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Abstract The neuromuscular junction (NMJ) is the syn-

aptic connection between motor neurons and muscle fibers.

It is involved in crucial processes such as body movements

and breathing. Its proper development requires the guid-

ance of motor axons toward their specific targets, the

development of multi-innervated myofibers, and a selective

synapse stabilization. It first consists of the removal of

excessive motor axons on myofibers, going from multi-

innervation to a single innervation of each myofiber.

Whereas guidance cues of motor axons toward their spe-

cific muscular targets are well characterized, only few

molecular and cellular cues have been reported as clues for

selecting and stabilizing specific neuromuscular junctions.

We will first provide a brief summary on NMJ develop-

ment. We will then review molecular cues that are involved

in NMJ stabilization, in both pre- and post-synaptic com-

partments, considering motor neurons and Schwann cells

on the one hand, and muscle on the other hand. We will

provide links with pathologies and highlight advances that

can be brought both by basic research on NMJ develop-

ment and clinical data resulting from the analyses of

neurodegeneration of synaptic connections to obtain a

better understanding of this process. The goal of this

review is to highlight the findings toward understanding the

roles of poly- or single-innervations and the underlying

mechanisms of NMJ stabilization.
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Introduction

The neuromuscular (NM) junction is the synaptic connec-

tion between motor neurons and muscle fibers. It is among

one of the earliest synapses formed during mammalian

development. NM junctions (NMJ) are involved in crucial

processes, and their proper functionality governs complex

and vital processes such as breathing and body movements.

Consequently, improper NMJ formation with abnormal

developmental selective synapse stabilization or improper

NMJ maintenance later on during life may originate vari-

ous neurodegenerative diseases.

NMJ remains the best-studied model for understanding

the mechanisms involved in synaptogenesis. Its accessi-

bility and size permit analyses of interactions between the

nerve and its muscular target. The development of a mature

NMJ first requires the guidance of the motor axons toward

the specific muscles to be innervated and then the stabil-

ization of the contact. The stabilization of synapses is a key

step for both development and function of the nervous

system. Several animal models have been used to investi-

gate the cues that are involved in these processes. Neuronal

growth cones are located at the tip of the axon and act as

chemical sensors of molecular guidance cues present in the

environment and targets. Accumulating data have allowed

to elucidate mechanisms involved in the guidance of

growth cones and motor axons toward their muscle targets

in Drosophila, C. elegans, mouse or human. However, only

very few reports bring clues explaining the stabilization of

NMJ throughout life. The secretion of the Acetylcholine
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neurotransmitter (Ach)—the only neurotransmitter used in

the motor division of the somatic nervous system which

behaves as an excitatory neurotransmitter at NMJ in skel-

etal muscle—is among the main characteristics of the NMJ.

Ach activates skeletal muscles and is a major neurotrans-

mitter in the autonomic nervous system. Ach binds to

nicotinic acetylcholine receptors (AchR) on skeletal mus-

cle fibers and induces the contraction of skeletal muscle. A

third cellular type is present at the NMJ in close proximity

to the neuron–muscle synapse. It consists of a class of non-

myelinating Schwann cell, called terminal (or peri-synap-

tic) Schwann cell. Altogether, nerve terminals, muscle

fibers and Schwann cells constitute the tripartite cellular

synaptic compartment. Several parameters have been

considered to analyze the stability of the NMJ: the main-

tenance of the tripartite cellular synaptic compartment, the

number and localization of AchR patches, the number of

nerve terminals per fiber according to the developmental

stage, Schwann cells capping the nerve terminal, cyto-

skeleton that coats the in-folded post-synaptic membrane,

and the basal lamina that runs through the synaptic cleft—a

small space neurons release neurotransmitter molecules

into. Here, we will discuss the mechanisms that determine

whether a synapse will persist or will be remodeled or

eliminated, focusing on key periods that could be consid-

ered as ‘‘critical periods’’ (Fig. 1). We will first provide a

brief up-to-date summary on NMJ development. Then, we

will focus on reviewing most of the molecular cues that are

involved in NMJ stabilization, in both pre- and post-syn-

aptic compartments. We will provide links with

pathologies and highlight advances that can be brought by

both developmental basic data—including molecular

Myoblasts Myotubes Muscle Fibers

Fig. 1 Critical periods of NMJ development with a focus on the

elimination of multi-innervation. Motoneurons emit axons toward

myotubes from E10 to E15 in mice. In parallel, Schwann cells migrate

to reach the NMJ from E16 and cap the terminal. The differentiation

of myoblasts into myotubes and muscle fibers is also schematized

altogether with the time course. Dispersed acetylcholine receptors

(AChRs) are expressed at moderate levels throughout myotubes

surface prior to synapse formation, from E15 at the period of

polyneuronal innervation, i.e. when each muscle fiber is still

innervated by one or several axons of motor neurons (MNs).

Postnatally, a critical step with the redrawal of about half multi-

innervation occurs between P0 to P7, and the process of synapse

elimination is achieved 2 weeks postnatally. AChR clustering occurs

in the post-synaptic membrane, altogether with a progressive

transition from multiple to single innervation of the NMJ
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candidates involved in pre- and post-synaptic develop-

ment—and clinical data to get a better understanding of

this still poorly understood process. Indeed, we will con-

sider the causal cues that have been hypothesized from the

analyses of neurodegeneration of NM synaptic connections

following injuries or genetic alterations in cases of amyo-

trophic lateral sclerosis (ALS) and spinal muscular atrophy

(SMA) caused by mutations within the survival motor

neuron 1 gene. The goal of this review is to highlight the

findings that have possible applications for understanding

the role of polyinnervation, in particular timely mainte-

nance and retrieval. We will consider the types of muscles

and NMJ that are concerned, the physiology and physio-

pathology of NMJ development, and axon stabilization in

peripheral but also central synapses.

Development of the NMJ

Motor neurons proliferate in the ventricular zone of the

neural tube and become postmitotic between stage 14 and

23, i.e., between E2 and E4.5 in chick embryo [1] and

between E9 and E10/E11 in mouse, according to the motor

neuronal population. Subsequently, motor neurons differ-

entiate into limb and axial motor neurons. They assume

their topographic organization in distinct columns based on

the combinatorial expression of homeoproteins [2], in

particular unique combinations of LIM-type homeodomain

factors [3]. It also allows subtype identity (fast:slow and

flexor:extensor) and the formation of proper and charac-

teristic motor circuits whose development is linked to the

presence of guidance cues [4]. These multiple classes and

subtypes of motor neurons, as fast and slow, alpha (a) and

gamma (c) allow NM-specific contractile and motor

functions and physiology ([5 for an extensive review).

Alpha motor neurons are the most abundant of these

classes driving muscle contraction and they can, in turn, be

classified into subtypes according to the contractile prop-

erties of the motor units that they form with target muscle

fibers: fast-twitch fatigable (FF), fast-twitch fatigue resis-

tant (FR), and slow-twitch fatigue resistant (S) [6].

Gamma-motor neurons innervate intrafusal muscle fibers

of the muscle spindle and play complex roles in motor

control. We will not insist here on a third not so well-

defined population called b-motor neurons [5]. Although

the existence of separate programs for the determination of

a- and c-motor neurons identities seems to be a pre-req-

uisite, the identification of early markers is still needed to

determine how and when the various populations diverge.

Whether genetic cues that will allow this diversity of cell

types at early stages of development or differential inter-

actions with the periphery will finally establish a molecular

distinction between motor neurons subtypes is still to be

determined [7]. Gamma-motor neurons express higher

levels of the glial cell line-derived neurotrophic factor

(GDNF) receptor subunit GFRa1 than a-motor neurons,

and the transcription factor Err3—an orphan nuclear hor-

mone receptor—also becomes restricted to c- motor

neurons during the first two postnatal weeks [7]. Thus,

these markers only begin to distinguish c- from a-motor

neurons at postnatal stages, which may suggest a role in the

period of polyinnervation retraction and in the selective

axon stabilization/retraction that will be detailed below.

Another specificity of motor neurons is their remarkably

long axonal length since they can innervate distal muscle

targets such as the limbs, thanks to appropriate export of

membranes from their cell bodies. Synaptic formation

begins as an intrinsic property of axonal terminal to form

specific synaptic sites, even in the absence of post-synaptic

contacts, through an intrinsic synaptogenic activity.

Among the specific features of pre-synaptic differentiation

is the formation of active zones (AZ) where a dense net-

work of macromolecules called active zone material

(AZM) is attached to the pre-synaptic membranes next to

docked vesicles. Later on, retrograde signals, including

LRP4 (see below and [8]), will regulate pre-synaptic dif-

ferentiation at neuromuscular synapses. pre-synaptic active

zones are synaptic vesicle release sites that play essential

roles in the function and pathology of mammalian NMJs.

The molecular mechanisms of active zone organization use

pre-synaptic voltage-dependent calcium channels (VDCCs)

in NMJs as scaffolding proteins. VDCCs interact extra-

cellularly with the muscle-derived synapse organizer

laminin b2, and interact intracellularly with active zone-

specific proteins, such as Bassoon, CAST/Erc2/ELKS2al-

pha, ELKS, Piccolo, and RIMs (for a review, [9]). Muscle

innervation by motor neurons leads to a high concentration

of acetylcholine receptors (AChRs) in postjunctional

membranes of muscle fibers, a complex process that

involves AChR aggregation in subsynaptic areas, the dis-

persion of nonsynaptic AChR-rich sites and local AChR

synthesis. The anterograde signals used during develop-

ment include agrin, a polypeptide used by motor neurons to

cluster AChRs and ACh which suppresses AChR subunit

gene expression and disassembles AChR clusters in

nonsynaptic areas once muscle fibers have been activated.

Retrograde neurotrophic information has to be brought

from the muscle target transported along the axon to reach

the cell bodies, to assert motor neurons survival, which also

makes motor neurons great models to study the dialog

between synaptic targets and cell bodies to regulate cell

survival. A complex interplay exists between axons,

Schwann cells and the differentiating muscle fibers, com-

posing a tripartite NM synapse. Schwann cells migrate and

contact axon terminals as they branch on young myotubes.

Post-synaptic AChR clustering also occurs prenatally. As
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motor neurons make contact with muscle fibers, the num-

ber of motor neurons is greatly reduced. The process of

motor neuron elimination takes place between E12 and E14

for phrenic motor neurons—that specifically innervate the

diaphragm, the major muscle of respiration—for example,

in mice [10]. In most types of motor neurons, up to 50 % of

motor neurons are lost by apoptosis at this time, possibly

involving motor neurons activity and their functional

connections. The neurotrophic theory elaborated by Victor

Hamburger and Rita Levi-Montalcini is based on a com-

petition concept between adjacent axons. Some neurons in

a population die because trophic molecules are available in

only limited amounts by the muscular target during periods

of naturally occurring cell death [11]. Indeed, it has

become evident that muscles provide signals to regulate

differentiation and function of pre-synaptic terminals. In

parallel with agrin pathway, the Wnt signaling pathways

has been shown to be crucial in mediating nerve–muscle

interactions during NMJ formation. Wnt is a family of

secreted glycoproteins that have important roles in the

development and maturation of the nervous system,

including brain patterning, axon guidance and synapse

formation. The muscle b-catenin has been shown essential

for NMJ development and function, more particularly for

pre-synaptic differentiation. The specific suppression of b-

catenin in skeletal muscles led to the death of mouse soon

after birth, with considerable pre-synaptic defects including

the mislocation of primary branches of phrenic nerves and

extended secondary branches. Indeed, b-catenin-dependent

transcription has been suggested to be necessary for the

expression of a necessary retrograde signal protein [12]. b-

Catenin may also regulate the expression of synaptic pro-

teins including the AChR [13].

More recent in vivo experiments have studied NM

development in mice expressing increased levels of b-catenin

in either motor neurons or muscles. b-Catenin overexpres-

sion in muscle only, not in motor neurons, increases nerve

branching possibly due to an increase in motor neuron

numbers but independent of the level on neuromuscular

activity. Defasciculation and branching occur prior to the

establishment of functional NMJs between phrenic motor

neurons and their target diaphragm muscles [14].

During vertebrate NM development, all muscle fibers

are transiently innervated by more than one neuron. Later

on, during postnatal development, a step of polyneuronal

innervation retraction is observed (Fig. 1), leading to motor

neuronal mono-innervation. Indeed, although synaptic

connections can be stably maintained for prolonged peri-

ods, they can be rapidly disassembled during the

development and refinement of neural circuitry. This

retraction of polyinnervation can be considered as a form

of NMJ instability [15]. We will review the mechanisms

that are involved in this process.

Activity-dependent competition for synapse elimination

Synapse competition and elimination are a general devel-

opmental process both in CNS and PNS which is strongly

activity-dependent (Fig. 2). It is well established that the

synaptic connections between motor axons and muscle are

shaped by activity. Impaired post-synaptic activity at

neuromuscular synapses delays the withdrawal of pre-

synaptic terminals and synapse elimination [16]. This has

been demonstrated extensively for processes occurring late

during synaptogenesis in which activity regulates synaptic

maturation and refinement [17]. In the absence of activity,

NMJs form an aberrant morphology with a reduction of

post-synaptic specializations, as demonstrated in rat, Dro-

sophila and mouse [18]. The blockade of neural

transmission leads to the loss of synapse elimination,

causing aberrant branching of motor axons and multiple

innervation of muscle fibers, altogether with modifications

of motor neuron survival during normal cell death [19].

Cholinergic transmission is a mediator of the neural control

of stability of junctional AChRs in mammals. Accordingly,

increasing activity accelerates the transition to mono-

innervation. The synchronous activity of motor neurons

first favors polyneuronal innervation, whereas asynchro-

nous activity subsequently promotes synapse elimination

[20]. Interestingly, the blockade of action potential gener-

ation in muscle can inhibit synapse elimination through

local signaling [21].

Nevertheless, the precise and successive physiological

functions of steps of polyinnervation followed by mono-

innervation stabilization—a developmental process that

necessarily challenges NMJ activity and function—still

remain hypothetical in terms of activity regulation within

appropriate physiological ranges. Synaptic activity drives

synaptic rearrangement in the vertebrate nervous system, in

particular, the competitive process of synapse elimination

during early postnatal life. Indeed, more powerful inputs

are strongly favored competitors during this process [20],

and active synaptic sites can destabilize inactive synapses

in their vicinity. Homeostatic stabilization and signaling

mechanisms that allow cells to maintain appropriate levels

of activity could also control developmental synapse

growth and stabilization, or be controlled through retro-

grade or anterograde processes. Whether multi-innervation

removal and mono-innervation at the NMJ are a homeo-

static challenge remains to be demonstrated. Anyway,

among answers to retrograde signaling that have already

been demonstrated to be involved in homeostatic plasticity

and compensation at the NMJ, in Drosophila in particular,

are the size of readily releasable pool of synaptic vesicles

and pre-synaptic calcium influx. It can occur through the

post-synaptic inhibition of glutamate receptors, the

impairment of muscle excitability, or through the alteration
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of the rates of innervation received by individual muscles,

for Drosophila NMJ in particular as demonstrated through

the use of fasciclin mutants (reviewed in [22]). It will be

important to demonstrate the cues that are involved in

synaptic homeostasis challenges, in addition to modulation

of AchR density [23] during normal development and

mono-innervation acquisition in mammalian central and

peripheral synapses, but also in human health and

pathophysiology.

Pre-synaptic components involved in the regulation

of NMJ stability

Most of the cues mentioned below are illustrated in Figs. 3

and 4.

An extracellular matrix molecule: agrin

Agrin is the key neural factor that controls muscle post-

synaptic differentiation. A physiological role of agrin, an

essential synaptic organizing protein, is to counteract the

destabilizing ‘‘antisynaptogenic’’ effects of the ACh neu-

rotransmitter on nascent post-synaptic sites [24]. Agrin

regulates nerve-induced transcriptional activation of sev-

eral synapse-specific genes. Among them are neuregulins

(NRG) that are expressed by motor neurons and activate

ErbB receptors in muscle, and AchR [25]. Although ini-

tially described as an important inducer of AChR clustering

in the post-synaptic membrane, agrin is now defined as a

stabilizer of the post-synaptic membrane, rather than an

inducer. Thus, the blockade of Neuregulin (NRG)/ErbB

signaling also reduces the stability of receptors in agrin-

A C

B

Fig. 2 Activity dependent NMJ maintenance/stabilization. a Two

motoneurons with synchronous activity are schematized. A similar

activity will allow the synthesis of an equivalent amount of

punishment (synaptotoxic factor) and reward (synaptotrophic factor)

by both MNs, and their survival. b Inactive MNs will not be induced

to produce either punishment or reward signal; the absence of

competition for survival factor will allow the maintenance of both

MNs. c The stabilization of one out of two MNs axons innervating a

similar myofiber will be regulated by the activity: the active MN will

synthesis both protective (reward) and punishment signals, that will

allow its survival, whereas the inactive MN will receive punishment

signals from the neighboring active MN only, that will lead to its

elimination. Asynchronous AChR activation allows muscle to selec-

tively destabilize synaptic sites to be eliminated
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induced AChR clusters in vitro [26]. Mice lacking neu-

regulin 1 or its receptors Erbb2 or Erbb3 expressed on

Schwann cells surface lack Schwann cells [27], and their

motoneurons form transient synapses with muscle fibers

that fail to be maintained, indicating a crucial role for

Schwann cells in NMJ formation and maintenance.

Although secreted by the pre-synaptic compartment,

agrin directly modulates the organization of key post-syn-

aptic components involved in NMJ stabilization. Agrin

transiently activates the kinase MuSK, but also later on, the

Src family kinases (SFKs) required for AChR clusters

stabilization [28]. The stabilization of agrin-induced AChR

clusters requires Src and Fyn in terms of ‘‘adaptor activi-

ties’’, rather than the kinase activity (Fig. 3). Yes, which

also belongs to the Src family kinases, can act with Src

downstream ErbB2, and could also be involved in the

stabilization process of AChRs clusters [29]. The

stabilization of some prepatterned AChR clusters requires

the innervation. Indeed, once the muscle has been con-

tacted by the nerve, ACh released by the motor neuron

induces a post-synaptic potential which stabilizes previous

AChR clusters in the contacted area and prevents AChR

clustering in non-contacted areas. Moreover, agrin released

by the neuron also stabilizes the AChR clusters and along

with neuregulin, strongly increases AChR transcription in

subsynaptic nuclei [30].

Agrin mutation can cause congenital myasthenia, with

dramatic perturbations of the maintenance of the NMJ [31].

The expression of mutated proteins in muscles destabilizes

the wild-type NMJ but not the induction of post-synaptic

structures. Some of the post-synaptic congenital myas-

thenic syndroma (CMS) including fetal akynesia are

caused by mutations in agrin, but also in DOK7, GFPT1,

musk and Rapsyn, all of them being part of a molecular

Fig. 3 Molecular cues in NMJ formation/stabilization: a cross-talk

between pre- and post-synaptic components. The agrin–muscle-

specific kinase (MuSK)-rapsyn-AchR pathway is schematized. LRP4

acts as a co-factor for MuSK in agrin signaling. Agrin activates

MuSK to cluster AChRs through the cytoplasmic linker protein

rapsyn. Neuregulin that binds to ErbB receptors may also induce

AChR transcription and agrin would direct AChR clustering.

Neuregulin signaling also occurs from the axon to control Schwann

cell survival. Schwann cells also belong to the tripartite NMJ with

MN and muscle, and are essential for axon maintenance. Homophilic

adhesion molecules such as NCAM are expressed on the surface of

the three cell types composing the NMJ. Receptors to neurotrophic

factors such as TrkB, p75 and GDNF receptors, are expressed at the

MN surface. Actin regulators are present in the post-synaptic

compartment, in particular Nogo-A, dystrophin and b-catenin. b-

Catenin interacts with rapsyn and a-catenin to favor AChR clustering.

b-Catenin-dependent transcription is also necessary for NMJ main-

tenance. Myogenin is involved in AchR expression, stabilization and

clustering. Synaptic muscle fiber basal lamina is rich in laminin b2. It

binds to and clusters the P/Q-type calcium channels that flank active

zones and recruit other pre-synaptic components
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pathway essential for AChR aggregation and positioning

on the post-synaptic membrane that will be detailed below

[32].

Adhesion molecules

Several CAMs have been identified at the neuromuscular

junction where they regulate synaptic strength by recruiting

scaffolding proteins, neurotransmitter receptors and syn-

aptic vesicles in response to the binding of counter-

receptors across the synaptic cleft. Among them, cadherins,

protocadherins, neuroligins, neurexins, integrins, and

immunoglobulin adhesion proteins can be cited. Among

cadherins, we will underline the possible role of

N-cadherin in the context of NMJ stabilization, but not of

axon outgrowth. It accumulates at the neuromuscular

junction only a few days after the first synaptic contacts

have been established and remains at the adult neuromus-

cular junction, suggesting a role of this molecule in the

stabilization of the mature neuromuscular junction. The

presence of N-cadherin has also been described in basal

lamina and its association with collagen fibers suggests the

release of N-cadherin in the extracellular space [33].

Neurexin is mostly located on the pre-synaptic mem-

brane. It is a synaptic cell adhesion protein critical for

synapse formation, maturation and function. Its crucial role

has been demonstrated for proper active zone apposition to

post-synaptic densities, synaptic growth, and synaptic

Fig. 4 Possible intracellular mechanisms of NMJ stabilization

through a focus on actors interacting with cytoskeleton and organelles

The dynamics and stability of both actin and microtubules regulate

NMJ maintenance. Dynactin complex includes among others Arp1,

p150glued and dyneins. Although present in both pre- and post-

synaptic compartments, the TBCE protein accumulates at the Golgi

apparatus and has been shown to be mainly required for maintenance

of microtubules in distal axons so far. CLIPR-59 is located at the

trans-Golgi network (TGN) and is proposed to affect protein/

membrane trafficking or cytoskeleton remodeling at the NMJ, as

well as in the pre-synaptic compartment, although its possible post-

synaptic localization and role remain to be further analyzed.

Molecular candidates have been proposed to act as synaptotoxic

and synaptotrophic cues in NMJ stability: MMP3 and MMP9 located

at the active terminals could cleave proBDNF at the active terminal

during synaptic competition. The conversion of pro-brain-derived

neurotrophic factor (proBDNF) to mature (m)BDNF would be

activity-dependent and mediate synaptic competition and cell survival

after endocytosis

Mechanisms controlling neuromuscular 1035

123



transmission. In vivo, it acts through the modulation of

synaptic architecture and adhesive interactions between

pre- and post-synaptic compartments, binding in particular

proteins located in the synaptic cleft like Neuroligin.

The trans-synaptic Neurexin–Neuroligin complex can

bridge this cleft, providing bidirectional communication

across the synaptic cleft. It has recently been proposed in

Drosophila that a post-synaptic actin cytoskeleton may

function together with the Neurexin–Neuroligin trans-

synaptic signaling complex to mediate normal synapse

development and pre-synaptic active zone organization

[34, 35]. Severe synapse assembly deficits are found in

Drosophila melanogaster neurexin (Nrx-1, dnrx) and also

neuroligin (Nlg1, dnlg1) mutant [36]. In addition, muta-

tions in these genes in humans have been associated with

cognitive disorders such as Autism spectrum disorders,

Tourette syndrome and Schizophrenia. Such central

pathologies are linked with lower amounts of central syn-

apses, in particular in the dorsolateral prefrontal cortex

(DLPC) for Schizophrenia. But it is not known whether this

is due to an additional loss of synapses during normal

adolescence—linked with reduced abnormal stabilization/

increased destabilizing mechanisms—or whether it results

from a failure to form a normal complement of synapses

during childhood.

However, which adhesion factors establish the essential

physical links across synaptic clefts and allow the assembly

of synaptic machineries at the contact site in vivo is still

unclear, mainly due to the redundancy that may occur

among CAMs. Recent studies performed in Drosophila

have pointed out the important contribution made by basal

membrane-dependent mechanisms in addition to CAM-

dependent adhesion [37].

Matrix metalloproteinases

Matrix metalloproteinases are key regulators of the extra-

cellular matrix. Metalloproteases, particularly MMP3 and

MMP9 that would be located at the active terminals, have

been proposed to cleave proBDNF at the active terminal

during synaptic competition in Xenopus NMJ. These pro-

teases are expressed in motor neurons and are highly

enriched at the NMJs [38], whereas proBDNF would be

mainly secreted by muscle cells. Opposite data concerning

the effects of inhibition of MMPs on synapse elimination

remain to be reconciled.

Matrix metalloproteinase 3 (MMP3) has also been

involved in the regulation of synaptic structure through its

ability to cleave agrin and to remove it from the synaptic

basal lamina [39]. Antibodies to MMP3 recognize mole-

cules concentrated at the synapses of frog NMJs. NMJs in

MMP3 null mutant mice have increased junctional folds

and AChR aggregates [40]. The role of MMP3 in NMJ

stabilization has not been directly tested, but MMP3

depletion prevents motor endplate degradation following

traumatic peripheral nerve injury in KO mice.

It is noteworthy that the changes in synaptic activity will

alter the activity of MMP3 at the synapse. Thus, the

extracellular matrix is critical to the formation of the

synapse, and synaptic activity controls the structure and

function of the molecules in the extracellular matrix.

Agrin, microtubule-associated proteins and AChR

clusters (Fig. 4)

Cytoplasmic linker associated proteins or CLASPs, are

microtubule plus-end tracking proteins. The absence of

CLASP2 has been reported to impair the maintenance of

the neuromuscular junction with a decreased subsynaptic

membrane in muscles, a decrease of synaptic AchRs and of

the size of ACh clusters. Thus, the capturing of microtu-

bules at the synaptic membrane through the effect of

CLASP2 under the regulation by agrin is strictly required

at the NMJ synaptic membrane [41]. Agrin modulates the

local capture of dynamic microtubules at agrin-induced

acetylcholine receptor clusters through the activation of

PI3kinase and GSK3b inactivation, a process largely

mediated by CLASP2. PKC activation also accelerates

postnatal synapse loss [42] which also occurs in parallel

with AChR cluster dispersal post-synaptically.

Dynactin is a multisubunit protein complex composed,

among others, of p150Glued doublets that is required for

most types of cytoplasmic dynein activity in eukaryotes. In

Drosophila, Arp-1 (Actin-related protein-1)/centractin, a

subunit of the dynactin complex, has been shown to reg-

ulate synapse retraction. Arp-1 dsRNA enhances synapse

retraction, and this effect is phenocopied by a mutation in

P150/Glued, also a dynactin component. Retraction is

associated with a local disruption of the synaptic micro-

tubule cytoskeleton. Altogether, these results suggest that

dynactin functions locally within thepre-synaptic arbor to

promote synapse stability as demonstrated in Drosophila.

Whereas the dynactin complex is found in all tissues

including muscle and the central and peripheral nervous

systems, Glued is enriched in pre-synaptic NMJ, and only

pre-synaptic dynactin function is necessary for synapse

stabilization [43].

Another mouse model has provided interesting data

about the role of microtubules in axonal degeneration of

motor neurons. The tubulin-specific chaperone (TBCE) is a

peripheral membrane-associated protein that accumulates

at the Golgi apparatus. A function of TBCE is the binding

of a-tubulin toward polymerizing microtubules. The mouse

model of progressive motor neuronopathy (pmn) is mutated

in the TBCE which disappears form the Golgi apparatus of

motor neurons, and microtubules are lost in distal axons
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[44]. The axonal microtubule loss proceeds retrogradely in

parallel with the axonal degeneration. Thus axonal tubulin

routing from the Golgi apparatus involves tubulin chaper-

ones that are required to allow NMJ stabilization.

Other microtubule-associated proteins and synapse

stabilizations

Interestingly, another microtubule-associated protein of the

cytoplasmic linker proteins (CLIP) family named CLIP3/

CLIPR-59, and mainly localized at the trans-Golgi-network

(TGN) has been recently shown to be involved in the sta-

bilization of NMJ perinatally [45]. Indeed, in CLIP3

deficient embryos, animal death occurs perinatally, due to a

decreased contraction force of the diaphragm and respira-

tory failure at birth. Whereas phrenic axon guidance

normally occurs until E15, the diaphragm innervation

pattern becomes incomplete between E15 and E18.5.

Similar defects in axon maintenance have been observed in

other muscles, in particular, in hindlimb muscles. The

ultrastructural analysis of NMJs revealed that the number

of nerve terminals was reduced in the ventral region of the

diaphragm in particular, due to a decrease in branching

complexity of nerve terminals or in the number of axons at

NMJ. A mislocalization of Schwann cells has been repor-

ted in CLIP3 KO mice, suggesting premature phagocytosis

and the elimination of nerve terminals. The structure and

partners of CLIP3, as well as the phenotype of the KO mice

suggest that protein/membrane trafficking or cytoskeleton

remodeling play a key role for nerve terminal maintenance

at the NMJ. Whereas the molecular mechanism of action of

CLIP3 has not been elucidated so far, it appears to be

necessary to prevent premature motor axon retraction

during late embryogenesis. The maintenance of muscle

multi-innervation by motor neurons would be strictly

required for birth, possibly for the initial breathing and

lung expansion and other movements in newborns. Thus,

the requirement of the maintenance of multi-innervation

perinatally would have a physiological role, and the multi-

innervation elimination should not occur prior the postnatal

period between P1 and P12. A different hypothesis was

proposed from other studies. Synapse elimination is dra-

matically delayed in a specialized extraocular muscle, the

levator palpebrae superioris (LPS). The delayed maturation

could have a useful purpose since this specialized eyelid

muscle remains immobile during early postnatal develop-

ment. Thus, the maintenance of the multi-innervation could

allow a rest state of the muscle [46]. Further studies will be

required to determine whether polyinnervation may allow

either a non synchronous but overactivity required at spe-

cific steps of development, or allow decreasing and resting

activity according to the muscle types and specific NMJ

physiology.

Through the analysis of differential defects in various

types of motor units in CLIP3 KO, it appears that the

selective impairments of synapse stability were possibly

linked with specific physiology of motor units. Fast syn-

apsing (FaSyn) and delayed synapsing (DeSyn) muscles

have been reported to differ significantly with respect to the

initial focal clustering of post-synaptic AChRs, the timing

of pre-synaptic maturation, and the maintenance of NMJs

in young adult mice [47]. In CLIP3 KO, DeSyn muscles

were more affected than FaSyn muscles. In SOD1 mutants,

curiously, at the same time, some motor neurons sprout to

compensate the degeneration of other motor neurons,

indicating distinct sensibilities among the same motor pool.

Deciphering the specificity of motor neurons types would

possibly allow correlations with distinct stability profiles.

During ALS disease, some motor axon branches attempt to

compensate for the loss of innervation, resulting in

enhanced axonal arbors. An elegant in vivo approach [48]

has established that degenerative versus regenerative

changes are mainly confined to distinct populations of

neurons, but within the same motor pool. Thus, either two

types of signals are emitted toward motor neurons with

specific characteristics during ALS, or among one motor

pool, motor neurons have the ability to answer either by

sprouting and by degenerating, or by being hyper-reactive

to death signals synthesized in their close vicinity that leads

to sprouting cascade.

Post-synaptic components involved in the regulation

of NMJ stability

A sequence of required cross-talk between nerve and

muscle for their proper maturation has proposed that post-

synaptic areas bring the first trigger events. For example,

during the development of NMJ (sternomastoid muscle),

post-synaptic areas begin to be depleted of AChRs before

there is any obvious loss of membrane in the nerve terminal

[49]. The matter of stability/stabilization of certain syn-

apses can also be considered as mechanisms involved in

the selection of synapses to be eliminated. Nerve terminal

withdrawal is accompanied by a loss of acetylcholine

receptors (AChRs) at corresponding sites at developing

NMJ.

Concomitantly with nerve terminal retraction, a loss of

Schwann cell processes occurs in the post-synaptic appa-

ratus. In case of crushes, it has been proposed that changes

in Schwann cells occur after alterations in the post-synaptic

receptor density. The stabilization of the post-synaptic

compartment through a balanced dialog with the pre-syn-

aptic activity may be another way of NMJ stabilization.

Among other small GTPases activities that can act on the

regulation of NMJ stability could be Ral and the exocyst. It

Mechanisms controlling neuromuscular 1037

123



has been reported that Ral mediates activity-dependent

growth of post-synaptic membranes [50].

Extracellular matrix and adhesion molecules

Synaptic muscle fiber basal lamina is rich, among other

components, in laminin. Laminin b2 mutant mice show

vesicles that fail to aggregate near the pre-synaptic mem-

brane and the formation of nerve terminals is severely

impaired [51]. Interestingly, Schwann cells and their pro-

cesses can be abnormally located in the synaptic cleft. This

is the case in b2-/- mutants. Synaptic laminins have the

ability to inhibit the extension of SC processes. Indeed, the

maturation and maintenance of nerve terminals do not

require collagen a2, but depend on laminin b2 [9, 52].

Laminin b2 probably binds directly to and clusters the P/Q-

type calcium channels that flank active zones, which in turn

recruit other pre-synaptic components [53] for a review.

Truncating mutations in the gene encoding the laminin

b2 subunit (LAMB2) can cause a severe form of synaptic

congenital myasthenic syndroma (CMS) due to various

defects in the organization of the NMJ, including the

reduction of axon terminal size [54].

At synapses, pre- and post-synaptic cells are in direct

contact with each other via cell adhesion molecules

(CAMs).

Genetic evidence indicates that cell adhesion molecules

of the immunoglobulin superfamily (IgCAMs) are critical

for activity-dependent synapse formation at the NMJ in

Drosophila and have also been involved in synaptic

remodelling during learning in Aplysia. In Drosophila,

fasciclin II may play an important role in the maintenance

of synapse integrity, particularly in the context of lesion

and reinnervation. The role of neural cell adhesion mole-

cule (NCAM), the fascII vertebrate homologue, has been

investigated using NCAM-/- mutants. Mice that lack all

three major isoforms of neural cell adhesion molecule

(NCAM) (180 and 140 kDa transmembrane, and 120 kDa

glycosylphosphatidylinositol linked) exhibit major altera-

tions in the maturation of their NMJs [55]. Although

functional NMJs form in NCAM-deficient mice, they show

multiple alterations in pre-synaptic organization and

function. The role of NCAM in the development and

maturation of the NMJ was explored by structurally and

functionally characterizing NMJs postnatally in NCAM

null mutant mice. Both the withdrawal of polyneuronal

innervation and the selective accumulation of synaptic

vesicle protein in the pre-synaptic terminal were delayed

[56].

Whereas many aspects of transmission are normal

thanks to a proper assembling of many pre-synaptic and

post-synaptic molecules in the absence of NCAM, the latter

was indeed required for specific aspects of transmission,

including paired-pulse facilitation and reliable transmission

with repetitive stimuli, regulating directly or indirectly

vesicle mobilization/cycling that are pre-synaptic processes

[57].

NCAM null NMJs were unable to maintain effective

transmitter output with high-frequency repetitive stimula-

tion, exhibiting both severe initial depression and

subsequent cyclical periods of total transmission failures

that were of pre-synaptic origin.

In addition to its role in developmental maturation and

stabilization of NMJs, the role of NCAM has also been

investigated in reinnervation and stabilization of NMJs

after nerve injury. Although redundance weakened phe-

notypes in mouse mutant models, the elimination of

polyneuronal innervation was slowed down after nerve

crushes [58]. In such models of nerve injury, the absence of

NCAM affected the three components of the NMJ, i.e.,

motor neuron, muscle and Schwann cells, neither pre-

vented nor delayed the recovery of contractile force.

Nevertheless, 3 months post lesion (nerve crush), synapses

were withdrawn. A loss of fast muscle fibers was also

observed, leading to a decrease in contractile force, signs of

inappropriate axonal withdrawal and impaired synaptic

neurotransmission. Thus, the recovery of contractile force

was the same in wild-type and NCAM-/- mice 1 month

after nerve injury, but only transiently. NCAM is required

to maintain normal synaptic function at reinnervated NMJs,

although its loss pre-synaptically or post-synaptically is not

sufficient to induce synaptic destabilization, suggesting that

NCAM must be absent pre-synaptically and post-synap-

tically or absent on peri-synaptic terminal Schwann cells to

destabilize the synapse after reinnervation [59].

Altogether, these data reveal that NCAM is required

both for the normal course of polyneuronal elimination

during development, and for maintaining normal muscle

function through appropriate stabilization of motor axons

after a peripheral nerve injury.

Rapsyn, a 43 kDa cytoplasmic protein, is precisely

co-localized with AChRs at the NMJ

It is lost at the same rate as AChRs at junctions undergoing

synapse elimination. In MuSK or rapsyn mutant muscle

fibers, wild-type nerve terminals underwent continuous

remodeling [60]. Normal post-synaptic differentiation

appears to be dispensable for initial stages of pre-synaptic

differentiation but required for pre-synaptic maturation.

When nerves enter transplanted muscles derived from mice

lacking muscle-specific receptor tyrosine kinase (MuSK) or

rapsyn, wild-type nerve terminals undergo continuous

remodeling, suggesting that these muscle components are

required to stabilize the immature contacts so that they can

mature [60]. Interestingly, biglycans that act as ligands for
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Musk are proposed to stabilize synapses after P14 once

they reach their mature configuration, although they are

neither necessary for synapse formation in vivo, nor for the

initial AChR clustering in vitro [61]. Thus, NM stabiliza-

tion would involve specific cues and cellular signaling that

are specific of distinct steps of synapses maturation.

Among them, LRP4 codes for the post-synaptic low-den-

sity lipoprotein receptor-related protein 4. LRP4 is

expressed on the surface of the post-synaptic membrane of

the NMJ and acts as a receptor for the neurally secreted

agrin. Once LRP4 is bound by agrin, MuSK becomes

activated. LRP4 acts as a co-factor for MuSK in agrin

signaling, interacting with MuSK-like several other pro-

teins in the early stages of synapse development including

Dok-7 and Wnt11r [53]. Activated MuSK, together with

Dok-7, stimulates rapsyn to concentrate and anchor AChR

on the post-synaptic membrane and interacts with other

proteins implicated in the assembly and maintenance of the

NMJ. Another specific domain of LRP4 functions as an

inhibitor of Wnt/beta-catenin signaling. b-Catenin interacts

with rapsyn to favor AChR clustering, which also requires

interaction with a-catenin. By interacting with rapsyn and

a-catenin, b-catenin may link the AChR to the cytoskeleton

[13]. Myogenin—a muscle-specific transcription factor—is

involved in AchR expression, stabilization and clustering

[62]. Some post-synaptic congenital myasthenic syndromes

(CMS) are caused by mutations in agrin, musk and Rapsyn,

all of them being part of a molecular pathway essential for

AChR aggregation and positioning on the post-synaptic

membrane [63]. LRP4 has been proposed to be a novel

congenital myasthenic syndrome disease gene [64]. In

myasthenia gravis (MG), a severely debilitating autoim-

mune disease that is due to a decrease in the efficiency of

synaptic transmission at neuromuscular synapses, anti-

bodies are generated against post-synaptic proteins,

including acetylcholine receptors, MuSK, and (Lrp4),

which prevent binding between MuSK and Lrp4, and

inhibit agrin-stimulated MuSK phosphorylation [65].

Dystroglycan (DGC) is a multi-molecular complex

including dystrophin glycoprotein complex altogether with

dystrophin, a cytoskeletal protein. The homologue of dys-

trophin at the NMJ synapse is utrophin. Another

cytoplasmic component is a-dystrobrevin. The roles of

DGC have been analyzed in KO mouse models. They could

be involved in the maintenance of the NMJ, although only

analyzed in terms of AChR clusters sizes, which reveals the

anchoring of the AChRs in the synaptic membrane as a

sign of stabilized mature synapse. But no data have been

reported as for axon terminals in these mutants after neu-

rofilament stainings or electron microscopy. It is

noteworthy that after denervation, a sequence of molecular

loss occurs, syntrophin and dystrophin being lost later than

rapsyn and utrophin. In addition, it has been shown that

a-dystrobrevin tyrosine phosphorylation is strictly depen-

dent on the functionality of Neuregulin (NRG)/ErbB

signaling.

Nogo-A has been first described as an inhibitor of axon

growth in the central nervous system. It has been shown that

Nogo-A mRNA and protein levels do increase in mSOD1

mouse model as well as in amyotrophic lateral sclerosis

(ALS) denervated muscle fiber biopsies. ALS is a fatal

paralytic disease that targets motor neurons, leading to

motor neurons death and widespread denervation with

atrophy of muscle. Clinical observations reported so far can

bring interesting cues to get a better understanding of other

cellular processes or molecular cues possibly involved in

NMJ stabilization. Nogo-A overexpression has also been

reported more generally in other muscle pathologies such as

peripheral neuropathies [66]. The overexpression of Nogo in

patient is limited to oxidative fibers, and the levels of Nogo-

A are correlated with the clinical state of the patient [67].

The ectopic expression levels of Nogo-A in the muscles

of ALS patients correlate with the severity of clinical

symptoms. In wild-type mouse fibers, the overexpression

of Nogo-A leads to the shrinkage of the post-synapse and

retraction of the pre-synaptic motor ending. Indeed it has

been shown that Nogo-A, previously described as acting as

an inhibitor of neurite outgrowth, is also able to promote

denervation in an ALS model [68]. In ALS, Nogo-A early

expression in skeletal muscles can cause the repulsion and

the destabilization of the motor nerve terminals with axon

elimination and motor neuronal death [68]. The cellular

mechanisms may involve the Rho/ROCK pathway, since

deleterious effects of Nogo as an axon growth inhibitor are

reversed by blocking the Rho/ROCK pathway. Rho/ROCK

could directly be involved in axon retraction, and possibly

in initial collapse that could precede nerve terminal elim-

ination. Whereas the precise role of RhoGTPase in NMJ

stabilization remains to be further analyzed, it has been

shown that the RhoGEF-ephexin1 regulates postnatally the

stability of AChR clusters in a RhoA-dependent manner,

regulating both the structural maturation of the post-syn-

aptic apparatus and the precise neurotransmission of NMJs.

Ephexin1 would mediate EphA-dependent dispersal of

AChRs by a RhoA-dependent mechanism [69].

Underlying possible mechanisms in the regulation

of NMJ stability

The stabilization of axons at the NMJ and the competition

at the period of polyneuronal innervation elimination are

not linked to apoptosis because they occur postnatally

outside the period of motor neuron cell death. Neverthe-

less, the stabilization of the NMJ involves a synaptic

competition that would be mediated by a ‘‘punishment’’ or
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‘‘elimination’’ signal produced by the post-synaptic cell,

which causes the retraction of some of the terminals, as

well as a ‘‘protective’’ or ‘‘reward’’ signal that stabilizes

one terminal [70]. A hypothesis to explain synapse elimi-

nation has been the active versus inactive synapses

involving a competitive process. But no consensus could be

reached as for favoring or destabilizing axon maintenance

according to activity alone. A common feature of compe-

tition at neuromuscular as well as CNS synapses, is that

temporally correlated/synchronous activity seems to slow

or prevent competition, while uncorrelated/asynchronous

activity seems to trigger or enhance competition [71, 72].

Whereas molecular cues involved in this process have

remained poorly characterized so far, it has been recently

shown that the activity-dependent conversion of pro-brain-

derived neurotrophic factor (proBDNF) to mature

(m)BDNF mediates synaptic competition [70]. The activity

of motor neurons will trigger the proteolytic conversion of

proBDNF to mBDNF at nerve terminals whose respective

roles are opposite: when two distinct motor neuron axons

innervate one myocyte, proBDNF-p75(NTR) signaling

promotes the retraction of the less active terminal, whereas

mBDNF-tyrosine-related kinase B (TrkB) p75NTR facili-

tates the stabilization of the more active one. Thus, the

activity-dependent conversion of proBDNF to mBDNF

may regulate synapse elimination, through the selection of

active terminals, both in vivo and in vitro.

In vitro, a recent model consists in proposing a reward

signal (mBDNF) which stabilizes the terminal by activat-

ing TrkB, whereas proBDNF would act as a default

‘‘punishment signal’’ to actively retract afferent terminals

through p75NTR.

The role of other trophic/neurotrophic factors such as

bFGF and CNTF has also been investigated. When injected

in muscles, they exert powerful and long-lasting effects for

the maintenance of polyneuronal innervation [73].

Concluding remarks

Whereas molecular mechanisms that regulate synapse

formation have been well documented, little is known

about the factors that modulate synaptic stability. Never-

theless, further identifying molecular cues involved in

synapse stability would also probably inform on the

mechanisms of synapse loss, which is an early and

invariant feature of neurodegenerative diseases that can

concern central and peripheral synapses. In Alzheimer’s

disease (AD), the extent of synapse loss correlates with the

severity of the disease. Hence, understanding the molecular

mechanisms that underlie synaptic maintenance is crucial

to reveal potential targets that will allow the development

of therapies to protect synapses. Crossing information from

the central nervous system to be applied to peripheral

pathologies would be informative. Moreover, the molecu-

lar factors that are expressed both during development and

adulthood can be of special interest, suggesting their role in

synaptic maintenance in the adult. For example, Wnts has

been shown to play a central role in the formation and

function of neuronal circuits, and could be involved in

synapse maintenance in the adult brain [74]. Its role has

been studied in satellite cells in muscle, but not in neuro-

muscular cross-talks and NMJ stability.

It has long been unclear whether disease progression

reflects temporally defined selective vulnerabilities and

loss of specific synapses or axons, or stochastic loss in

progression. Using mouse models, including mSOD1, it

has been shown that fast fatigable (FF) motor axons are

affected synchronously prior to fast fatigue resistant (FR)

motor axons, both at symptom-onset, whereas axons of

slow motor neurons are resistant [75].

In human multiple degenerative contexts including

ALS, spinal muscular atrophy (SMA), and aging, fast

fatigable (FF) motor units degenerate early, whereas motor

neurons innervating slow muscles and those involved in

eye movement and pelvic sphincter control are strikingly

preserved. The diversity of motor neurons in terms of NMJ

stabilization could also reveal a great diversity in motor

neuron subtypes and help getting a clearer understanding of

the cellular and molecular cues involved in normal devel-

opment and pathological destabilization of NMJ. NMJ

dismantlement has been reported to occur generally earlier

in multiple degenerative contexts including ALS. A motor

unit is defined as a motor neuron (alpha1 or 2) and the

muscle fibers it innervates. The twitch speed of a muscle

fiber largely depends on the motor neurons that innervate

it. Muscle fibers themselves have distinct metabolic capa-

bilities. Slow-twitch fibers rely primarily on oxidative

metabolism, whereas Fast-twitch fibers may predominantly

perform glycolytic conditions. Some fibers can be both

oxidative and glycolytic.

More recently, it has been proposed that the muscle

itself would initiate the pathology that then would lead to

NMJ destruction, motor neuron degeneration and death. It

would be due to an energetic deficit generated by an

increase in basal and energetic muscle metabolism, with an

increase in the peripheral use of lipids which leads to a

reduced adipose tissue accumulation in mSOD1 [76]. The

increased muscular metabolism leads to a decrease in fat

reserves and a chronic energetic deficit. These results—

along with a comparative analysis between the phenotype

of mSOD1 mice and ALS patients—suggest new thera-

peutic strategies including nutritional modifications, for

example, hyperlipidic diet [77].

In those diseases, functional changes in axonal transport

have been hypothesized and increasing evidence is in favor
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of a role of ER stress (endoplasmic reticulum stress) in

motor neuron degeneration [78]. Among the candidates

that are involved in the NMJ stabilization, CLIPR-59 is the

first that is located at the trans-Golgi network (TGN) so far.

It also represents one of the recent candidates proposed to

affect protein/membrane trafficking or cytoskeleton

remodeling at the NMJ [45], and to be linked to axonal

dieback from the NMJ. Thus, affecting the dynamics of

intracellular compartments could itself affect the protein

biosynthesis—as it is also the case in pmn model with

mutated TBCE—and activate unfolded protein response

leading to NMJ destabilization. So far, TBCE has been

shown to bind microtubules and to protect against mis-

folded protein stress in yeast [79]. The extensive

characterization of intracellular events involved in axon

destabilization will bring cues to get a better understanding

of signaling cascades involved in NMJ destabilization, both

in normal development and in neurodegenerative disease.
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