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Abstract Pentameric ligand-gated ion channel (pLGIC)

receptors exhibit desensitization, the progressive reduction

in ionic flux in the prolonged presence of agonist. Despite

its pathophysiological importance and the fact that it was

first described over half a century ago, surprisingly little is

known about the structural basis of desensitization in this

receptor family. Here, we explain how desensitization is

defined using functional criteria. We then review recent

progress into reconciling the structural and functional basis

of this phenomenon. The extracellular–transmembrane

domain interface is a key locus. Activation is well known

to involve conformational changes at this interface, and

several lines of evidence suggest that desensitization

involves a distinct conformational change here that is

incompatible with activation. However, major questions

remain unresolved, including the structural basis of the

desensitization-induced agonist affinity increase and the

mechanism of pore closure during desensitization.

Keywords Single channel kinetics � Ligand-gated

ion channel � Acetylcholine � Glycine � GABA �
5-HT � Electrophysiology

Introduction

The nicotinic acetylcholine receptor (nAChR) cation

channel, which mediates neuromuscular transmission and

excitatory synaptic neurotransmission, has been the stan-

dard model ligand-gated receptor since it was first

characterized by Bernard Katz and colleagues in the 1950s.

In 1957, Del Castillo and Katz [1] first proposed the two-

state model of receptor activation, which essentially pos-

ited structurally distinct steps for ligand binding and

channel opening. This was closely followed by a study in

which Katz and Thesleff [2] attempted to describe the

process of desensitization as observed at the frog endplate

in response to acetylcholine application. This extended the

previous model by proposing that the nAChR could exist in

the resting shut, liganded open, and desensitized shut

states. Acetylcholine binding to a resting shut channel

initially induces the nAChR to open, but prolonged ace-

tylcholine exposure induces the desensitized shut state.

Then, following dissociation of acetylcholine, the channel

returns from the desensitized state directly to the resting

shut state. Using this simple model as a starting point,

researchers over the past 50 years have generated more and

more complex and precise kinetic models to describe

nAChR function [2–5]. Conventionally, the resting shut,

open, and desensitized states have been defined on the basis

of unique pairings of two salient properties of the channel:

their affinity for the activating ligand and their ion-con-

ducting status. Thus, resting shut channels have a low

ligand affinity and are non-conducting, open channels have

a high ligand affinity and conduct ions, whereas desensi-

tized channels also have a high ligand affinity, but are non-

conducting. High to saturating concentrations of ligand

increase the likelihood of the channels entering desensi-

tized states over that of liganded shut states. However,
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channels can nevertheless desensitize in the presence of

low ligand concentrations, and even in the absence of

ligand (see Fig. 4), albeit with a lower occupancy.

Although members of the extensive pLGIC receptor

family are involved in diverse physiological processes,

they are best known for mediating most of the fast neu-

rotransmission in the brain. It is often difficult to

demonstrate a physiological role for pLGIC desensitization

at a specific synapse because the net decay rate of a syn-

aptic current is due to a combination of interlinked factors

including the transmitter unbinding rate, the channel

shutting rate, the transmitter clearance rate, the intrinsic

receptor desensitization rate, and dendritic filtering. How-

ever, computational modeling has suggested important

roles for desensitization in controlling the magnitude,

decay rate, and frequency of synaptic currents elicited by

fast repetitive stimulation [6]. Experimentally, it has

proved more straightforward to demonstrate a causative

relationship between a pathological process and a change

in the propensity of a pLGIC receptor to be desensitized.

For example, it has been shown that concentrations of

nicotine in the brains of cigarette smokers are sufficient to

desensitize presynaptic nAChRs on GABAergic inputs

onto dopaminergic neurons in the ventral tegmental area,

thus reducing GABAergic inhibitory drive and producing a

shift towards increased activation of the dopamine reward

system [7]. Several neurological disorders are also caused

by hereditary mutations that change the ensemble current

(i.e., the net current of many channels) desensitization rate

of pLGIC receptors. For example, autosomal dominant

nocturnal frontal lobe epilepsy is caused by the neuronal

nAChR a4-S248F mutation, which yields acetylcholine-

evoked currents with amplitudes comparable to those of

control responses but with a higher sensitivity and faster

desensitization to the endogenous neurotransmitter [8].

Similarly, hereditary mutations to muscle nAChR genes

may cause congenital myasthenic syndromes by altering

the desensitization rate of motor endplate nAChRs [9].

Finally, hereditary mutations that selectively alter the

desensitization rates of GlyRs and GABAARs, respec-

tively, are thought to cause human startle disease [10] and

childhood absence epilepsy with febrile seizures [11].

Recent crystal structures of pLGIC receptor isoforms

have provided useful insights into the structures of the shut

and open states [12–15]. Although several apparently

incompatible models have been proposed to account for the

shut-to-open structural transition [16], it is reasonable to

conclude that we are moving rapidly to the point where the

common elements of the pLGIC receptor close–open

transition can be discerned from those elements that are

specific to particular pLGIC receptor subtypes. Unfortu-

nately, despite the physiological and pathological

importance of desensitization in pLGICs [17], almost

nothing is known about the conformational changes that

mediate this process. However, some important new

insights into the mechanisms of desensitization have

recently emerged, and this review will attempt to integrate

these findings into a coherent model of pLGIC structure

and function.

pLGIC receptor structure

pLGICs display a broad range of activation, desensitiza-

tion, and deactivation kinetics that parallels the size and

functionally diversity of the family. This functional variety

renders pLGICs an ideal family for studying the general

principles of the structure–function relationship of channel

desensitization, both on an ensemble current and single

channel level. pLGIC receptors conduct either anions or

cations and are activated by relatively small ligands. In

addition to the nAChR, prominent eukaryotic members of

this family include the anion selective GABA type-A

receptor (GABAAR), glycine receptor (GlyR), and gluta-

mate receptor (GluClR), and the cation selective serotonin

type-3 receptor (5HT3R) and zinc receptor. All pLGICs

comprise pentameric arrangements of identical or similar

subunits, and have representatives in both eukaryotes and

prokaryotes [18]. The five subunits come together to form a

central ion permeation pathway, which incorporates a

physical barrier (gate) to ion flux [19, 20] located within

the narrow transmembrane portion of the pathway (Fig 1a).

Each subunit can be divided into three domains, each of

which act as semi-independent modular units in the com-

plete pentamer [21, 22] (Fig. 1b). The extracellular

domain, which is typically *220 amino acids long, con-

tains an a-helix near its amino terminal end followed by a

series of 10 b-strands. The b-strands are organized into two

b-sheets that together form a twisted b-sandwich structure

with two hydrophobic cores (Fig. 1b). Ligand binding

pockets are formed at the subunit interfaces, by three

domains (binding loops A–C) from the ‘?’ side of the

interface and three domains (binding ‘loops’ D–F) from the

‘-’ side of the interface. These ligand binding pockets are

situated about 5 nm above the gate. The transmembrane

domain consists of 20 (4 per subunit) a-helical segments,

referred to as M1–M4. These form concentric rings around

the central ion pore, which is directly lined by the five M2s.

A segment of variable length connecting M3 and M4 (M3–

M4 linker) forms the bulk of the intracellular domain. The

M3–M4 linker can be as short as three amino acids, as

found in some prokaryotic pLGICs [18, 22], to over 180 in

some Metazoan subunits, such as in the human a4 subunit

of the GABAAR [23].

Channel activation involves long-range conformational

rearrangements that are initiated by the ligand binding

1242 A. Keramidas, J. W. Lynch

123



reaction [24, 25]. This local change in conformation then

propagates in a sequence of sub-domain movements

throughout the receptor as a ‘wave’ [25, 26], with the

ultimate functional outcome being the disruption of the

permeation gate to produce an open, ion-conducting

channel. In the continuous presence of high ligand con-

centrations the channel adopts desensitized configurations

that are refractory to further activation. Several domains

located at the boundary of extracellular and transmembrane

domains communicate conformational changes across this

boundary. This network of interacting domains include the

C-terminus of b-strand 10 (or the ‘pre-M1’ domain which

links the extracellular domain to the M1 transmembrane

helix), b1–b2 loop (loop 2), b8–b9 loop (loop 9), b6–b7

loop (loop 7) and the linker connecting M2 to M3 (M2–M3

linker) (Fig. 2) [27, 28]. The interface between trans-

membrane and intracellular domains has also been shown

to transmit structural rearrangements that give rise to

functional states, mainly via the M1–M2 linker [10, 29, 30]

and the proximal portion of the M3–M4 linker [31–33].

Ensemble and single channel desensitization

Desensitization in pLGICs is manifest in ensemble currents

as a decline in the initial peak amplitude, reaching a pla-

teau (steady-state) in the persistent presence of agonist.

This phase of the current generally proceeds with a slower

time-course than the initial activation phase [2] and rep-

resents an equilibrium between channels that enter into

desensitized states and those that exit desensitized states

and reactivate (Fig. 3a). Ensemble currents represent the

time and ligand concentration dependent average behav-

iour of the entire channel population and are fitted to the

sum of exponential terms of the form [34]:

IðtÞ ¼ I1 þ A1e
�t
s1 þ A2e

�t
s2þ; . . .;þAne

�t
sn ð1Þ

where I(t) is the current at time t, I? is the steady state

current, An is the amplitude of the nth component, sn is

the decay time constant of the nth component, and

(n ? 1) is the number of functional states in the under-

lying mechanism. Typically, one or two components are

required to fit the desensitization phase of the ensemble

current [2, 35–38]. Time constants for desensitization

determined in this way range between \1 ms, as in the

homomeric a7 nAChRs [36], to intermediate values

(*100 ms), such as in a1b2c2 GABAARs [35] (Fig. 3a;

Table 1) to channels that show little current decay, such

as homomeric GABAARs formed by q1 subunits [39, 40]

or GlyRs formed by a1 subunits [41]. Perturbations, such

as may be caused by particular ligands, mutations,or post-

translational mechanisms, are inferred to affect channel

desensitization on the basis of altered time constants (or

relative amplitudes) of the fitted components. This

method of analysis, although widely used, is phenome-

nological and provides little insight into what might be

happening structurally to the channels. The time constants

have no physical correlates and do not correspond to any

functional states, at least not unless specifically demon-

strated to do so within the context of a mechanism

[35–38] (see, e.g., Fig. 4).

On the level of a single ion channel, the durations of

shut and open intervals within a record are also described

by exponential distributions, and can be written as [34]:

Pore

Extracellular
domain

 Transmembrane
domain

BA

Fig. 1 a A top view schematic of a pLGIC showing its five-fold

symmetry and the central ion permeation pathway. The five M2

a-helical segments, located within transmembrane domain, line a pore.

Each subunit is given a different colour. b A side view schematic of a

pLGIC showing two of the three functional domains, the extracellular

and transmembrane (demarcated by black horizontal bars). The

intracellular domain is not shown. The images were made using the

crystal structure of the C. elegans a GluClR 3RIF [5]
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f ðtÞ ¼ A1e
�t
s1 þ A2e

�t
s2þ; . . .;þAne

�t
sn ð2Þ

Desensitizing ligand concentrations elicit a distinctive

pattern of single channel activity. Fig. 3b shows a

comparison between the effects of a low (*EC10) and a

high (saturating) glycine concentration at recombinantly

expressed homomeric a1 GlyRs. The low concentration

induces relatively brief conducting episodes known as

bursts (Fig. 3b, top). At saturating concentrations, these

bursts coalesce into well-defined clusters that are separated

by non-conducting periods, where the channel is fully

liganded and adopts desensitized configurations (Fig. 3b,

bottom). Cluster lengths vary from \1 ms, as in the

homomeric a7 nAChRs, which are so brief they are

referred to as ‘bursts’ [36], to *500 ms in the muscle

nAChR [42] to C1 s for GlyRs [43, 44] (Table 1; see also

Fig. 3b). Shut intervals that correspond to desensitized

nAChRs have been estimated to extend up to 5 min [45].

The mean cluster length at high agonist concentrations has

been determined to approximate the ensemble current

desensitization time constants [36, 46]. This is a reflection

of the relative slowness of entry into a desensitized state

(e.g., d in Fig. 4) relative to the channel shutting rate (a), so

that the fully liganded channel has the opportunity to

oscillate between open and shut configurations for extended

periods before entering desensitized states [47]. Similarly,

A BFig. 2 a Schematic of a single

subunit indicating the

extracellular-transmembrane

domain and transmembrane-

intracellular domain interfaces

(arrows). The intracellular

domain has been omitted. b A

higher magnification view of a

single subunit showing the

elements of the contributing to

the interface between

extracellular and

transmembrane domains. The

elements are; loop 9 (green),

loop 2 (light blue), loop 7 (dark
blue), pre-M1 (purple) and

N terminus of M1 (olive). Also

shown are the other

transmembrane a helices,

including the pore-lining M2

(orange). The images were

made using the crystal structure

of the C. elegans a GluClR

3RIF [5]

Agonist (1 mM glycine)

Activation

Deactivation

Desensitizaton

Peak current

Steady-state
current

1 s

5 pA

cluster Desensitizaton

Agonist (10 µM Glycine)

Agonist (10 mM Glycine)

Bursts

500 ms

50 pA

BA

Fig. 3 a Whole-cell current recorded from an HEK293 cell express-

ing homomeric a1 GlyRs showing the phases of an ensemble current

in response to a saturating concentration of glycine. b Single channel

currents recorded from outside-out patches expressing a1 GlyRs. The

records show short bursts of activity at low ligand concentrations

(top), which group into clusters at saturating ligand concentrations.

The clusters are separated by non-conducting periods where the

channel adopts desensitized states (bottom)
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theoretical and experimental studies suggest that the lengths

of bursts, principally the slowest component induced by low

ligand concentrations, determine the deactivation phase of

ensemble currents [5, 34, 37, 48]. Burst kinetics demonstrate

that the opening rate constant (b) is greater than the rate

constant for ligand dissociation (k-1), so here the channel

oscillates between open and shut states until the ligand

dissociates to terminate the burst [34, 46].

As ensemble currents, including those observed at syn-

apses, represent the net behavior of many channels, factors

that affect the proportions of functional states in a popu-

lation at a given time will in turn shape the ensemble

current. These factors include different activating and

modulating ligands and their concentrations, voltage [49],

and mutations (both naturally occurring and synthetic), and

are best quantified within the framework of a mechanism.

Functional mechanisms of desensitization

Functional mechanisms for channel behavior are generally

derived by postulating plausible reaction schemes and fit-

ting them to experimental data by statistical methods

[34, 50]. An example of such a mechanism is provided in

Fig. 4. These mechanisms include functional states and the

rate constants that govern the transitions between con-

nected states, which are calculated from the distributions of

conducting and non-conducting periods in single channel

records. The mechanisms are fitted to clearly defined bursts

and clusters of activity that are excised from the records

(Fig. 3b). This process of data selection offers a reasonable

guarantee that the data represent the activity of a single ion

S

AS

A2S

A2O

AO

OD

AD

A2D

β
α

δ

2k−1

Fig. 4 A general reaction mechanism describing any ligand-gated

ion channel that accommodates the binding of two ligand molecules.

Un-, mono- and di-liganded shut (S), open (O), and desensitized

(D) configurations are shown. The forward and backward arrows
between connected states are associated with corresponding rate

constants, which quantify the transition frequencies to and from the

states. Only the diliganded opening (b), shutting (a), entry into

desensitized (d), and ligand dissociation (k-1) rate constants are

shown

Table 1 Single channel and ensemble channel parameters

Channela Single channel parameters

Opening (b; s-1) Shutting (a; s-1) Cluster duration (ms) Burst duration (ms)

a GlyR 2–4 9 104 [91, 92] 0.8–1 9 103 [91] 1.1 9 103 [92] 2–7 [91]

ab GlyR 1.3 9 105 [43, 53] 7 9 103 [43, 53] 1.0 9 103 [43] 6 [43]

abc GABAAR 2–3 9 103 [52, 93] 300–900 [52] 100–500 [52, 93] 5–50 [52, 94]

Muscle nAChR 8–10 9 104 [95, 96] 2–3 9 103 [53] 50, 250–500 [42, 95] 2–4 [95]

a7 nAChR – 700 [36] 0.35–0.60 [36, 97] –

5HT3R – – 1.2 9 103 [36] 700 [36]

Channela Ensemble channel parametersb

Activationc (s-1) Desensitizationd (entry; ms) Desensitizatione (exit; ms) Deactivationf (ms)

a1 GlyR 2–4 9 103 [41, 98] 30, 300, 1.5 9 103 [98, 99] 0.5–2.0 9 103 [99] 6–9, 20–50 [41, 99]

a1b GlyR 3 9 103 [99] 10, 100, 0.5 9 103 [99] 04–1.4 9 103 [99] 7, 30 [99]

abc GABAAR 1.1–6.0 9 103 [35, 94, 100–103] 10–50, 100–400, 0.8–10 9 103 [35, 94, 103–106] 60–500, 13–D25 9 103 [103, 104, 106] 6–30, 100–300 [35, 94, 100,

104, 106]

Muscle nAChR 6–8 9 104 [96] 15, 50–70, 1 9 103 [2, 45, 95] 3–270 9 103 [2, 45] 1–3 [95]

a7 nAChR 7 9 103 [36] 0.40 [36] 1.1 9 103 [36] –

5HT3AR 100–400 [38, 75, 77] 0.8–3 9 103 [36, 38, 75, 77] 5 9 103 [38] 770–3 9 103 [38, 77]

a All parameters are for wild-type channels, estimated using physiological ligand
b From excised macropatches or small cells
c From 10–90 % rise-times in response to 1–5 ms pulses of ligand
d Refer to references for relative amplitudes of components
e Using paired-pulse protocol
f Parameters depend on subunit composition
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channel, thus eliminating the need to correct for multiple

channels of unknown number. The minimum number of

states in the underlying mechanism can be inferred from

the corresponding number of components in the conducting

and non-conducting distributions obtained from isolated

burst or clusters of activity [34, 51]. Some of the shut

components in clusters induced at concentrations that

increase the occupancy of desensitized states may represent

relatively short-lived desensitized configurations. Most

often, however, because the precise number of channels in

a given patch is not known, the long quiescent periods

corresponding to salient desensitized states cannot be

interpreted and are usually deliberately overlooked. This is

because one cannot be certain if consecutive clusters, and

the non-conducting period between them, are due to the

same ion channel [34], even when precautions are taken to

exclude segments of single channel record that contain

unambiguous evidence of multiple channel activity (such

as channel stacking). For this reason, the majority of

published mechanisms omit treatment of desensitization

altogether (see, e.g., [52, 53]).

Ad hoc methods of deriving mechanisms that include

desensitized states were first postulated for the amphibian

nAChR [2], and have since been utilized successfully to

describe the desensitization of other pLGICs [35–38, 42].

A reductionist approach is taken with a comprehensive

mechanism, such as that shown in Fig. 4, by ‘pruning’ it or

identifying dominant pathways leading to desensitized

states, often with the aid of ensemble current data [35–37,

42], or in some cases exclusively using ensemble currents

[38, 54]. For instance, using single channel recordings, it

was determined that heteromeric nAChRs enter into

desensitized states (A2D; Fig. 4) faster when the channels

are fully liganded and open (A2O) than shut (A2S), estab-

lishing the dominant pathway for entry into desensitization

as A2S ? A2O ? A2D, with a desensitization rate con-

stant for ACh of *4 s-1. This result strongly suggests that

desensitization is dependent on channel activation and the

status of the gate rather than ligand occupancy, an infer-

ence supported by the use of different ligands [42]. A study

that examined the burst characteristics of the same channel

in conjunction with macropatch (ensemble) data has also

concluded that, although wild-type channels desensitize too

slowly for desensitized states to have a significant effect on

the shape of the synaptic current, mutations that increase

the b/a ratio (Fig. 4), including those that might cause

disease, or decrease the ligand unbinding rate constant

from the A2S state, can affect the time-course of nAChR

current deactivation [37]. These mutations essentially

increase the probability of the channels entering desensi-

tized configurations during the deactivation phase of

synaptic currents, and this suggests that the contribution of

desensitized channels to ensemble deactivation is not only

affected by the rate constants connected to desensitized

states but also states that are predominant pathways for

burst termination, such as A2S.

An extreme case where entry into desensitized states is

rapid and the rate constants leading away from desensitized

states are small is in the homomeric a7 AChRs. In this

channel, entry into desensitization is likely the main

pathway to burst termination, making it the main deter-

minant of current decay. Moreover, the slow recovery from

desensitization sets the refractory period for reactivation by

successive pulses of ligand at synapses containing this

channel [36]. Studies of desensitization in a1b2c2

GABAARs, using exposure to 3H-ligand after the ligand

was washed off the activated channels provide evidence

that in this channel ligand unbinding from desensitized

states occurs faster than the rate constants exiting desen-

sitized states (resensitization). These data demonstrate that

a1b2c2 GABAARs can remain in desensitized configura-

tions after the ligand has dissociated from the channel and

re-bind ligand (radiolabeled) with a higher affinity than it

does at non-desensitized channels [54].

As the determination of rate constants leading away from

desensitized states derived from the durations of long non-

conducting periods in single channel records is confounded

by the problem of channel number, rapid ligand perfusion

onto macropatches can provide estimates of rates of recovery

from desensitized configurations. The technique involves a

ligand application protocol consisting of a sequence of

paired ligand pulses (applications), separated by a variable

interpulse interval. The first (conditioning) pulse is of suffi-

ciently long duration (say, 1 s) to induce desensitization

whereas the second (test) pulse is briefer (say, 50 ms). Suf-

ficient time is allowed between application pairs for the

channels to recover. The peak amplitude of the test pulse

relative to that of the conditioning pulse is a measure of the

number of activatable channels that have exited desensitized

states (resensitized) in the intervening period. Plots of rela-

tive current peak between response pairs as a function of

interpulse interval produces a pattern of data that is well fit by

mutliexponential functions, revealing a multistep recovery

process from desensitization [36–38]. A multicomponent

desensitization process is also evinced by the observation

that longer conditioning pulse exposures result in longer

time-courses of recovery from desensitization. This suggests

multiple desensitized states in the mechanism, some of

which having slow recovery rate constants [45].

There are other benefits in using both equilibrium (single

channel) and non-equilibrium (ensemble) data to investigate

desensitization within the context of a mechanism. Distin-

guishing mechanisms, especially ones that contain the same

number of shut, open, and desensitized states cannot usually

be performed on the basis of single channel kinetic analysis

alone. Similar mechanisms can produce the same statistical
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outcome in terms of predicting lifetimes of conducting and

non-conducting states in a record [55]. This limitation

necessitates testing similar mechanisms under different

experimental conditions and evaluating them on the basis of

their accuracy in describing and simulating all the data. On

inspection of any mechanism, such as in Fig. 4, it becomes

apparent that the initial conditions prior to channel activation

between the steady state and non-equilibrium circumstances

differ. Steady state activations, especially in high ligand

concentrations, are much more likely to begin from a par-

tially or full liganded channel, whereas channels in ensemble

currents activate from unliganded shut states in response to a

step increase in the ligand from zero to some pre-defined

concentration. Hence, ensemble currents have an average

longer latency prior to entering conducting configurations, as

most channels begin further up-stream in the mechanism

when first exposed to a ligand.

Ultimately, quantitative functional mechanisms of chan-

nel desensitization must be related to channel structure. The

multiple desensitized, shut, and open states in a reaction

mechanism must have physical correlates that occur in a

reaction sequence that coincides with the mechanism. A

significant step towards understanding the sequence of

structural rearrangements adopted by a channel in response

to ligand binding is the technique of U-value analysis [56,

57]. However, this method has yet to be applied to desensi-

tization, mainly owing to the abovementioned difficulty of

counting channel numbers in single channel records. More-

over, U-value analysis data cannot yet be overlayed onto a

complex functional mechanisms, and seems to be most

applicable to mechanisms whose states are connected in

linear sequence [56]. Another limitation to investigating

discrete desensitized states is the paucity of information

about protein structures that mediate desensitization per se.

Structural elements of pLGICs that affect shut to open

isomerisations are far better characterized [16, 25, 26, 58, 59]

than those specifically affecting desensitization. Although

mutations to many structural segments of pLGICs have been

identified that do alter ensemble desensitization, it remains to

be established if any of these specifically affect the entry and

exit rate constants associated to desensitized states in a

mechanism. They may, instead, alter the lifetimes of open

states by altering rate constants connected to them, or

affecting the lifetimes of connected shut states along the

pathway to channel opening [16].

Structural mechanisms of desensitization

Evidence for a separate desensitization gate in the pore

It is first necessary to consider whether the structure of the

desensitized state is different from that of the resting shut

state. Evidence for desensitized states being distinct from

liganded shut states has been furnished by single channel

electrophysiological studies. Furthermore, electron micro-

scopic images of the muscle nAChR have revealed

structural differences between shut (unliganded), open, and

desensitized configurations [60–62]. These images reveal

global differences in protein structure including evidence

for a structural realignment at the transmembrane domains

between open and shut states. A systematic mutagenesis

study involving functional nAChRs has provided more

direct evidence that the pore-lining M2 domains differ in

structure between shut, open, and desensitized states [19].

Notably, this study provided evidence for two permeation

gates, one corresponding to a shut state and the other to a

desensitized state. Both gates are situated within the M2

domains and there is overlap between them, but neverthe-

less are sufficiently different to suggest that channel

desensitization is accompanied by unique structural rear-

rangements in this part of the receptor. Single channel

kinetic analysis of nAChRs also supports the notion of a

distinct desensitized gate. Calculated desensitization rate

constants were not affected by ligands with different acti-

vation efficacies (b/a ratios), neither did mutations near the

binding sites for ACh that altered the ligand binding reac-

tion or the b/a ratio [42]. Blocking the pore of these

channels also had no affect on the desensitization rate

constant. These results, in conjunction with the determina-

tion that the channels desensitize much faster from A2O

than A2S and recover faster when ligand unbinds, was

reconciled with a two-gate structural model consisting of an

activation gate and a desensitized gate [42] (Fig. 5). A study

that examined the pore-blocking effects on single channel

nAChR currents also drew similar conclusions regarding

the two-gate model of activation and desensitization. Single

channel activations exhibited two characteristics that

changed as a function of increasing the concentration of the

blocking agent. First, the open intervals within discrete

activations lengthened as a result of a slowing of the shut-

ting rate constant (a) for channel activation. Second, the

entry rates into desensitized states were unaffected when

the channel was blocked. These results are consistent with

the pore blocker affecting the activation gate, and implies a

second, structurally distinct gate that was unaffected by the

pore blocker, which mediates densensitizaton [63].

A structurally separate desensitization gate has also been

posited for the a1b2c2 GABAAR. Under circumstances

where channels activated with a low open probability, such

as low efficacy, non-desensitizing activators or mutant

channels, the current–voltage (I–V) relationship rectified

outwardly (greater relative current at positive potentials).

Conversely, channel activation that produces high channel

open probability, such as high (desensitizing) ligand con-

centrations or activation enhancing modulators, resulted in
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an attenuation of net outward current to linearize the I–V

relationship. The other notable observation was that

ensemble currents showed enhanced desensitization at

positive potentials (outward current). These data were

reconciled by postulating two, structurally separate gates:

one that acted to increase open probability at positive

potentials (activation gate), producing the outward rectifi-

cation, and another that antagonized the first gate to

diminish current at positive potentials and linearize the I–V

(desensitization gate) [49]. Another recent study on the

same GABAARs showed that access of pore-blocking

agents increased in the presence of activating concentra-

tions of GABA, but decreased in the presence of

desensitization concentrations, consistent with open and

desensitized states being structurally different at the level

of the channel pore. This was supported by the observation

that an M2–M3 linker mutant that reduced spontaneous

activation (reduced b/a) also reduced access to pore

blockers, and, as the mutant also reduced desensitization,

high concentrations of GABA were now less effective at

inhibiting blocker access compared to wild-type channels

[64].

Desensitization-specific conformational changes

elsewhere in the receptor

The structural basis of pLGIC receptor desensitization has

been probed using the voltage clamp fluorometry (VCF)

technique in the a1 homomeric GlyR [30]. This technique

takes advantage of the fact that changes in the quantum

efficiency of small molecule fluorophores may occur in

response to changes in their immediate chemical micro-

environment. VCF involves introducing a cysteine into a

receptor domain of interest and covalently tagging it with a

sulfhydryl-labeled fluorophore, commonly a rhodamine

derivative. VCF is unique in its ability to report confor-

mational rearrangements in real time at defined locations

on the receptor surface [65]. The a1 GlyR VCF study

compared the time-course of agonist-induced fluorescent

changes at numerous extracellular and transmembrane sites

in the absence of fast desensitization with those observed at

the same labeled sites after an intracellular mutation had

been introduced to dramatically enhance the desensitiza-

tion rate. This enabled the authors to distinguish those

conformational changes that remain unchanged throughout

the period of agonist-binding from those that tracked the

desensitization rate. Although no evidence was found for

conformational changes associated with desensitization at

any of the labeled sites near the glycine-binding site, the

authors did identify desensitization-specific conformational

changes in loop 2, the pre-M1 segment, and the M1 domain

(Fig. 2) of the a1 GlyR. Figure 6a shows examples of

current and fluorescence responses recorded simulta-

neously from slow- and fast-desensitizing GlyRs, each of

which incorporates a rhodamine label in loop 2 (at residue

A52C). Because fluorescence decay parallels the current

decay in the fast-desensitizing receptor (Fig. 6b), it was

concluded that the fluorophore is detecting a local con-

formational change associated with desensitization. Note

also that, in the prolonged presence of glycine, the fluo-

rescence response of the fast-desensitizing receptor

stabilized at a level higher than the resting shut state level,

indicating that the conformation of the desensitized state is

distinct from that of the resting shut state. Labeled sites in

both the pre-M1 domain and the M1 domain also reported

conformational changes associated with desensitization.

Together, the results imply that desensitization involves a

specific reorganization of molecular interactions at the

extracellular-transmembrane domain interface.

Although VCF studies on other pLGIC receptor family

members have yet to systematically characterize the loca-

tion of labeled sites that report desensitization-specific

conformational changes, the limited information available

suggests the above model may also apply to other members

of this receptor family. For example, fluorophores attached

to residues in or near GABAAR agonist-binding sites reveal

no measureable fluorescence change during desensitization

of GABA-gated currents [66, 67]. However, a fluorophore

attached to an M2–M3 loop residue in the muscle nAChR

exhibited an agonist-induced fluorescence change that

correlated with the current desensitization rate [68]. These

data are consistent with the above model whereby desen-

sitization of pLGIC receptor family members involves a

specific conformational change at the extracellular––

transmembrane domain interface.

A common feature of liganded open and desensitized

configurations is their relatively high ligand affinity. Dif-

ferences in ligand affinity between open and desensitized

A2S A2O A2DS

Fig. 5 A cartoon schematic illustrating the salient features of channel

activation and desensitization and the two-gate mechanism. The

unliganded shut (S) channel binds two molecules of ligand (orange),

which initially induce a structural reorientation of the extracellular

domain (dark grey) producing a liganded shut state (A2S). This is

followed by a structural change in the transmembrane domain (red),

which disrupts the activation gate to produce an open channel (A2O).

The continued presence of ligand elicits a further structural change in

the extracellular domain (light brown) and transmembrane domain

(dark brown) that occludes the pore with a second desensitization gate
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channels tend to be in the range of only a few-fold, such as

in a1b2c2 GABAARs [54] and nAChRs [59, 69], although

more significant changes to affinity have been reported for

this channel in a mutation to the ACh binding site [70].

Coupled with mutations to ligand binding pockets that

show no appreciable affect on desensitization kinetics [54],

and mutations that exhibit desensitization in the absence of

ligand [59], it would be reasonable to infer that the struc-

tural differences at the binding pockets between open and

desensitized states are subtle. A recent study on the a7

AChR provides evidence that unique arrangements of

hydrogen bonding between activating ligand and binding

pocket correspond to activated and desensitized states of

the channel [71]. In contrast, desensitization can be pro-

foundly influenced by mutating parts of the channel

downstream of the pockets [36, 72]. The VCF data on the

a1 GlyRs [30] revealed that the molecular processes of

channel activation and desensitization recruit the same

structural elements, but in different ways. Chimeric studies

of the fast desensitizing a7 nAChR and the slow desensi-

tizing 5HT3AR have clearly demonstrated that the M2–M3

linker, loop 7, loop 9, and the N-terminal end of the M1

domain are all involved in modulating the entry and exit

rates of channel desensitization. By systematically swap-

ping these segments between the two parent channels, it

was deduced that loop 7 and loop 9 make independent

contributions to the desensitization kinetics, as does the M1

domain, mainly by regulating single channel cluster dura-

tions and open dwell times [36]. Another study supported

and further developed the notion that the molecular cou-

pling compatibility between segments at the extracellular

and transmembrane interface mediates channel desensiti-

zation in the a7 nAChR [72]. The investigators here found

that mutations in the M2 domain that increased spontane-

ous channel activity and leftward shifted the ensemble

agonist concentration–response relationship—evidence

that the efficacy of activation (b/a) had increased—was

tightly correlated to a marked decrease in ensemble

desensitization. Furthermore, when these gating enhancer

mutations were combined with others that disrupted the

normal interactions between the M2––M3 linker, loop 2,

and loop 7, which resulted in ablation of channel function,

the impairment was counteracted and accompanied by an

increase in desensitization. These data led the investigators

to conclude that desensitization was a function of the rel-

ative strength of interactions at the extracellular-

transmembrane interface (Fig. 2) and the energetics of

disrupting the gate [72]. These intriguing interpretations

clearly do not require two separate gates or any structural

differences that would constitute distinct transduction

pathways for activation and desensitization.

Structural elements that are common to activation and

ensemble desensitization have been reported for many of

the best-characterized pLGICs. The mutational effects on

desensitization are dependent on both the nature of the

residue and the pLGIC under study. M2 mutations have

been shown to affect desensitization in a7 nAChRs [72,

73], a4b2 nAChRs [73, 74], 5HT3ARs [75], and q1

GABAARs [76]. Of course, deriving the inference that M2

mutations actually affect desensitization from ensemble

current data comes with the caveat that the mutation may

have stabilized the open state(s) by, say, reducing b, and

may not have affected desensitization at all [16]. M2–M3

linker mutations that influence desensitization have been

reported in GABAARs [64] and 5HT3ARs [77]. Mutations

to the pre-M1 and M1 domains have been shown to

modulate desensitization kinetics in a7 nAChRs [36], a1

GlyRs [30, 78], a1b2c2 GABAARs [79, 80], and 5HT3ARs

[36, 81]. At the transmembrane––intracellular domain

interface,desensitization can be affected to mutations in the

M1–M2 linker in the a1 GlyR [10, 29, 82] and the M3–M4

linker in heteromeric nAChRs [33], a1b2c2 GABAARs

[32], a3 GlyRs [83], and 5HT3ARs [31, 84]. These studies

(and many others not mentioned here) demonstrate that the
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Fig. 6 Combined current and fluorescence recording of rhodamine-

labeled A52C and A52C–A248L mutant GlyRs reveals a conforma-

tional change specifically associated with receptor desensitization.

The A248L mutation in the M1–M2 loop induces fast desensitization.

a Examples of current (black) and fluorescence (red) responses

induced by a saturating glycine concentration in both GlyRs. Note the

biphasic fluorescence response and the glycine-induced plateau in the

double mutant GlyR. b Averaged time constants for current and

fluorescence decay recorded from double mutant GlyRs plotted as a

function of glycine concentration. There was no significant difference

at any concentration, confirming that the fluorescence response

reported a conformational change associated with desensitization.

Figure modified from [30]
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pathways for activation and desensitization are intimately

linked, and emphasize the need to combine fluorometric

techniques, such as VCF, with studies based on ensemble

currents and single channel measurements in conjunction

with channel state mechanisms to aid in disentangling the

two processes at a molecular level.

X-ray crystallography has the potential to provide us

with structural models of functional channel states. Soak-

ing the crystals in ligands for state-selective durations [85]

or using state-favoring ligands [86] or mutations [87] is the

main method used for isolating a particular state for crys-

tallographic studies. However, functional studies are

exposing the present-day limitations of crystallography in

obtaining images of functionally salient states. For

instance, channels crystallized in the presence and absence

of modulators that induce non-conducting states exhibit no

difference in the structure of the pore [88]. Similarly,

channels that were supposedly crystallized in open states

[12, 15] are more likely to represent desensitized channels

[85, 89], as revealed by functional experiments. Other

functional studies demonstrate that, in the presence of

ligand, the channels desensitize, whereas in its absence the

channels are shut, but here too the crystal images reveal

little difference in structure [14, 90]. Even more remark-

ably, crystal structures of channels bearing mutations that

favor the open state are similar to those in the absence of

ligand, where the channel is much more likely to adopt a

shut configuration [87]. Clearly, the full prospects of

crystallography are not yet upon us, so it would be hasty

indeed to apply crystallography in the absence of the

functionally verified states.

Concluding remarks

Desensitization is mediated by a global conformational

change involving the extracellular, transmembrane, and

intracellular domains. The key issue is to determine which

structural elements of that global conformational change

produce the increase in channel affinity and which produce

the channel closure that is observed in the continued

presence of agonist. If the structural basis of these mech-

anisms can be resolved, then we are well on the way

towards assigning structural configurations to the func-

tional states as identified by kinetic analysis of single

channel and ensemble currents.

The affinity increase that accompanies desensitization

must be due to a conformational change in the agonist

binding site. To date, such conformational changes have

proved difficult to detect, and only one study [71] has

proposed a change in a molecular interaction between an

agonist and its binding site that might mediate this affinity

increase. The extent to which this result is applicable to

other desensitizing pLGIC receptor subtypes is yet to be

investigated.

It is now well established that channel activation is

mediated by a specific reorganization of molecular interac-

tions at the extracellular–transmembrane domain interface.

Several recent functional studies, described in detail above,

have demonstrated that activation and desensitization cor-

relate with distinct sets of conformational changes at this

interface. We therefore propose that desensitization is med-

iated by a distinct set of conformational changes that is

incompatible with activation, and thereby closes the channel.

However, the question of whether the desensitized shut state

and the resting shut state are structurally identical is yet to be

unequivocally resolved.
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