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Introduction

The Dmrt (doublesex and mab3-related-transcription factor)  
family derives its name from two founding members, dou-
blesex (dsx) in Drosophila melanogaster and male abnor-
mal (mab-3) in Caenorhabditis elegans. It is defined by 
the presence of the DM domain DNA binding motif, an 
unusual cysteine-rich zinc DNA binding motif constituted 
of two intertwined zinc fingers [1, 2]. Dmrt genes are well 
known to play a conserved role in sex determination, sexual 
dimorphism or other aspects of sexual reproduction [3, 4], 
but a growing body of evidence indicates that they are also 
conserved regulators of other developmental processes [5]. 
In this review, we provide an updated overview of the evo-
lution, structure and mechanisms of action of DM genes. 
We summarize recent findings on their function in sexual 
development and discuss more extensively recent functional 
studies demonstrating their important function in somi-
togenesis and neural development. In particular, we high-
light the important role of a subgroup of them including  
Dmrt3, Dmrt4 and Dmrt5, characterized by the presence of 
an additional highly conserved domain designated DMA, 
in neurogenesis and patterning of the developing nervous 
system.

Taxonomic distribution and architecture of Dmrt proteins

Although DM domain genes have been extensively studied in 
model organisms, little is known about the evolution of this 
gene family. DM domain genes have been detected in many 
bilaterian species, including in the amphioxus [6], the oyster 
Crassostrea gigas [7], and in two cnidarian species, the coral 
Acropora millepora [8] and the sea anemone Nematostella 
vectensis [9]. Nevertheless, the evolutionary origin of Dmrt 
genes in animals has not been further investigated due to a 
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lack of data from basal metazoans. Using available whole-
genome sequences from several basal metazoans, we identi-
fied novel DM genes in the cnidarian Acropora digitifera,  
in the placozoan Trichoplax adhaerens, in the ctenophore 
Mnemiopsis leidyi and in the sponges Sycon ciliatum and 
Oscarella carmella (Fig.  1a; Suppl. Table 1). However, 
DM domain genes were not detected in the genome of the 
sponge Amphimedon queenslandica, and in several non-
metazoan holozoans including choanoflagellates, the closest 
relatives to metazoans. Thus, the DM domain gene family  
probably arose during early metazoan evolution after the 
divergence with choanoflagellates, and expanded in the 
metazoan lineage.

Vertebrates have multiple Dmrt genes (e.g., Dmrt1 
to Dmrt8 in mice and humans). Dmrt proteins have been 
classified into several subfamilies, based on the pres-
ence of additional conserved protein domains and on the 
exon–intron structure of the corresponding genes. Dmrt4 
(Dmrta1), Dmrt5 (Dmrta2) and Dmrt3 (Dmrta3) constitute  
one such subfamily characterized by the presence of a con-
served DMA domain at their C-termini (Fig.  1b). Each 
gene of this subfamily has two coding exons, with the DM 
domain encoded by the first coding exon and the DMA 
domain encoded by the second one [10]. In N. vectensis, a 
DMA domain is present in all eight Dmrt genes, suggest-
ing that its presence may represent the ancestral condition 
for cnidarians and bilaterians [9]. We observed the presence 
of a DMA domain in some or all the Dmrt genes in most 
metazoan species we looked at. This includes non-bilate-
rians such as the placozoan Trichoplax and the ctenophore 
Mnemiopsis (Fig. 1a; Suppl. Table 1), indicating that Dmrt 
genes with both DM and DMA domains were already pre-
sent during early metazoan evolution. Uncertainties about 
the phylogenetic relationships of non-bilaterian animals 
[11, 12] and the relative paucity of genomic data from non-
bilaterian species do not allow the drawing of firm conclu-
sions about whether a DM + DMA architecture may repre-
sent the ancestral state of Dmrt genes in metazoans. Further 
studies are also required to define whether the last common 
ancestor of bilaterians and that of bilaterians and cnidarians 
only owned Dmrt genes with DM and DMA domains, as is 
observed in some present-day species (such as Nematostella 
and Saccoglossus), or whether both genes with and without 
DMA domain coexisted in these remote ancestors, as found 
in many extant species (such as vertebrates).

Phylogeny of the Dmrt genes

We performed a phylogenetic analysis of the Dmrt 
sequences to study the evolution of individual Dmrt gene 
members. The phylogenetic relationship among Dmrt pro-
teins is not obvious, as there is little sequence similarity 
outside the short DM and DMA domains. Here, we limited 

our study to deuterostomes including sequences from vari-
ous chordates, echinoderms and hemichordates. A thor-
ough phylogenetic analysis is needed to draw conclusions 
about the origin and the evolution of the Dmrt family at the 
level of the metazoans. Phylogenetic analyses of both DM 
and DMA domains (Fig.  1c, d) suggest that the Dmrt2, 
Dmrt3 and Dmrt4/5 vertebrate subgroup is monophyletic 
and that orthologs of each of these genes were already pre-
sent in the ancestor of deuterostomes and contained both 
DM and DMA domains. Comparison between DM and 
DMA domain phylogenies suggest that vertebrate Dmrt2 
have lost their DMA domain since related sequences in 
cephalochordates and hemichordates contain this domain. 
Vertebrate Dmrt1, Dmrt6 and Dmrt7 also appear to be 
monophyletic. They could not be related unambiguously 
to non-vertebrate deuterostome sequences or other Dmrt 
vertebrate subgroups due to weak phylogenetic signal. The 
question of their origin remains unsolved. Dmrt8 (Dmrtc1) 
show strong similarity over their entire sequence to Dmrt7 
(Dmrtc2) but lack the DM domain [13]. Both have been 
found in mammals but not in other vertebrate species. 
In Dmrt8 from human, chimp and orangutan, the open 
reading frame is disrupted by a stop codon 5′ of the DM 

Fig. 1   Taxonomic distribution and phylogeny of the Dmrt genes and 
domain architecture of the proteins. a Distribution of Dmrt genes in 
representatives of metazoans. For each species, the number of Dmrt 
paralogs, with or without a DMA domain, is reported in parentheses. 
Accession numbers of the sequences included in this analysis are pro-
vided in Suppl. Table S1. Metazoa are highlighted in red, Eumetazoa 
in yellow, Bilateria in blue, Cnidaria in green and Porifera in gray. 
The phylogenetic relationships of placozoans and ctenophores with 
the other metazoan groups are still controversial and are therefore 
represented by dashed lines. In some phylogenetic studies [12], cten-
ophores together with cnidarians constitute the sister group to bilate-
rians, while in other studies [11], ctenophores are found as the sister 
group to all other metazoans including sponges. Similarly, placozo-
ans have been reported either as belonging to eumetozoans [12], or as 
the sister group to all other metazoans [102]. b Domain architecture 
of the mouse Dmrt paralogs. For each Dmrt protein, the additional 
names are provided. Dmrt proteins share highly conserved protein 
motifs, including the DM domain, and are subdivided into a few sub-
groups based on sequence similarity. Dmrt3, Dmrt4, and Dmrt5 are 
categorized as a subgroup because their products share a highly con-
served DMA domain at their C-termini. Pro/Ser-, Ala- and Gly-rich 
domains are also indicated. c, d Phylogenetic relationships between 
deuterostomian Dmrts inferred by neighbor-joining (NJ) analyses of 
the DM (c) and DMA (d) domains. Sequences included belong to 
the major groups of deuterostomes: hemichordates (sequence names 
in red), echinoderms (green), cephalochordates (blue), urochordates 
(orange) and vertebrates (black); Bf, Branchiostoma floridae; Dr, 
Danio rerio; Hs, Homo sapiens; Mm, Mus musculus; Gg, Gallus gal-
lus; Sk, Saccoglossus kowalevskii; Sp, Strongylocentrotus purpuratus; 
Ci, Ciona intestinalis; Xt, Xenopus tropicalis. See Table S1 for infor-
mation about sequences. For each genomes, all identified sequences 
have been included except the very divergent B. floridae DmrtC, 
DmrtD and DmrtE. Branches crossed by a green or red bar indicate 
bootstrap value ≥70 and ≥95  %, respectively (1,000 NJ bootstrap 
replicates)
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domain. Therefore, primate Dmrt8 genes do not have the 
potential to encode a DM domain [14].

Mechanisms of action of Dmrt proteins

Despite the importance of Dmrt proteins, how they regu-
late the expression of specific target genes remains elu-
sive. Dmrt3 and Dmrt5 have been shown to encode nuclear 
proteins [9, 15]. Sequence-specific DNA binding via the 
DM domain has been determined in vitro for most verte-
brate Dmrt proteins [9, 15, 16]. They all bind very similar 
DNA sequences resembling those bound by DSX [17, 18] 
and MAB-3 [19]. The consensus consists in a palindromic 
sequence (G/A)NNAC(A/T)A(A/T)GTNN(C/T) composed 
of two half-sites around a central (A/T) base pair. As pre-
dicted from the symmetric nature of this site, Dmrt proteins 
bind DNA as homodimers or heterodimers with other DM 
domain proteins [16, 17].

DM domain proteins are able to act as transcriptional 
activators or repressors. Reporter gene transcription assays 
and deletion analysis have indicated that their regulatory 
domains are located at their C-termini [9, 20, 21]. To date, 
transcriptional regulation by Dmrt proteins has only been 
investigated at a large scale in the case of Dmrt1 in mouse 
sexual differentiation (see below). In cell cultures, Dmrt1 
activates or represses transcription depending on cell type 
and promoter structure. In vivo, in the developing mouse 
male and female gonads, Dmrt1 acts simultaneously at mul-
tiple sites across the genome, activating some genes and 
repressing others. Thus, Dmrt1 functions as a bifunctional 
transcriptional regulator. It also binds its own promoter as 
well as one of the other Dmrt genes, suggesting auto- and 
cross-regulation of these genes. Chromatin immunopre-
cipitation (ChIP) analysis using conditional mutant testes 
showed that DNA binding and transcriptional regulation of 
individual target genes can differ between germ cells and 
Sertoli cells, and that some genes exhibit Dmrt1 binding 
only in one cell type. Differential response of genes to loss 
of Dmrt1 appears to correspond to differences in the binding 
motif, suggesting that other transactivating factors modulate 
its activity [22–25]. Whether other DM proteins function like 
Dmrt1 as bifunctional transcriptional regulators is unclear. 
MAB-3 represses transcription of yolk gene (vitellogenin) 
in the intestine and blocks transcription of the antineural 
bHLH gene ref-1, a repressor of the proneural protein lin-
32 in male ray precursor cells [19, 26]. dsx is alternatively 
spliced into sex-specific isoforms that encode proteins that 
share the DM domain but have distinct C-termini. DSXM in 
males blocks, whereas DSXF in females activates, transcrip-
tion of genes such as the female-specific yolk protein genes 
or the bric a brac 1 (bab1) and bab2 genes which control 
pigmentation [27–29]. Recently, novel DSX targets dur-
ing genital development have been identified, some being 

activated and others being repressed by DSX [30]. However, 
it is not known whether these novel downstream genes are 
direct or indirect targets. Thus, so far, only Dmrt1 has been 
shown to be bifunctional.

How do Dmrt proteins achieve transcription repression or 
activation in a cell-specific manner? In contrast to other zinc 
finger proteins, DM proteins interact with DNA in the minor 
groove rather than the major groove [2, 31]. This enables 
them to bind to DNA on sites overlapping those of major 
groove binding proteins and to physically interfere with 
their binding or to cooperate with them. Such a mechanism 
has been observed in the case of DSX and MAB-3 [26, 28, 
29, 32, 33]. Whether this mechanism is also used by Dmrt 
proteins in vertebrate is not known. Whether they recruit 
coactivators or corepressors and associate with chromatin-
modifying enzymes also remains to be investigated.

Dmrts are conserved regulators of sexual development

DM domain-containing genes are conserved genetic com-
ponents involved in sex differentiation in all animals that 
have been studied. In flies, dsx act downstream in the 
sex-determination pathway. dsx is expressed in somatic 
gonadal primordium and its function in the somatic gonad 
is required for sex-specific germline development. Later in 
development, dsx is widely expressed in a subset of non-
gonadal cells where it acts cell autonomously and non-cell 
autonomously, via interactions with conserved Hox genes 
and signaling pathways, to integrate sex-specific, spatial and 
temporal cues and induce localized sex-specific differentia-
tion. Three other DM domain genes are present in flies, but 
only dsx has been shown to regulate sexual dimorphism.

Caernorhabditis elegans has 11 DM domain genes. 
Among them, 3 are known to regulate sexual develop-
ment: mab-3, mab-23 and DM domain 3 (dmd-3). They are  
dispensable to gonad development but are involved in the 
sexual differentiation of somatic tissues including copulatory 
structures such as sensory rays, spicules and mating muscles.  
As in flies, DM domain genes in nematodes integrate sexual 
and various positional and temporal cues to initiate a sex-
specific developmental program (reviewed in [3, 4]).

In Daphnia magna, a freshwater branchiopod crusta-
cean which parthenogenetically produces males in response 
to environmental cues, a DM domain gene, DapmaDsx1, 
has been identified. DapmaDsx1 shows higher expression 
in male-specific structures. Knockdown of DapmaDsx1 
in male embryos directs the production of female traits 
whereas ectopic expression of DapmaDsx1 in female results 
in the development of male-like phenotypes [34].

In Acropora millepora, transcripts of the DM domain 
gene AmD1 are present at higher levels during sexual dif-
ferentiation [8], suggesting that the implication of Dmrt 
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genes in sexual regulation may have predated the divergence 
between cnidarians and bilaterians.

In vertebrates, all Dmrt family members are expressed 
in the indifferent gonad and in most cases they are sub-
sequently maintained at higher levels in male as opposed 
to female gonads (Table 1). Among the eight DM domain 
genes in vertebrates, three of them have been established to 
have roles in gonad and/or germ line development, namely 
Dmrt1, Dmrt4 and Dmrt7 (Table 2). In the following section, 
we briefly highlight the functions of two of them, Dmrt1 and 
Dmrt7, and show that Dmrt1 or a close paralog has recently 
moved up the regulatory hierarchy from downstream posi-
tions in gonad and germ line development to the top level of 
sex determination during evolution in fish, birds and frogs. 
The role of Dmrt4 in gonadal and non-gonadal tissues is 
discussed in the next section. Recent excellent reviews have 
more extensively discussed the role of Dmrts in the develop-
ment and evolution of sex dimorphism [3, 4, 35, 36].

Dmrt1 triggers male-specific and represses female-specific 
differentiation

In humans, Dmrt1 is localized in a region on the short arm 
of chromosome 9 (9p24.3) including three Dmrt genes 
(Dmrt1–3). Deletions of this region are associated with 
testicular dysgenesis and, in some cases, cause sex rever-
sal of the XY embryonic gonad into ovarian tissue [37–40]. 
Among the three genes, Dmrt1 is the strongest candidate for 
XY gonadal dysgenesis. It is indeed expressed in the human 
embryonic genital ridges of human male, but not female 
embryos [41]. Deletions or mutations of Dmrt1 can cause 
XY gonadal dysgenesis [42–45]. Therefore, Dmrt1 was 
thought to have an important function in sex determination. 
Feminization associated with the loss of Dmrt1 is, however, 
more likely due to a failure of male gonadal differentiation 
or to the reprogramming of Sertoli cells into granulosa-like 
cells, as recently discovered in mice (see below). Dmrt1 is 
also associated with testicular germ cell cancer [46–48], 
which is consistent with a role of Dmrt1 as a tumor suppres-
sor in 129v mice [22].

In mouse embryos, Dmrt1 is expressed in the genital 
ridge of both sexes before any overt signs of sex differ-
entiation. Later, Dmrt1 expression declines in the ovary 
but is maintained in the testis, where it is restricted to pre-
meiotic germ cells and Sertoli cells [49]. In mice, Dmrt1 is 
not required for primary sex determination as XY Dmrt1 
mutants are born as males. It is, however, involved in mul-
tiple aspects of the male gonad differentiation. Indeed, in 
those mutants, Sertoli cells overproliferate, lose expression 
of the male-specific Sox9 protein and acquire expression of 
female specific Forkhead box L2 (Foxl2) and other granu-
losa markers. Germ cells fail to undergo radial migration, 
to reactivate mitosis, to enter meiosis and to survive beyond 

P10 [50]. In order to identify the function of Dmrt1 in Ser-
toli and germ cells, Kim et al. have used conditional gene 
targeting. This approach revealed that Dmrt1 is required in 
Sertoli cells for their postnatal differentiation, for germ line 
maintenance and for meiotic progression. In germ cells, 
Dmrt1 is required for radial migration, for mitotic reactiva-
tion just after birth, and for survival beyond the first post-
natal week. Thus, in mice, Dmrt1 is required autonomously 
in both cell lineages. Dmrt1 activity in Sertoli cells is also 
required non-cell autonomously to maintain the germ line 
[51].

A recent study has addressed the function of Dmrt1 in 
Sertoli cells in the postnatal testis. In mammals, sex is deter-
mined in the fetal gonad by the presence or absence of the 
Y chromosome gene Sry, which controls whether bipoten-
tial precursor cells differentiate into testicular Sertoli cells 
or ovarian granulosa cells. This pivotal decision in a single 
gonadal cell type ultimately controls sexual differentiation 
throughout the body. Sex determination can be viewed as a 
battle for primacy in the fetal gonad between a male genetic 
network in which Sry activates Sox9 and a female network 
involving Wnt signaling and Foxl2, a female-specific tran-
scription factor expressed in granulosa and theca cells. Loss 
of Dmrt1, even in adult Sertoli cells, activates ovary-specific 
genes such as Foxl2 and causes the loss of male-promoting 
genes such as Sox9, and reprograms Sertoli cells into granu-
losa cells. In this environment, theca cells form, oestrogen 
is produced, and germ cells appear feminized [24, 25]. Con-
versely, loss of Foxl2 in adult granulosa cells causes ectopic 
expression of Dmrt1 and their reprogrammation into Sertoli 
cells [52]. Thus, Dmrt1 is required to prevent female repro-
gramming in the postnatal mammalian testis, and the sexual 
fate of the somatic gonad is postnatally controlled by the 
opposed activity of Dmrt1 and Foxl2.

Another function of Dmrt1 in male germ cells was 
revealed when Dmrt1 was deleted in postnatal undifferenti-
ated spermatogonia. In mammals, meiosis begins at puberty, 
and sperm is produced throughout life. Spermatogenesis 
occurs in three phases: a mitotic proliferative phase involving  
spermatogonia stem/progenitor cells, two reductive divisions  
of meiosis, and then a postmeiotic phase of spermiogenesis. 
The switch from mitosis to meiosis requires retinoic acid 
(RA), which activates meiotic inducers, including Stra8 [53, 
54]. Dmrt1 is detected in all mitotic spermatogonia, and 
its expression decreases with the onset of spermatogonial 
differentiation and disappears at the initiation of meiosis. 
Loss of Dmrt1 in undifferentiated spermatogonia causes 
them to precociously exit the spermatogonial program and 
enter meiosis. Dmrt1 appears to act in spermatogonia by 
suppressing RA via transcriptional repression of Stra8, and 
by promoting the production of the spermatogonial differ-
entiation basic helix-loop-helix transcription factor Sohlh1 
[55]. These data indicate that Dmrt1 is a transcriptional 
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Table 1   An outline of reported Dmrt factor embryonic expression in vertebrates

Factor Species Embryonic expression in  
non-gonadal tissue (in situ)

Expression in gonads References

Dmrt1 Mouse nd Genital ridge prior to sexual differentiation. Expression 
becomes XY specific during gonadogenesis. Both in 
Sertoli and germ cells (mitotic spermatogonia).

[49, 55, 103]

Chicken nr Genital ridge, higher in male. Becomes testis-specific  
after the onset of sexual differentiation.

[49, 103]

Xenopus nr First detected in primordial gonad in both ZW and  
ZZ tadpoles in cells surrounding the PGCs. Expression  
is maintained and becomes higher in testis than ovary  
after metamorphosis.

[20, 71, 104]

(dm-w) Xenopus nr Expression exclusively in primordial gonads of ZW  
tadpoles in cells surrounding the PGCs. Expression  
is not maintained in the ZW and ZZ gonads.

[71, 72]

Platyfish nd Spermatogonia and Sertoli cells in adult testis. [61, 105]

Zebrafish nr Testis and ovary, higher in testis than ovary. Germ cells. [106]

Medaka nr No expression in gonads in embryos before stage 20  
of development. Expressed in spermatogonium- 
supporting cells after testicular differentiations  
(20 days after hatching).

[62, 67, 93]

(Dmy) Medaka nr Expressed during development from neurula stage in 
somatic cells surrounding germ cells exclusively  
in XY gonads. Expression maintained in adult testes.

[62, 63, 67]

Dmrt2 Mouse Presomitic mesoderm and  
dermomyotome of somites.

Barely detectable expression, higher in testis than  
ovary during embryonic development.

[80, 83, 85, 
86, 107]

Chicken Transient asymmetric expression in the  
chick Hensen’s node, anterior  
presomitic mesoderm and dorsal  
compartment of somites.

nr [84]

Medaka Somites. Sertoli cells in adult testis. Early stage oocytes in  
adult ovaries.

[93]

Zebrafish Kupffer’s vesicle in 3-somite stage embryos; 
presomitic mesoderm and newly  
formed somites in bud stage embryos 
(Dmrt2a). Somites and branchial (Dmrt2b).

Adult testis (Dmrt2b). [80–83]

Platyfish Somites; branchial arches (Dmrt2a). nd [105]

Dmrt3 Mouse Nasal placode, telencephalon, spinal  
cord interneurons.

Expression initially similar in testis and ovary;  
higher in testis after E13.5. Interstitial cells.

[87, 107]

Chicken Nasal placode, telencephalon, dorsal  
spinal cord interneurons, somites,  
müllerian ducts (higher in females  
than males).

nd [87]

Zebrafish Nasal placode, anterior neural tube,  
dorsal spinal cord interneurons.

Undifferentiated gonads from 17 dpf. Adult testis  
(spermatogonia and spermatocytes) and ovary  
(oocytes).

[15]

Medaka Dorsal spinal cord interneurons. Differentiating gonads (12–20 dph) and adult testis. [93]

Dmrt4 Mouse Ubiquitous, high expression in  
olfactory tissues.

Similar levels in testis and ovary (from E11.5). [89, 107]

Xenopus Nasal placode, telencephalon,  
foregut, gall bladder.

Adult testis. [88]

Medaka Olfactory system, telencephalon. Differentiating gonads, adult testis and ovary. [93, 108]

Platifish Olfactory placode, forebrain,  
branchial arches.

nd [105]
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gatekeeper that controls the mitosis versus the meiosis deci-
sion in male germ cells.

The role of Dmrt1 in the mammalian fetal ovary has also 
been investigated. In females, meiosis begins in the fetus, 
and germ cells remain arrested in the diplotene stage of 
prophase I until after puberty. As in males, meiotic activa-
tion occurs under the influence of RA and the downstream 
meiosis inducer Stra8 [54, 56]. Dmrt1 mutant germ cells 
were found to have severely reduced Stra8 expression and 
to undergo abnormal meiotic prophase [23]. mRNA profil-
ing and ChIP suggest that transcriptional activation of Stra8 
is the main function of Dmrt1 in the fetal ovary, and that this 
regulation is likely to be direct. Thus, Dmrt1 controls Stra8 
sex-specifically, activating it in the fetal ovary and repress-
ing it in the adult testis.

Studies on the function of Dmrt1 in sexual development 
have also been conducted in non-mammalian vertebrates. 
In species with temperature-dependent sex determination 
such as turtles, lizards and alligators, Dmrt1 expression was 
found to be higher in developing male gonads than in female 
ones, suggesting that it is involved in this process [57–59].

In the medaka, Oryzias latipes, which like mammals 
uses the XX/XY sex determination system, Dmrt1 has 
undergone duplication. Gene duplication generating Dmy 
recently occured during evolution of the genus Oryzias as 
the gene is absent in other fishes, including other Oryzias 
species [60, 61]. One of the newly derived paralogs, called 
Dm domain on Y, also known as Dmrt1bY or Dmy, is located 
on the sex-determining region of the Y chromosome. Dmy 
is expressed exclusively in somatic cells of XY gonads in 

the early gonadal primordium before morphological sexual 
dimorphism is observed. Dmy is a master regulator of sex  
determination as it is both required and sufficient for male 
development [62–66]. The other paralog, Dmrt1, is expressed 
in spermatogonium-supporting cells, which is the same lin-
eage of cells expressing Dmy, but after testis differentiation 
[67]. High temperature or steroid treatment induces Dmrt1 
expression in XX embryos and leads to XX sex-reversed 
testis [68, 69]. Conversely, in a Dmrt1 mutant line, XY indi-
viduals developed into normal egg-laying females. The XY 
mutant gonads first developed into the normal testis type, 
but by day 10 after hatching, the gonads transdifferentiate 
into the ovary type [70]. These data suggest that Dmrt1 in 
medaka is essential to maintain testis differentiation after 
Dmy-triggered male differentiation pathway.

Xenopus laevis uses the female heterogametic ZZ/ZW-
type sex determining system. Similarly to medaka, a dupli-
cated variant of Dmrt1 residing on the female-specific 
W chromosome has been isolated (termed dm-w). While 
Dmrt1 is expressed continuously in both ZZ and ZW devel-
oping gonads, dm-w is expressed exclusively in female ZW 
primordial gonads at sex determination. dm-w is an ovary-
determining gene in X. laevis as exogenous dm-w causes 
developing ovotestes in ZZ tadpoles and dm-w knockdown 
in ZW individuals induces male development [71]. Dm-w 
appears to direct female sex by antagonizing the autoso-
mal Dmrt1 gene to determine a testis fate. Dm-w encodes 
a truncated Dmrt1 protein which has a DM domain but 
lacks more carboxy-terminal sequences. It is proposed that 
dm-w blocks Dmrt1 by dimerizing and antagonizing Dmrt1 

nr not reported, nd not detected

Factor Species Embryonic expression in  
non-gonadal tissue (in situ)

Expression in gonads References

Dmrt5 Mouse Nasal placode, dorsal telencephalon,  
ventral forebrain/midbrain border  
at E9.5 extending later to the entire  
ventral midbrain, optic stalk, lateral  
head ectoderm, maxillary and mandibular 
processes, eyes, hypophysis.

Higher levels in ovary versus testis (E12.5 to E15.5). [90, 91, 107]

Xenopus Nasal placode, dorsal telencephalon,  
ventral diencephalon.

nr [9]

Zebrafish Nasal placode, dorsal and ventral  
telencephalon, ventral diencephalon.

Germ cells in adult testis and ovary. [95, 109]

Platifish Forebrain, olfactory placode,  
midbrain, lens.

nd [105]

Dmrt6 Mouse nr nd [107]

Dmrt7 Mouse nd Higher level in ovary versus testis in embryonic  
and adult gonads. Postnatally, expression is male  
specific and restricted to spermatocytes and sperm.

[75, 76, 107]

Dmrt8 Mouse nr Higher level in testis than in ovary in embryonic  
gonads. Testis-specific expression restricted to  
Sertoli cells in the adult.

[14]

Table 1   continued
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Table 2   An overview of the phenotypes associated with loss or gain of function of chordate Dmrt genes

Factor Species Loss-of-function/gain-of-function phenotypes References

Dmrt1 Mouse KO Defects in germ radial migration, reactivation of  
mitosis and survival. Failure of Sertoli cell  
differentiation. Teratoma formation in fetal germ cells.  
Failure to control the mitosis versus  
meiosis decision in male germ cells.  
Female reprogramming in the postnatal testis.  
Reduction of primordial follicles in the  
juvenile ovary.

[22–24, 50, 51, 56]

Medaka M Male-to-female sex reversal after  
sex determination.

[70]

(Dmy) Medaka M Female development in genetic males. [62, 65]

GOF Male development in genetic  
females. Inhibition of primordial  
germ cell proliferation.

[66, 110]

KD Loss of proliferation inhibition in  
primordial germ cells.

[110]

(dm-w) Xenopus GOF Ovarian cavities in gonads of ZZ tadpoles  
overexpressing dm-w.

[71, 72]

KD Male development in ZW individuals. [72]

Chicken KD Feminization of gonads of embryonic males. [74]

Dmrt2 Mouse KO Embryonic somite patterning  
and myogenic defects.

[83, 85, 111]

GOF Increased myogenesis. [86]

(Dmrt2a/ 
Terra)

Zebrafish GOF Increased apoptosis. [80]

KD Randomization of left-sides specific  
genes and desynchronization of the  
segmentation clock.

[84]

Dmrt2b Zebrafish KD Defects in somitogenesis and hedgehog signaling.  
Neural tube patterning defects. Randomization  
of left-side specific genes. Impairment of slow  
muscle development.

[81]

Dmrt3 Mouse KO Male sexual development abnormalities.
Dental malocclusions.

[112]

KO Defects in spinal circuits involved in locomotion [21]

Horse M Defects in pattern locomotion in horses [21]

Xenopus GOF mDmrt3 promotes neurogenesis in caps. [9]

Dmrt4 Mouse KO Females with polyovular follicles and  
male sexual development abnormalities.

[89]

Xenopus KD Impaired neurogenesis in the olfactory placode. [88]

GOF Promotes neurogenesis in caps. [88]

Dmrt5 Mouse KO Reduced development of the caudomedial cerebral cortex. [91, 92]

GOF Promotes dopamine neurons in ES cells. [90]

KD Inhibition of ES cells differentiation towards a ventral  
medial mesencephalic cell fate.

[90]

Xenopus KD Impaired neurogenesis in the olfactory placode. [9]

GOF Promotes neurogenesis in caps. [9]

Zebrafish M, KD Defects in telencephalic neurogenesis. [95]

(Dmrt1) Ciona M Defects in anterior neural plate derivatives. [100]

KD Impaired Six1/2, Six3/6, Meis and ZicL in the developing  
brain and FoxC in palps.

[99]

Dmrt7 Mouse KO Infertility with spermatogenic arrest in pachytene stage  
and sex chromatin defects.

[75, 76]

GOF gain of function, KD knockdown, KO knockout, M mutation
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transcriptional activity [72]. As in medaka, this sex-deter-
mining role is a recent innovation. Indeed, a closely related 
species, Silurana tropicalis, lacks the dm-w gene [73].

Birds also use a female heterogametic sex ZZ/ZW system. 
Sex is supposed to be determined by the higher Z chromo-
some dosage in males, by the presence of a W chromosome 
in females, or possibly by a combination of both [35]. In all 
birds, Dmrt1 is located on the Z chromosome. In embryos, it 
is expressed in the early bipotential gonad and shows higher 
expression levels in ZZ versus ZW embryos [49]. If Dmrt1 
activity is experimentally reduced, the gonads of geneti-
cally male (ZZ) embryos are feminized [74], demonstrating 
that Dmrt1 is required for testicular differentiation. Thus, in 
birds, Dmrt1 plays an important role in sex determination; 
the higher expression level in male (ZZ) embryos triggers 
the testis specification pathway whereas only a lower dose, 
as found in females, is compatible with ovarian develop-
ment. Whether elevated Dmrt1 expression is sufficient in 
ZW genital ridge to induce male development remains how-
ever to be tested.

Dmrt7 is required for male meiosis

Dmrt7 is present in placental mammals and marsupials but 
no ortholog has been reported in non-mammalian vertebrates. 
In mouse, Dmrt7 is expressed in both male and female fetal 
gonads. In the ovary, Dmrt7 expression is independent of the 
germ line, as, in XX c-kit mutants which lack germ cells, 
the level of its expression remains similar to that observed 
in wild-types. In adults, Dmrt7 expression is male specific. 
It is predominantly detected in mid- to late-pachytene sper-
matocytes and the protein preferentially localizes to the XY 
body, a densely stained chromatin domain harboring sex 
chromosomes, essential for male meiotic progression. Con-
sistent with this expression pattern, mice deficient in Dmrt7 
are infertile and most mutant cells show spermatogenic arrest 
in pachytene stage and abnormal cellular organization of Ser-
toli cells [75, 76]. The germ cell defects of Dmrt7 mutants are 
not caused by aberrant Sertoli cell organization since animals 
with deletion of Dmrt7 just in Sertoli cells have normal testis 
and spermatogenesis. Dmrt7 mutant cells establish a normal 
XY body in mid-pachynema, but then have multiple epige-
netic defects in the sex chromatin transition from pachynema 
to diplonema. This suggests that Dmrt7 plays a role in the 
control of the transition from meiotic sex chromosome inacti-
vation to postmeiotic sex chromatin in males [76].

Dmrts are important during embryogenesis in  
non-gonadal tissues

Following their initial expression in the developing gonads, 
a subset of the Dmrt family members, including Dmrt2, 

Dmrt3, Dmrt4 and Dmrt5, show differential expression in a 
limited number of non-gonadal tissues and organs. In most 
species, Dmrt genes have been detected in tissues such as 
the central nervous system, nasal placode or somites. Their 
expression pattern is often conserved across species, but 
there are also differences. For example, while Dmrt3 is 
expressed in the neural tube and in the presomitic mesoderm 
in chick, it is only detected in the nervous system in fish 
and mouse suggesting its function has shifted during evo-
lution (Table 1). Those four DM domain genes have been 
recently the subject of functional analysis in mouse, fish 
or Xenopus. Table 2 summarizes some of these gain- and 
loss-of-function studies and the resulting phenotypes. Here, 
we discuss these recent studies which show that Dmrts, like 
DSX, direct a variety of cell differentiation events and often 
function in the specification of progenitor cells. They also 
indicate that some of these Dmrt factors, as DSX in flies [33, 
77–79], act by modulating signaling pathways, suggesting 
that this may be a common theme for DM domain proteins 
across species.

Dmrt2 is involved in establishing left–right asymmetry  
and somitogenesis

The first Dmrt gene suggested to have a role unrelated to 
sexual development was Dmrt2. It was first identified in 
zebrafish through a systematic search for genes with tissue-
specific expression and was selected because of its somite 
and presomitic mesoderm-specific expression pattern. The 
identified gene, originally called terra, was found to play a 
role in somitogenesis based on the observation that its over-
expression induces rapid apoptosis in the mesoderm [80]. 
A duplicated copy of the Dmrt2 gene was later described 
in the zebrafish genome, and Dmrt2a/terra and Dmrt2b 
have been designated to distinguish them. Both genes 
are expressed during somitogenesis, but the fish-specific 
Dmrt2b is also expressed in branchial arches [81, 82]. In 
addition to the developing somites, Dmrt2a is transiently 
asymmetrically expressed in the zebrafish Kupffer’s vesicle 
and in the equivalent structure in the chick, the Hensen’s 
node, which suggest a left–right patterning function during 
development [83, 84]. Indeed, in zebrafish, using a mor-
pholino-based approach, Dmrt2a was found to be required 
for left–right synchronization of the segmentation clock. It 
is also required for left–right patterning in the lateral plate 
mesoderm and thus the correct positioning of the internal 
organs on each side of the midline. As such, Dmrt2a is a 
key factor linking left–right patterning with bilateral syn-
chronization of the segmentation clock in the mesoderm 
[84]. Dmrt2b morphants also display defects in heart and 
visceral organ asymmetry, and some lateral plate mesoderm 
markers expressed in the left side are randomized. Dmrt2b 
knockdown also leads to notable defects in somitogenesis 
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and reduces target gene expression of Hedgehog signal-
ing, which results in significant impairment in slow mus-
cle development. Dmrt2a cannot compensate for the loss of 
Dmrt2b and vice versa. These data indicate that functional 
divergence has occurred between the two duplicated genes, 
with Dmrt2b maintaining the common function for left–
right establishment and contributing to a divergent function 
in somitogenesis through Hedgehog signaling [81].

In the mouse, Dmrt2 is expressed in the presomitic 
mesoderm and is then confined to the dermomyotome, the 
dorsal epithelial domain of the developing somites contain-
ing muscle stem cells, but is absent from the node [83]. As 
in zebrafish, its targeted disruption leads to severe somite 
patterning defects, first visible at day E10.5. Both the  
dermomyotome and myotome fail to adopt a normal epi-
thelial morphology. Accompanying these morphological 
defects, alterations in the expression of dermomyotomal 
and myotomal transcription factors such as Pax3, Paraxis, 
Myf5, Myogenin, Mrf4 and MyoD were observed [85]. 
In agreement with the absence of its expression from the 
mouse node, Dmrt2 homozygous mutants do not show left–
right desynchronization of somite formation or defects in 
left–right asymmetric organ positioning. Thus, the role of 
Dmrt2 in symmetric somite formation and in the regulation 
of the laterality pathway is not conserved during zebrafish 
and mouse embryonic development [83]. Whether this loss 
of Dmrt2 function in left–right patterning in the mouse arise 
from mutations occurring in the enhancer responsible for 
the node expression or from the loss of a protein(s) nec-
essary to activate specifically the node enhancer remains 
unknown. In a recent report, Dmrt2 has been identified as 
a target of Pax3, a critical regulator of skeletal muscle stem 
cells. Furthermore, Dmrt2 was found to directly regulate 
early activation of the myogenic determination gene Myf5, 
required for the formation of the first skeletal muscle in 
the somites. Conditional overexpression of Dmrt2 in Pax3-
expressing cells in the somite confirms the role of this factor 
in the activation of Myf5 [86]. Thus, a genetic network com-
prising Pax3/Dmrt2/Myf5 operates in the muscle stem cells 
of the dermomyotome in the mouse embryo to orchestrate 
the onset of myogenesis.

Dmrt3, Dmrt4 and Dmrt5 play key roles in neurogenesis

Several studies have shown that members of the Dmrt3–5 
subfamily of DM genes are expressed in a restricted man-
ner in the developing nervous system. All three genes are 
expressed in the developing telencephalon and olfactory 
placode in the mouse (Fig. 2), and this expression pattern 
in the developing CNS is conserved in most vertebrate 
embryos studied, including chick, mouse and zebrafish 
embryos (Fig.  3a–d) [87–92]. In addition, Dmrt3 is also 
strongly expressed in the spinal cord in dorsal interneurons 

[15, 87, 93] and Dmrt5 in the ventral medial mesencephalon 
(Fig. 3a) [90, 91]. The functional relevance of these expres-
sion patterns has recently been investigated for Dmrt4 and 
Dmrt5 in Xenopus olfactory placode and zebrafish telen-
cephalon neurogenesis and for Dmrt3 in mouse spinal cord 
neuronal specification (Fig. 4).

In Xenopus, Dmrt4 and Dmrt5 are coexpressed early in 
the anterior neural ridge (ANR) and then become progres-
sively restricted to the dorsal telencephalon and the olfac-
tory epithelium. Both genes are positively regulated by 
neural inducers and negatively by proneural factors. They 
are also activated by the combined action of the transcrip-
tion factor Otx2, broadly transcribed in the head ectoderm, 
and of Notch signaling, activated in the ANR. Knockdown 
of Dmrt4 or Dmrt5 impairs neurogenesis in the embryonic 
olfactory system and in neuralized animal caps. Conversely, 
their overexpression promotes neuronal differentiation in 
animal caps as visualized using markers such as the bHLH 
transcription factors Ngnr-1, Ebf2 or Ath5, a property that 
requires the C-terminal DMA domain and downstream 
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sequences. In animal caps, the Noggin mediated induc-
tion of Ngnr-1 and Ebf2 that is affected by the depletion 
of Dmrt5 can be rescued by Dmrt4 overexpression. Con-
versely, the inhibition of Ngnr-1 and Ebf2 in the context of 
Dmrt4 depleted explants can be rescued by Dmrt5 overex-
pression [9, 88]. Together, these data indicate that Dmrt4 and 
Dmrt5 have overlapping functions upstream of proneural  
factors during olfactory placode neurogenesis.

In the mouse, Dmrt3, Dmrt4 and Dmrt5 are strongly 
expressed in the developing olfactory epithelium but it is not 
known whether they play a role in its formation [87, 89, 91]. 
Dmrt4-deficient mice have been generated. Those mice are 
viable and fertile but have polyovular follicles, suggesting 
a role in folliculogenesis. Interestingly, 25 % of the mutant 
males exhibited copulatory behavior towards other males. 
As olfaction and sexual behavior are strongly linked in 
mice, this suggest possible olfactory function defects [94]. 
Nevertheless, Dmrt4-deficient mice have a histologically 
normal olfactory epithelium and general olfaction [89]. In 
contrast, the olfactory epithelium is reduced in Dmrt3 and 
Dmrt5 knockout (KO) mice and is almost completely absent 
in Dmrt3:Dmrt5 double KO (Saulnier et al., unpublished 

data). The lack of phenotype in Dmrt4 mutants is thus likely 
to be due to the presence of Dmrt3 and Dmrt5. Together, 
these observations indicate that Dmrt3-5 may have overlap-
ping function in vertebrate olfactory placode development, 
which remains to be further investigated.

In zebrafish, a Dmrt5 mutant was isolated that shows 
defects in telencephalic neurogenesis. Expression of Neurog1  
and other telencephalic marker genes such as Foxg1 and 
Emx3 were downregulated, while in contrast, Her6, a Hes-
related gene that encodes a negative regulator of Neurog1, 
was expanded. Knockdown of Her6 rescues Neurog1 expres-
sion in the Dmrt5−/− telencephalon, suggesting that Dmrt5 
regulates Neurog1 expression by repressing Her6 [95]. Such 
a mechanism has been previously reported for MAB-3 in the 
specification of sex-specific neurons in C. elegans [26]. So, 
Dmrt5 regulates neurogenesis in the zebrafish posterior-dorsal  
telencephalon. Whether the other Dmrt genes expressed in 
the developing telencephalon also play a role in neurogen-
esis, and whether this function in neurogenesis is conserved 
among vertebrates, remains to be investigated.

A Dmrt4/5-related gene has been recently identified in the 
sea anemone N. vectensis (designated NvDmrtB), a model 
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system from the sister group of bilaterians, the cnidarians. 
In Nematostella, NvDmrtB is expressed in scattered neural 
cells in both the ectodermal and endodermal layers (Fig. 3g). 
In Xenopus, its overexpression induces neurogenesis in ani-
mal cap explants. Conversely, knockdown of NvDmrtB in 
Nematostella reduces the number of Elav-1 positive neu-
rons [9]. These results suggest that Dmrt’s ability to con-
trol neurogenesis derives from an ancestral function already 
present in the last common ancestor of cnidarians and bila-
terians. Further analyses of Dmrt genes in basally branching 
animals, including sponges, will be required to define the 
ancestral functions of Dmrt genes.

A very recent study has shown that a Dmrt3 nonsense 
mutation has a major effect on the pattern of locomotion 
in horses. The phenotype indicates that Dmrt3+ spinal cord 
neurons have a critical role for left–right coordination and 
for coordinating the movement of the fore- and hind-legs. 
Dmrt3 is expressed in cells originating from dI6 progenitors 
that develop into inhibitory interneurons projecting ipsi- and 
contralaterally. Examination of wild-type and Dmrt3 null 
mice demonstrated that it takes part in neuronal specifica-
tion within this subdivision, and that it is critical for spinal 
circuit function. The mutation leads to a truncated Dmrt3 
protein retaining the DM and DMA domains but lacking the 
downstream sequences, which highlight their importance 
for its activity [21].

Dmrt5 is required for anterior neural tissue development

In the mouse, three recent studies, two using KO mice and 
the third using embryonic stem (ES) cells, have provided 
insights into the function of Dmrt5 in the development of 
the telencephalon and mesencephalon, respectively (Fig. 4).

Regionalization of the telencephalon is initiated by mor-
phogens secreted from localized inductive centers. The two 
major patterning centers that are the most directly impli-
cated in telencephalon patterning are the ANR located at 
the rostral pole of the telencephalon and the roof plate and 
cortical hem (CH) region at the dorsal caudal midline and 
immediate adjacent territories. The ANR secretes FGFs and 
the CH produces a variety of Wnt and Bmp ligands criti-
cal for hippocampus development. These signals establish 
graded expression of genes encoding transcription factors 
that are crucial for the regionalization of the telencephalon 
and subsequent arealization of the cerebral cortex in corti-
cal progenitors. Among them are Emx2, promoting a cau-
domedial fate, and Pax6, promoting a rostrolateral identity 
[96, 97]. In the mouse, similarly to Emx2, Dmrt5 is detected 
in cortical progenitors in a high caudomedial to low rostro-
lateral gradient and is dependent on Wnt signaling [91, 92, 
98]. With respect to the other transcription factors playing 
a crucial role in cortical development and patterning, it has 
been shown that Dmrt5 is dependent on the early zinc finger 

transcription factor Gli3. In contrast, Emx2 is not required 
for Dmrt5 expression. Pax6, expressed in a complemen-
tary manner to Dmrt5, may antagonize its expression. In 
Dmrt5 null mutants, the caudomedial cortex, including the 
hippocampus, is strongly reduced. Wnt and Bmp signal-
ing in the embryonic dorsomedial telencephalon and the 
downstream-dependent transcription factors such as Emx2 
are reduced. Pax6, which is inhibited by midline signals, 
is upregulated [91, 92]. In contrast, conditional ablation of 
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Fig. 4   Schematic representation of the involvement of Dmrts in neu-
ral development. a In the mouse spinal cord, loss of Dmrt3 increases 
the number of Wt1+ neurons and results in fewer commissural 
interneurons. b In mouse ES cells, Dmrt5 induces ventral-medial 
midbrain progenitor markers and inhibits ventral-lateral ones, sug-
gesting that in vivo, in the ventral-medial mesencephalic neuroepi-
thelium, it enhances the acquisition of a mDA neuronal fate. c In the 
mouse telencephalon, Dmrt5 and Dmrt3 are targets for Wnt signaling 
and are dependent on Gli3. Direct or indirect action of Gli3 on Wnts 
and on Dmrt5 and Dmrt3, through regulation of the Wnt signaling 
pathway, is indicated by dashed lines. Dmrt5 in turn is required for 
Wnt and Bmp expression in the dorsal midline signaling center and 
the expression of their downstream targets, that specify a caudome-
dial fate. Pax6 is upregulated in Dmrt5 mutants, presumably through 
its negative regulation by Wnts and Emx2. d In zebrafish, Dmrt5 is 
required for neurogenesis in the telencephalon, possibly by repress-
ing Her6. e In the frog, Dmrt5 and Dmrt4 act downstream of neural 
induction, Otx2 and Notch and upstream of Neurogenin to control 
olfactory placode neurogenesis. f In Ciona, Fgf signals play a cru-
cial role in nervous system development, activating several neural 
genes including Dmrt1. It also controls cell fate choice between the 
palp placodes and anterior central nervous system, which express 
FoxC and ZicL, respectively. FoxC and ZicL expressing cells derive 
from common progenitors that express Dmrt1 and both genes require 
Dmrt1 for their activation. Dmrt1 plays also a role in the promotion 
of Six1/2, Six3/6 and Meis in the developing brain and negatively reg-
ulates its expression
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Dmrt5 at neurogenic stages using the Nestin-Cre transgenic 
line only causes a slight reduction in telencephalon size 
[92]. Thus, Dmrt5 is a novel Wnt-dependent “early master” 
regulator of initial regional patterning of the cerebral cortex. 
It is likely to function, at least in part, by promoting dorsal 
midline signaling center formation and thereby helping to 
establish the graded expression of the other transcription 
regulators of cortical identity. Whether Dmrt3 and Dmrt4 
functions overlap with that of Dmrt5 in cortical patterning, 
and whether they directly or indirectly regulate Wnt and 
Emx gene expression, are two important questions still to 
be addressed.

Ascidian belongs to the urochordates, which represent 
the closest living relatives of the vertebrates. A gene related 
to Dmrt4/5 with a DMA domain has been identified in the 
ascidian Ciona savigny (designated Dmrt1). In ascidians, 
the CNS develops via neurulation of cells of the neural 
plate, forming a simple brain called the sensory vesicle 
and a caudal nerve cord. The anterior neural plate produces 
placodal derivatives, such as the adhesive palps and stomo-
deum, and the anterior portion of the brain, called the sen-
sory vesicle. Dmrt1 is expressed from the 64-cell stage in 
progenitors of the anterior neural plate and is later restricted 
to the anterior part of the sensory vesicle (Fig. 3e, f). A null 
mutation in the Dmrt1 gene as well as knockdown experi-
ments have shown that Dmrt1 is required for the devel-
opment of the palps and oral siphon (mouth) that derive 
from the stomodeum. It also leads to extensive disruption 
of sensory structures, such as light-sensitive ocellus, in the 
sensory vesicle [99–101]. Furthermore, knockdown experi-
ments have shown that Dmrt1 is activated by FGF signals 
and is required for the expression of FoxC and ZicL that 
marks the palp placodes and anterior neural tissue, respec-
tively. They also show that Dmrt1 promotes Six1/2, Six3/6 
and meis in the developing brain and negatively regulates 
its own expression [99]. In Ciona, as in vertebrates, Dmrt 
genes thus mark anterior neural regions, including placodes 
and anterior neural tissue, and are required for their devel-
opment (Fig. 4).

The ventral-medial caudal diencephalon and mesen-
cephalon contain dopaminergic neurons that are essential 
for the control of voluntary movements and the regulation 
of emotion, and are severely affected in neurodegenerative 
diseases such as Parkinson’s disease. In response to local 
inductive signals (Shh, Fgf8, Wnt1), transcription factors 
are expressed at specific dorsal and ventral positions in the 
mesodiencephalon inducing distinct cell fates, including 
in the ventral-most progenitors a midbrain dopaminergic 
cell fate. As in the developing telencephalon, expression of 
Dmrt5 in the ventral-medial mesencephalon is restricted to 
progenitors that give rise to dopamine neurons. In embryonic 
stem (ES) cells, overexpression of Dmrt5 induces a ventral-
medial progenitor phenotype and inhibits ventral-lateral 

mesencephalic markers. Conversely, knockdown compro-
mises ES cell differentiation toward a ventral-medial cell 
fate [90]. Thus, Dmrt5 promotes midbrain dopaminergic 
(mDA) identity in ES cells by enforcing a ventral progenitor 
fate. Whether Dmrt5 controls in vivo ventral-medial mesen-
cephalic cell fate remains to be demonstrated.

Conclusion

Besides their role in sexual development, Dmrt factors 
have clearly emerged as important regulators of vertebrate  
development. Recent findings indicate that members of the 
group A function as critical regulators of the development 
of the nervous system, functioning both in neurogenesis 
and patterning of the developing neural tissue, and that this  
ability to control neural development is an ancestral  
function. A better understanding of when and where these 
Dmrt factors binds to the genome is needed to provide 
insight into the molecular mechanisms employed by these 
factors. Elucidating the role of the conserved DMA domain 
will also be central to understand how Dmrt factors coordi-
nate developmental processes, functioning as activators or 
repressors depending on the cellular context or locus. Future 
studies should also determine whether they play any cell-
autonomous roles in sexual differentiation of non-gonadal 
tissues and whether their deregulation is associated with 
some human neural diseases.
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