Astra Zeneca Phar-
maceuticals

eGFR/HeR1 Aniliquinazoline-
based reversible 
inhibitor

[8]

erlotinib
(OSI-774)

Tacerva Genentech Inc. eGFR/HeR1 Aniliquinazoline-
based reversible 
inhibitor

[160, 161]

Lapatinib
(Gw572016)

Tykerb GlaxoSmithKline eGFR/HeR1, 
HeR2

Thiazolylquinazoline-
based reversible 
inhibitor

[162]

Afatinib Gilotrif Boehringer Ingel-
heim

eGFR/HeR1, 
HeR2, HeR4

Anilinoquinazoline-
based irreversible 
inhibitor

NCT00977431

Dacomitinib
(PF-00299804)

Pfizer eGFR/HeR1, 
HeR2, HeR4

Anilinoquinazoline-
based irreversible 
inhibitor

NCT01520870

vandetanib 
(ZD6474)

Zactima AstraZeneca Pharma-
ceuticals

eGFR/HeR1, 
veGFR

Aniliquinazoline-
based inhibitor

[163]

Pelitinib
(eKB-569)

wyeth Pharmaceu-
ticals

eGFR/HeR1 Cyanoquinoline-based 
irreversible inhibitor

vaccines Rindopepimut
(CDX-110)

Celldex Therapeutics eGFRvIII Peptide vaccination ACT vI
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was associated with GBM responsiveness to eGFR kinase 
inhibitors [167]. However, these findings could not be con-
firmed in subsequent trials, including a randomized phase 
II trial [160]. Nevertheless, high basal AKT activation (due 
to activation by other RTKs or by PTeN deletion) seems 
to be one of the causes that could explain the therapeutic 
failure of eGFR inhibitors in several types of cancer. For 
example, it was reported that restoring PTeN to a PTeN-
deficient cell line augments the response to eGFR TKIs, 
inducing higher levels of apoptosis [168]. In GBMs, it was 
proposed that patients carrying wild-type PTeN tumors or 
low levels of phosphorylated PKB/AKT would have a bet-
ter outcome in response to anti-eGFR treatments [10, 167]. 
Moreover, it was also shown that tyrosine phosphorylation 
of PTeN by SFKs and the fibroblast growth factor recep-
tor (FGFR) can modulate its activity. In particular, PTeN 
phosphorylation at Y240 by FGFR is linked to eGFR-TKI 
resistance and reduced survival in GBM patients [169]. 
These results suggest that checking for the presence of the 
vIII isoform and the PTeN status (both at the genetic and at 
the protein level) might be important surrogate markers for 
eGFR-directed clinical trials. Moreover, they indicate that 
targeting the PI3K-AKT pathway could enhance the benefi-
cial effects of eGFR TKIs.

Different eGFR conformations in lung cancer and GBM

The eGFR mutations detected in GBM and non-small cell 
lung cancer (NSCLC) have oncogenic transforming poten-
tial and they promote strong basal phosphorylation of the 
receptor in vitro. However, the different locations of these 
lung and brain tumor mutations have been associated with 
the diverse response of these cancers to eGFR inhibitors. 
Crystallography studies have indicated that when coupled 
to gefitinib and erlotinib, the receptor adopts an active con-
formation, also known as “type I” conformation, which is 
related to the mutations in the intracellular kinase domain 
that are frequent in NSCLC, which sensitizes the tumor 
cells to eGFR-targeted therapies [52, 53, 170]. By con-
trast, when complexed with lapatinib, eGFR is in an inac-
tive configuration, also called the “type II” conformation, 
which is typical of the ectodomain mutations found in 
GBM samples, including missense and in frame deletions 
such as the eGFR vIII variant. It is therefore not surpris-
ing that glioma cells carrying extracellular eGFR mutants 
were poorly inhibited by erlotinib, whereas type II inhibi-
tors induced cell death in the same cells [170]. Further-
more, it was confirmed that eGFRvIII releases erlotinib 
more rapidly than wild-type or lung cancer mutants, and 
that kinase-site occupancy was directly correlated with 
cell-cycle arrest [171]. The tropism of TKIs for a particu-
lar receptor conformational state could explain why some 
agents are more effective in lung cancer than in GBM 

patients, supporting the use of type II eGFR inhibitors for 
GBM, although they should have better brain penetrance 
than lapatinib.

Redundancy of RTK signals

Treatment of GBM cells in vitro with gefitinib provoked 
dephosphorylation of the eGFR but also of most of the 
aforementioned pathway regulators (Fig. 2). However, 
analysis of the in vivo effects on established GBM xeno-
grafts or tissue from treated patients demonstrated that 
gefitinib efficiently dephosphorylates its target without 
exerting a significant effect on other components of this 
pathway [172]. These data suggest that compensatory 
mechanisms exist in vivo, probably mediated by the activa-
tion of common signaling molecules by other RTKs [173]. 
One RTK that is ubiquitously expressed in cancer cells is 
the insulin-like growth factor receptor (IGF-1R), a recep-
tor that engages in functional crosstalk with the eGFR as 
IGF-1R-deficient cells are resistant to transformation by 
eGFR [174]. IGF-1R has been linked to GBM resistance to 
gefitinib due to the increased signaling of PI3K/AKT and 
the ribosomal protein S6 kinase. In addition, the pharmaco-
logical inhibition of IGF-R1 results in the sensitization of 
tumor cells to eGFR-TKIs [175].

Another RTK expressed in GBMs is PDGFR and inter-
estingly the results from two different groups indicate 
that there is genetic heterogeneity in aggressive gliomas, 
with EGFR and PDGFR being amplified and activated 
simultaneously in adjacent intermingled cells [176, 177]. 
These results could suggest that combinations of differ-
ent inhibitors could be more efficient than eGFR-TKIs 
alone. However, some recent evidence suggests that this 
is not necessarily the case, as the addition of sunitinib 
(capable of inhibiting several RTKs, including PDGFR 
and veGFR) to gefitinib only improved the anti-GBM 
efficacy in vitro but not in xenograft models [178]. How-
ever, it was recently reported that inhibition of eGFR 
signaling de-represses the transcription of PDGFRβ and 
that combined inhibition of both receptors potently sup-
presses tumor growth in vivo [179]. Therefore, there is 
still space for a synergistic approach targeting both sign-
aling pathways.

Crosstalk eGFR–MeT

The MET RTK is amplified in 5 % of GBM although it 
is overexpressed in 30 % of these tumors, representing a 
poor prognostic factor [180]. Moreover, MeT is activated 
in GBM cells with increased levels of eGFR/eGFRvIII 
[173, 181]. In fact, there is evidence of autocrine and par-
acrine crosstalk between both signaling pathways [182]. In 
line with these results, resistance to eGFR inhibition can 
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be overcome by using small molecule inhibitors of MeT 
[173, 181] or neutralizing antibodies to hepatocyte growth 
factor (HGF), the MeT ligand [182, 183]. Treatment of 
EGFR amplified mouse GBM cells with eGFR TKIs 
induces a cytostatic response that is characterized, among 
other changes, by enhanced MET expression. Moreover, 
pharmacological inhibition of MeT overcomes the resist-
ance to eGFR inhibition in these cells by inducing a cyto-
toxic response [86]. Together, these results underline the 
importance of evaluating the MeT status in eGFR-directed 
approaches and support the need for synergistic therapies.

Hypoxia and cell metabolism

As mentioned above, there is an important relationship 
between eGFR and tumor cell metabolism, which could 
be particularly relevant in the context of the GBM niche. 
A histopathological hallmark of GBM (particularly in pri-
mary tumors) is the presence of large fields of necrosis, 
which are related to a worse outcome [184]. Interestingly, 
eGFR inhibitors have a protective effect against cell death 
induced by acute hypoxia, opposite to their pro-apoptotic 
effects observed under normoxia [185]. It has been pro-
posed that under low oxygen conditions, eGFR inhibition 
reduces glucose intake, delays ATP exhaustion and main-
tains the integrity of the mitochondrial membrane poten-
tial, probably through the dephosphorylation of ribosomal  
protein S6. The authors hypothesized that eGFR inhibi-
tion may simulate nutrient deprivation, preparing cells 
for low oxygen and starvation conditions [185] and 

accordingly, eGFR-TKIs could be counteractive in a 
highly necrotic context. However, despite the relevance 
of this hypothesis, a correlation between hypoxic and/or 
necrotic markers and the lack of response to eGFR inhibi-
tors is still missing.

Kinase‑independent functions of EGFR

Studies on eGFR have mainly focused on conventional sig-
nal transduction pathways, yet it has long been known that 
many functions of eGFR require other mechanism besides 
those early transient responses. In fact, there is compel-
ling evidence that eGFR can mediate cellular processes 
independent of its kinase activity in several types of can-
cer [138]. For example, the expression of a mutant eGFR 
receptor (D813A) with no kinase activity¡ can induce 
MAPK activation and DNA synthesis [186]. Moreover, 
another kinase-dead eGFR mutant (K721M) can activate 
survival signals through the interaction with other proteins 
like HeR2 [187, 188]. Moreover, knocking down eGFR 
but not inhibiting its tyrosine kinase activity has been 
proposed to sensitize prostate and liver cancer cells to the 
apoptosis inducer adriamycin [189, 190]. These kinase-
independent functions of eGFR could be an additional 
explanation for the failure of the TKI strategies, given that 
alternative downstream signal transducers could be regu-
lated in a manner independent of phosphorylation. Here we 
summarize some of the non-catalytic actions of eGFR in 
GBM and other cancers (Fig. 3).

Fig. 3  Kinase-independent 
eGFR signaling. Glucose 
uptake and mitochondrial-
mediated apoptosis inhibition 
are the main processes result-
ing from kinase-independent 
eGFR signaling. eGFR can 
also associate with HeR2 or 
Src and activate downstream 
survival signals independently 
of its kinase activity. Nuclear 
eGFR can serve as a cofactor 
to activate the transcription of 
several genes
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eGFR and glucose uptake

The eGFR was found to prevent autophagic cell death by 
maintaining a cell’s intracellular glucose levels through the 
stabilization of the sodium/glucose cotransporter 1 (SGLT1 
[191]). Interestingly, the eGFR-SGLT1 interaction does 
not respond to eGF stimulation or eGFR tyrosine kinase 
inhibition [192]. SGLTs can mediate glucose uptake into 
tumor cells even against a strong chemical gradient [193] 
and this seems to protect these cells from inducers of 
apoptosis. Interestingly, such apoptosis could be inhibited 
by increased extracellular glucose, perhaps reflecting that 
intracellular glucose deficiency mediates the sensitization 
to apoptosis induced by eGFR downregulation [189]. It 
was also demonstrated that eGFR and SGLT1 co-localize 
in prostate cancer tissue, and that inhibition of SGLT1 sen-
sitized prostate cancer cells to eGFR inhibitors (gefitinib 
and erlotinib [192] providing an alternative synergistic 
approach to cure eGFR-addicted cancers.

SGLTs are overexpressed in several tumor entities and 
in some cases this overexpression has been correlated with 
eGFR expression [194, 195]. Furthermore, an irradiation-
stimulated and eGFR-mediated increase in SGLT1 that 
provoked glucose uptake has been proposed to be required 
for the survival of genotoxically stressed tumor cells, a 
modification that could counteract the ATP crisis due to 
chromatin remodeling [194]. Importantly, SGLT1 inhibi-
tion could radio-sensitize tumor cells [194, 196]. Indeed, 
while there are no reports of SGLT1 expression in gliomas 
(with or without EGFR amplification), this is one of the 
cancers with the highest glucose consumption and thus one 
would expect these cells to express significant amounts of 
glucose transporters. In fact, metabolic reprogramming has 
been detected in more aggressive GBM, with cells express-
ing GLUT3, the high affinity neuronal glucose transporter, 
which enables them to survive in nutrient-restrictive envi-
ronments [197]. It will be interesting to test whether eGFR 
modulates GLUT3 stability in glioma cells. However, it 
is in any case tempting to propose a synergistic effect of 
increased glucose uptake (mediated by the stabilization of 
SGLT1 and/or other glucose transporters) with the PKM2-
mediated glycolytic upregulation in eGFR amplified and/
or mutated high-grade gliomas (see above), a circumstance 
that would reinforce the receptor addiction in those GBMs.

Lipid raft activation of eGFR

TKIs targeting eGFR have also failed to be effective 
in breast cancer, even if the cells still depend on eGFR 
expression for growth. Interestingly, the receptor was local-
ized to plasma membrane lipid rafts in the TKI-resistant 
cell lines, specialized membrane microdomains enriched 
in cholesterol, sphingolipids, and proteins. Moreover, 

interfering with cholesterol biosynthesis or lowering cho-
lesterol levels produced a synergistic effect with gefitinib 
[198]. It was postulated that lipid rafts provide a platform 
that facilitates the interaction of eGFR, c-Src, and PI3K, 
leading to AKT activation and pro-survival signals, inde-
pendent of eGFR kinase activity [199]. Furthermore, in 
colorectal cancer there is evidence that HIF1,2-directed 
transcriptional activation of caveolin 1 (CAv1), an essen-
tial structural constituent of caveolae (specialized lipid raft 
microdomains), increases eGFR dimerization and signal-
ing [200]. However, there are no reports of lipid raft-related 
activation of eGFR signaling in GBMs. Moreover, it has 
been proposed that caveolae-enriched cellular fractions 
sequester eGFR and block signaling through this receptor 
[201]. Nevertheless, eGF-induced phosphorylation of the 
wild-type receptor results in eGFR dissociation from the 
caveolae, whereas eGFRvIII is predominantly cytoplasmic 
and does not associate with CAv1 unless cells are exposed 
to TKIs [202]. Therefore, while CAv1 is overexpressed in 
GBM cells and it seems to act as a tumor suppressor for 
eGFR-dependent cells [203], it is still possible that lipid 
rafts (other than caveolae) activate eGFR and that choles-
terol modulation of membrane eGFR localization could 
have different outcomes on survival depending on the 
tumor cell type or the presence of different eGFR isoforms.

Inhibition of mitochondrial apoptosis

Another kinase-independent role for eGFR in GBM sur-
vival is related to the mitochondrial control of apoptosis. 
Both eGFR and eGFRvIII associate with the p53-upreg-
ulated modulator of apoptosis (PUMA), a pro-apoptotic 
member of the Bcl-2 family of proteins primarily located 
on the mitochondria [204]. PUMA strongly induces apop-
tosis in colorectal cancer, malignant gliomas, and in adult 
stem cells [205]. The eGFR-PUMA interaction is inde-
pendent of eGF stimulation or kinase activity, and induces 
the sequestration of PUMA in the cytoplasm where it can-
not initiate apoptosis. These observations are consistent 
with the co-expression of PUMA with eGFR/eGFRvIII in 
cell lines and patients’ samples, and with the strong resist-
ance to apoptosis-inducting agents of GBMs [204].

Transcriptional activity of eGFR

Once in the nucleus, eGFR can modulate the transcription 
of several genes and indeed, a kinase-dead eGFR mutant 
can stimulate DNA synthesis in a kinase-independent man-
ner [206]. Nuclear eGFR has been defined as a transcrip-
tional co-factor that contains a transactivation domain in 
its C-terminus and that is able to modulate cyclin D1 gene 
expression [137]. Since then, several other transcriptional 
targets of eGFR have been defined, mostly implicated in 
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cell cycle progression and the nitric oxide pathway: nitric 
oxide synthase (iNOS), a protein involved in inflamma-
tion, tumor progression, and metastasis [207]; B-Myb, a 
protein controlling proliferation [208]; cyclooxygenase-2 
(COX-2 [140]); aurora kinase A, a protein involved in chro-
mosomal instability [209]; and c-Myc [210]. Given that 
eGFR lacks a DNA-binding domain, the mechanism of 
eGFR-mediated gene regulation involves direct interaction 
of eGFR with STAT3 to regulate iNOS and COX2 promot-
ers, with STAT5 to regulate the Aurora Kinase A promoter, 
with e2F1 TFs to regulate the B-Myb promoter, and with 
Src and STAT3 to regulate the expression of c-Myc. The 
constitutive presence of eGFR in the tumor nuclei may be 
beneficial to the tumors that encounter eGFR-targeted anti-
bodies and TKIs. In fact, cancer cells that have acquired 
resistance to cetuximab [211] or gefitinib [212] accumulate 
more nuclear eGFR. These observations provide a ration-
ale for the combined use of inhibitors of this receptor with 
molecules that could block eGFR nuclear translocation 
or for the use of inhibitors that affect both processes. For 
example, AKT inhibitors may fulfill such dual effects given 
that AKT-mediated eGFR phosphorylation at Ser-229 has 
been shown to be required for eGFR nuclear entry [212]. 
Similarly, Dasatinib, a known Src inhibitor, has a synergis-
tic effect with cetuximab by limiting eGFR translocation to 
the nucleus [211].

Targeting EGFR stability in GBM

If kinase-independent functions of eGFR are responsible 
for tumor maintenance, we should look for alternative strat-
egies that could downregulate receptor levels, alone or in 
combination with TKIs. Among the different strategies that 
could be used to regulate eGFR protein levels, the use of 
antisense RNAs against both wild-type and mutant recep-
tors has been tested. This method impairs GBM cell growth 
in vitro and in vivo [213–215], although the absence of effi-
cient and specific siRNA delivery tools hampers the possi-
bility of its immediate clinical application. Here we review 
the mechanisms that control eGFR downregulation and its 
implications for the development of new GBM therapies 
(Fig. 4). eGFR signaling can be downregulated through a 
variety of cellular processes, such as receptor ubiquitination, 
dephosphorylation, restriction of ligand access, receptor  
trafficking to the lysosome and its subsequent degrada-
tion [216]. CBL is the primary e3 ubiquitin ligase that is 
recruited to the regulatory domain (ReG) in the receptor’s 
tail after ligand stimulation (Fig. 1). This protein can bind 
directly to phospho-Y1045, or indirectly via Grb2, and it 
recruits e2 enzymes to its ring-finger domain to promote the 
ubiquitination and internalization of eGFR [216]. Receptor 
internalization seems to be a kinase-independent process 

and it is followed by efficient recycling to the plasma mem-
brane [217]. In fact, the equilibrium between degradation 
and recycling determines the output of eGFR stimulation. 
Defective endocytotic downregulation of eGFR is associ-
ated with cancer. Indeed, dominant-negative forms of CBL 
are considered to be oncogenes in human myeloid neo-
plasms [218]. No such mutations have been found in GBM 
although the 19q13 allele containing the CBL sequence 
is frequently lost in these tumors [219]. Another way to 
manipulate the eGFR network is to maintain the level of 
activity just below the threshold required for CBL recruit-
ment and receptor degradation. This is the case for sev-
eral mutant forms detected in lung cancer [220] and also 
for eGFRvIII [84]. It is also noteworthy that eGF, but not 
TGFα (frequently overexpressed alongside eGFR [221] or 
amphiregulin [222]) triggers efficient eGFR degradation. 
Interestingly, co-expression of TGFα drives the tumorigenic 
potential of eGFR for tumor initiation [85]. These results 
suggest that GBM cells need to inhibit eGFR receptor 
degradation in order to enhance downstream signaling and 
promote cell growth and proliferation. In fact, this property 
has already been used to isolate GBM cells more capable 
of forming tumors by flow cytometry, which are those that 
express more eGFR at the plasma membrane [214].

LRIG1

Given the relevance of the eGFR signaling pathway, it is 
not surprising that its internalization involves a variety of 
positive and negative regulatory loops that ultimately influ-
ence the final response to eGFR activation. In fact, recep-
tor activation drives the transcription of genes like leucine-
rich repeats and immunoglobulin-like domains-1 (LRIG1) 
and mitogen-inducible gene 6 (MIG-6), which code for 
positive inducers of receptor degradation, and Sprouty 2 
(SPRY2), an inhibitor of eGFR internalization [223]. The 
transmembrane glycoprotein LRIG1 has been proposed 
as a tumor suppressor protein as it increases the amount 
of CBL recruited to the eGFR, limiting its downstream 
signaling [224, 225], and it is also involved in eGFRvIII 
variant degradation in GBM cells in a CBL-independent 
manner [226]. Moreover, an increased eGFR/LRIG1 ratio 
has been detected in gliomas when compared to normal 
brain tissue, suggesting that LRIG1 downregulation is con-
nected to tumor progression. The overexpression of LRIG1 
in cultured glioma cells reduces eGFR at the cell surface, 
independent of its activation status, and it triggers cell 
growth inhibition and impaired invasion, enhancing apop-
tosis [227, 228]. It was recently demonstrated that soluble 
LIGR1 (sLIGR1) has an antitumoral effect in vitro and in 
vivo, promoting cell cycle arrest by downregulating eRK 
phosphorylation, with no effect on the levels and activa-
tion of the eGFR [228]. It was proposed that sLRIG1 may 
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act through other RTKs or in an RTK-independent manner, 
which makes it a promising inhibitor and a more general 
antitumoral agent. A similar effect was recently observed 
for gambogic acid, which activates AMP-activated pro-
tein kinase (AMPK) and subsequently upregulates LRIG1, 
inhibiting eGFR signaling, increasing GBM cell apoptosis, 
and impairing tumor growth [229].

MIG-6

MIG-6 has been identified as a molecule that is induced fol-
lowing eGF stimulation and it is recruited to the activated 
receptor where it enhances the trafficking of the eGFR into 

late endosomes/lysosomes for degradation [230]. endog-
enous eGFR is hyperactivated in Mig-6 knockout mice, 
resulting in hyperproliferation and impaired differentiation 
of epidermal keratinocytes [231]. High-resolution genomic 
profiling of GBMs allowed a highly recurrent (13 % of 
tumors) focal 1p36 deletion to be identified, the region 
in which MIG-6 lies. Moreover, it was demonstrated that 
MIG-6 expression is down-regulated in half of the GBMs 
tested and that there is a positive correlation between MIG-
6 genomic alterations and the presence of eGFR amplifica-
tion and/or the mutant eGFRvIII in GBM samples [230]. 
These results support the role of MIG-6 as a tumor sup-
pressor in GBM, especially for eGFR-dependent tumors.

Fig. 4  Regulation of eGFR 
turnover. Clathrin-mediated 
endocytosis of eGFR inter-
nalization involves a variety of 
proteins, which results in the 
degradation of the receptor in 
the lysosomes or its recycling 
to the membrane. Activation of 
eGFR leads to the induction 
of LRIG1, MIG-6 and SPRY-2 
expression, all of which are 
implicated in the regulation 
of eGFR turnover. Pink boxes 
indicate the possible strategies 
directed to target eGFR stabil-
ity through the activation or 
inhibition of these proteins
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SPRY2-DYRK1A

The implication of the SPRY-2 protein in modulating 
eGFR stability is well known. SPRY-2 is an inducible regu-
lator that is phosphorylated at a conserved tyrosine residue 
(Y55) after eGFR activation. This phosphotyrosine acts 
as a docking site for the SH2 domain of CBL and it com-
petes with activated eGFR Y1045 phosphorylation. Hence, 
SPRY-2 removes CBL from activated eGFR and it blocks 
CBL-mediated eGFR ubiquitination, endocytosis, and deg-
radation, which leads to sustained receptor signaling [232, 
233]. Although SPRY2 is a tumor suppressor in different 
types of cancer, it also promotes tumor formation in colon 
cancer [234]. In GBM, several members of the SPRY fam-
ily are included in a transcriptome module associated with 
eGFR amplification in GBMs [235], suggesting that they 
might act as oncogenes in at least a subset of glial tumors. 
Indeed, the role of the dual-specificity tyrosine phosphoryl-
ation-regulated kinase (DYRK1A) in regulating eGFR sta-
bility was recently described in neural progenitor and GBM 
cells [236, 237]. while the mechanisms through which 
DYRK1A might regulate eGFR stability have not been 
fully characterized, it has been proposed that DYRK1A 
may act upstream of SPRY-2, modulating eGFR targeting 
to the lysosomes. Accordingly, DYRK1A prevents eGFR 
degradation and favors the recycling of this receptor to the 
cell surface, which results in enhance eGFR signaling and 
tumor progression. Moreover, the expression of DYRK1A 
is correlated with that of EGFR in GBM suggesting that 
this kinase is necessary for the oncogenic action of eGFR 
[237]. The silencing of DYRK1A with siRNAs reduces the 
eGFR levels in vitro and in vivo, inhibiting self-renewal 
and proliferation, increasing apoptosis, and delaying tumor 
growth [237]. More interestingly, pharmacological inhi-
bition of DYRK1A kinase activity also has a clear effect 
against tumors, indicating that it could be a good target to 
provoke eGFR degradation.

If we consider all the data presented, the notion that the 
eGFR tends to be stabilized in the membrane in GBMs 
by inhibiting receptor degradation is reinforced, either by 
downregulating positive modulators of internalization or 
by overexpressing negative effectors of this process. Altera-
tions in the expression of these modulators could explain 
why there is no linear correlation between eGFR protein 
levels and the response to anti-eGFR therapy [8–11, 160]. 
In fact, several studies suggest that eGFR activity and erlo-
tinib sensitivity may be more accurately predicted by the 
MIG-6/EGFR ratio in different tumors, and that resistance 
to TKIs is associated with an increase in MIG-6 expression 
and therefore, a decrease in eGFR activity [238, 239]. In 
fact, Mig-6 knock-out cells are unusually sensitive to gefi-
tinib [231]. Therefore, measuring the membrane eGFR or 
analyzing the expression of modifiers of eGFR turnover 

might be relevant to predict the response to TKIs. On the 
other hand, it will be interesting to test if targeting eGFR 
could enhance the efficacy of current strategies that focus on 
inhibiting eGFR activity. As a proof of principle, green tea 
(-)-epigallocatechin-3-gallate (eGCG), a known DYRK1A 
inhibitor [240], has potent synergistic anti-tumor effects 
with erlotinib in head and neck [241] or lung [242] cancer.

Concluding remarks

Alterations in the EGFR gene occur in almost 50 % of 
GBMs, particularly in primary tumors. The studies of this 
receptor have focused mainly on the conventional sig-
nal transduction pathways that control cell proliferation 
and survival, such as MAPK and PI3K. However, data 
is accumulating that suggests this classical view cannot 
explain the true complexity of the cellular functions that 
are responsible for the tumorigenic activity of the eGFR in 
neural cells. There is compelling evidence linking eGFR 
activity with the regulation of cell metabolism and with the 
adaptative responses of GBM cells to their hypoxic micro-
environment. Moreover, the localization of the receptor in 
different subcellular compartments (mainly the nucleus 
and the mitochondria) seems to be important in controlling 
the DNA damage and apoptotic responses, crucial steps 
in tumor initiation and survival. Crystallographic analy-
ses have shed some light on the nature of GBM-associated 
eGFR mutations, indicating the prevalence of the inactive 
state of this receptor in tumor cells. Therefore, molecules 
that could bind to this conformation would be preferable 
to treat aggressive gliomas. All these studies are funda-
mental to orientate the therapeutic targeting of eGFR in 
GBMs, better defining the readouts of the activity of eGFR 
inhibitors and understanding more clearly why molecules 
working in other tumors fail to exert a beneficial effect in 
gliomas. while we await the results of clinical trials with 
second- and third-generation TKIs, we need to anticipate 
the possible compensatory mechanisms activated by other 
RTKs or downstream mutations that could identify bona 
fide predictive markers, as well as more effective synergis-
tic approaches. Finally, we have to bear in mind that the 
response to eGFR activation may be independent of its 
kinase activity, and therefore targeting receptor stability 
could be more effective than the use of TKIs. Hopefully, 
this new complex and comprehensive picture of eGFR 
signaling in GBMs will allow us to reach satisfactory clini-
cal results for at least a subset of patients with this terrible 
disease.
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